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Post-traumatic stress disorder (PTSD) is a debilitating undertreated condition that
affects 8%–13% of the general population and 20%–30% of military personnel.
Currently, there are no specific medications that reduce PTSD symptoms or
biomarkers that facilitate diagnosis, inform treatment selection or allow monitoring
drug efficacy. PTSD animal models rely on stress-induced behavioral deficits that
only partially reproduce PTSD neurobiology. PTSD heterogeneity, including comorbidity
and symptoms overlap with other mental disorders, makes this attempt even more
complicated. Allopregnanolone, a neurosteroid that positively, potently and allosterically
modulates GABAA receptors and, by this mechanism, regulates emotional behaviors,
is mainly synthesized in brain corticolimbic glutamatergic neurons. In PTSD patients,
allopregnanolone down-regulation correlates with increased PTSD re-experiencing
and comorbid depressive symptoms, CAPS-IV scores and Simms dysphoria cluster
scores. In PTSD rodent models, including the socially isolated mouse, decrease in
corticolimbic allopregnanolone biosynthesis is associated with enhanced contextual fear
memory and impaired fear extinction. Allopregnanolone, its analogs or agents that
stimulate its synthesis offer treatment approaches for facilitating fear extinction and,
in general, for neuropsychopathologies characterized by a neurosteroid biosynthesis
downregulation. The socially isolated mouse model reproduces several other deficits
previously observed in PTSD patients, including altered GABAA receptor subunit
subtypes and lack of benzodiazepines pharmacological efficacy. Transdiagnostic
behavioral features, including expression of anxiety-like behavior, increased aggression,
a behavioral component to reproduce behavioral traits of suicidal behavior in humans,
as well as alcohol consumption are heightened in socially isolated rodents. Potentials
for assessing novel biomarkers to predict, diagnose, and treat PTSD more efficiently
are discussed in view of developing a precision medicine for improved PTSD
pharmacological treatments.
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is a multifaceted
psychiatric disorder characterized by a high worldwide
prevalence in the general population and a consistent global
burden and disability. In the U.S., about 50%–85% of individuals
during their lifetime experience traumatic events, of these,
about 6.8% develop PTSD (Kessler et al., 2005). However, its
prevalence is even higher, reaching 25%–50%, in individuals
exposed to warzones or in victims of domestic violence and
abuse, including children and battered women, respectively
(Goldstein et al., 2016). Importantly, women are particularly
susceptible to develop PTSD as compared with men (Shansky,
2015; Yehuda et al., 2015). Other predictors for developing
PTSD, include characteristics of the traumatic event for a given
exposed individual (Bichescu et al., 2005). Comorbidity with
other psychiatric disorders, such as major depressive disorder,
anxiety spectrum disorders, and alcohol use disorder (AUD),
or with suicide, as well as, overlapping of symptoms with
these disorders are very common in individuals affected by
PTSD (Shalev, 2001; Lassemo et al., 2017; Gagne et al., 2018).
Together, these complications result in a general difficulty
in diagnosing PTSD and make treatment selection difficult
(Greene et al., 2016). Current pharmaco-treatment for PTSD
relies in the administration of the selective serotonin reuptake
inhibitors (SSRIs), such as paroxetine and sertraline, the only
FDA-approved drugs for PTSD (Friedman and Bernardy,
2017). These drugs are associated with poor response rate
in a consistent number of treatment-seeking patients, with
active military members and veterans who are relatively
non-responsive to SSRIs (Bernardy and Friedman, 2015;
Starke and Stein, 2017). Developing suitable animal models
for PTSD and discovering reliable biomarkers that allow a
more accurate diagnosis, based on objective measures, may
improve quality of healthcare. Biomarker discovery will indeed
permit developing targeted drugs and may generally offer
more treatment options, which is highly desirable and needed
(discussed in Aspesi and Pinna, 2018).

While a number of animal models in mice and rats were
developed in the past decades that, at least, partially recapitulate
several neurochemical and behavioral deficits encountered in
the wide ranging PTSD symptoms clusters, none of them is
currently recognized as an optimal match with the human
neuropathology (reviewed in Aspesi and Pinna, 2019). However,
some of them reproduce core aspects of PTSD, including
deficits in fear extinction and fear extinction retention and even
transdiagnostic aspects relevant for comorbidity with depression,
suicide and AUD. Notwithstanding sex matters with PTSD, sex
as a biological variable in research including females has only
recently being intensified and the sex-effect or the effect of the
menstrual cycle or pregnancy in women with PTSD only recently
has been taken into examination (Onoye et al., 2013; Pineles
et al., 2017, 2018). In rodent PTSD models, these sex-related
effects were scantily studied with very few studies that have
attempted to reproduce endophenotipic expression of female
PTSD neurobiology into female rodents (Cohen and Yehuda,
2011; reviewed in Keller et al., 2015; Aspesi and Pinna, 2019).

Hence, sex-related studies in PTSD neurobiology are urgent and
a priority in both clinical and preclinical research.

Furthermore, to add to the general complexity and
heterogeneity of PTSD, it is conceivable that factors, including
the type and the duration in time of a traumatic event, as well
as, the condition of individuals in a given time when they are
exposed to trauma, altogether, may dictate the development
of subtypes of PTSD (Stein et al., 2016). Collectively, all these
factors are important aspects that may drive establishing
successful PTSD animal models. Often, the question arises as
to whether an experimental model of PTSD should exclusively
recapitulate core traits of PTSD, such as extinction deficits and
avoidance or rather should take into account what is often
encountered in the diagnosis of PTSD patients, for example,
comorbidities with other mental disorders (discussed in Aspesi
and Pinna, 2019).

The recent progress that has been made in understanding
PTSD neurobiology has facilitated the development of
experimental stress-induced animal models (Torok et al.,
2018). However, PTSD remains a neuropathology with no
specific pharmacological treatments, no established and reliable
biomarkers, and PTSD animal models only reproduce PTSD
neurobiology to a limited degree. While previous recent articles
examined a number of animal models of PTSD and the validity
of several biomarker candidates that have been proposed for
PTSD (Aspesi and Pinna, 2018, 2019), this review will focus
on the socially isolated mouse model of stress-induced fear
extinction deficits. Other abnormal behavioral deficits will be
discussed as well as commonalities with PTSD neurobiology
in humans, such as reproducing endophenotipic features
observed in PTSD patients. Transdiagnostic aspects shared
with depression, anxiety, suicide and AUD are also discussed.
This review article also analyses running findings suggesting
the neurosteroid, allopregnanolone biosynthesis and its targets
may prove valuable for establishing a biomarker axis suitable
for PTSD. It is conceivable that allopregnanolone may play a
key role to predict, diagnose and suggest an optimal treatment
selection for PTSD in the near future.

ALLOPREGNANOLONE FROM ITS
DISCOVERY IN ADRENAL GLANDS TO A
ROLE IN MOOD DISORDERS

Following its discovery in 1938 by Beall and Reichstein
in the adrenal glands (Figure 1), allopregnanolone was
recognized as a 5α-reduced metabolite of progesterone (Beall
and Reichstein, 1938). It was named a neurosteroid in
1981 by Baulieu’s team who discovered that the brain
‘‘acting like a peripheral gland,’’ expresses the enzymatic
machinery required to synthetize allopregnanolone de novo
starting from pregnenolone, the precursor of all neurosteroids
(Corpéchot et al., 1981). Allopregnanolone’s anti-convulsant,
anxiolytic and anti-depressant pharmacological effects after
its administration in animal models and humans were soon
recognized to be mediated by a mechanism of action that
includes the fast allosteric modulation of the action of GABA
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FIGURE 1 | Timeline of allopregnanolone from its discovery to FDA preapproval for the treatment of mood disorders. Beall and Reichstein discovered
allopregnanolone in 1938 in the adrenal glands where 5α-reductase metabolizes progesterone into 5α-dihydroprogesterone and then the enzyme 3α-hydroxysteroid
dehydrogenase produces allopregnanolone (Beall and Reichstein, 1938). In 1981, Baulieu’s team discovered that the brain “acting like a peripheral gland” synthetize
allopregnanolone de novo starting from pregnenolone, the precursor of all neurosteroids (Corpéchot et al., 1981). Allopregnanolone’s pharmacological effects
following its administration in animal models and humans are mediated by the fast allosteric modulation of the action of GABA at GABAA receptors (Majewska et al.,
1986; reviewed in Belelli et al., 2009). The neurophysiological role of allopregnanolone in fine-tuning GABAA receptors to agonists, positive allosteric modulators, and
GABAmimetic agents, was unveiled thereafter (Pinna et al., 2000). Allopregnanolone levels were found decreased in mood disorders, including major unipolar
depression and PTSD (Romeo et al., 1998; Uzunova et al., 1998; Rasmusson et al., 2006, 2019). An animal model of stress-induced behavioral dysfunction,
including fear extinction deficits and aggressive behavior associated with a corticolimbic allopregnanolone biosynthesis downregulation was proposed therein after
(Pinna et al., 2008; Pibiri et al., 2008). More recently, phase 3 clinical trials have established the clinical relevance of allopregnanolone in mood disorders
(Kanes S. J. et al., 2017; Meltzer-Brody et al., 2018). Intravenous allopregnanolone (brexanolone or SAGE-547) or an orally-active, allopregnanolone’s analog
(SAGE-217), showed a rapid and long-lasting remission of post-partum depression and major depressive disorder symptoms, respectively. These successful clinical
trials led to the FDA approval of brexanolone for the treatment of post-partum depression in March 2019 and encouraged the possible future clinical use of
brexanolone or SAGE-217 for the treatment of mood disorders, including PTSD.

at GABAA receptors (Majewska et al., 1986; reviewed in
Belelli and Lambert, 2005; Belelli et al., 2009, 2018). In the
year 2000, the neurophysiological role of allopregnanolone
in permitting the fine-tuning and regulating the strength of
GABAA receptors to agonists, positive allosteric modulators,
and GABAmimetic agents, was unveiled (Pinna et al., 2000).
By acting at GABAA receptors, allopregnanolone also regulates
emotional behavior in rodent stress models of behavioral
abnormalities and humans with PTSD and major unipolar
depression (Uzunova et al., 1998; Pinna et al., 2003, 2008;
Rasmusson et al., 2006, 2019; Pineles et al., 2018). More recently,
several phase 3 clinical trials have established the clinical
relevance of allopregnanolone in mood disorders. Intravenous
allopregnanolone (brexanolone or SAGE-547) or an orally-
active, allopregnanolone’s analog, named SAGE-217, showed
a rapid and long-lasting remission of post-partum depression
and major depressive disorder symptoms, respectively (Kanes
S. J. et al., 2017; Kanes S. et al., 2017; Meltzer-Brody et al.,
20181). These studies, in March 2019, led to the FDA
approval of allopregnanolone (i.e., brexanolone) as the first
specific treatment for post-partum depression that will allow
this ‘‘endogenous tranquillizer’’ to be prescribed as a novel

1http://investor.sagerx.com/news-releases/news-release-details/sage-announces-
pivotal-phase-3-trial-status-sage-217-major

treatment for mood disorders starting in Summer 2019. On
the other hand, if successfully developed, SAGE-217 will be
the first durable, rapid-acting, oral, short-course treatment
for mood disorders and potentially may be applied to test
whether administered during prolonged exposure therapy for
PTSD, it facilitates recovery in patients. The new generation
of rapid-acting antidepressants has just emerged and may likely
dominate the field of neuropsychopharmacology for the next
decades to come.

The finding that the traditional gold-standard treatment
option for PTSD, the selective serotonin reuptake inhibitors
(SSRIs), is efficient in about half of the treated patients
(reviewed in Golden et al., 2002; Rush et al., 2006; Kemp
et al., 2008; Bernardy and Friedman, 2015), suggests that mood
disorders emerge from complex neurobiological backgrounds
and only one molecular deficit may not reflect a valid
biomarker for the disorder under examination. Likewise, only
one treatment cannot be the answer to improve symptoms
in all patients, following the one-fit-all treatment expectation
(Brewin, 2001; Aspesi and Pinna, 2018). Overall, discovering
biomarkers that may lead to precision medicine for PTSD
is in high demand. Novel advances in the field have been
possible by employing state-of-the-art technologies and more
reliable animal models (reviewed in Ngounou Wetie et al., 2013;
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Aspesi and Pinna, 2018, 2019). However, more research is
needed to establish a reliable biosignature for PTSD and other
mood disorders.

ALLOPREGNANOLONE: A BIOMARKER
CANDIDATE AND A TREATMENT
ENDPOINT FOR MOOD DISORDERS

Research for effective biomarkers in psychiatric disorders still
remains backward when compared to most fields of medicine
that heavily rely on biomarkers for their prediction, prevention,
diagnosis and assessment of the most effective treatments
(discussed in Fernandes et al., 2017; Aspesi and Pinna, 2018).
Diagnosis of PTSD and mood disorders still rely on subjective
measures, including questionnaires and description of symptoms
by the patients to the psychiatrist or psychologist and are based
on the Diagnostic and Statistical Manual of Mental Disorders
version 5 (DSM-V) criteria. Unfortunately, a number of factors
complicate the nature of these diagnostic assessments. These
include the poor general understanding of the neurobiological
underpinnings of psychiatric disorders, such as PTSD and
major depressive disorder (Pinna, 2018). These conditions are
multifaceted and heterogenic for symptoms and for the way
they manifest in different patients. The finding that symptoms
overlap and comorbidity among various psychiatric disorders,
including depression, anxiety, substance abuse and suicide,
further complicates diagnosis (Locci and Pinna, 2017; Franklin
et al., 2018). Objective neurobiological parameters are not yet
in the clinical practice unlike in the diagnosis of most of the
medical conditions. In recent years, several biomarker candidates
have been suggested for PTSD, however, their diagnostic
value remains to be yet established (reviewed in Aspesi and
Pinna, 2018). As in the symptoms and comorbidity of mood
disorders, these biomarkers for PTSD are often common to other
neuropsychopathologies, such as major depressive disorder.
For example, downregulation of neurosteroid biosynthesis,
including the concentrations of the GABAergic endogenous
modulator allopregnanolone and of its equipotent stereoisomer,
pregnanolone was found in cerebrospinal fluid (CSF), plasma,
serum of major depression and PTSD patients (Romeo et al.,
1998; Uzunova et al., 1998; Rasmusson et al., 2006, 2019;
Pineles et al., 2018). In PTSD patients, CSF allopregnanolone
levels inversely correlated with levels of dehydroepiandrosterone
(DHEA), likely generating an imbalance between inhibitory
and excitatory neurotransmission underlying PTSD symptoms
(Rasmusson et al., 2006). Importantly, sleep disturbance in
the context of PTSD was previously associated with DHEA
responses following adrenal activation as well as with decreased
allopregnanolone levels (reviewed in Pitman et al., 2012). The
significance of allopregnanolone biosynthesis downregulation as
a biomarker of psychiatric disorders has been highlighted in
numerous reports (Uzunova et al., 1998; Nemeroff, 2008; Agis-
Balboa et al., 2014; Dichtel et al., 2018; reviewed in Schüle
et al., 2011; Zorumski and Mennerick, 2013; Schüle et al., 2014;
and Locci and Pinna, 2017). Neurosteroid biosynthesis deficit
observed in PTSD patients has been successfully modeled in

rodents subjected to chronic stress, such as in mice exposed to
prolonged (3–4 weeks) social isolation stress.

Clinical and preclinical observations suggest that
allopregnanolone may serve as a biomarker for symptoms
overlapping in neuropsychopathologies encompassing from
PTSD and depression (Pibiri et al., 2008; Pinna et al., 2008; Pinna
and Rasmusson, 2012; Locci and Pinna, 2019b). In this respect,
the synergic interplay of multiple neurochemical alterations
that have been newly proposed within neurosteroid levels, their
receptors and biosynthetic enzymes, as possible biomarkers,
which is, establishing a biomarker axismay be the most accurate
path to predict, diagnose, prevent or treat mood disorders
(discussed in Aspesi and Pinna, 2018).

These summaries also suggest that by counteracting the
downregulation of allopregnanolone biosynthesis, novel
treatment may ameliorate symptoms in PTSD and depression
(Rupprecht, 2003; Rupprecht et al., 2009, 2010; reviewed in
Locci and Pinna, 2017). Indeed, allopregnanolone biosynthesis
promises to be instrumental for a much-needed precision
medicine for mood disorders (Aspesi and Pinna, 2018).

ANIMAL MODELS OF PTSD

Establishing reliable biomarkers and specific treatments for
PTSD has been hampered not only by the relative difficulty
in establishing PTSD animal models but also because of
the limited knowledge on PTSD neurobiology (Borghans and
Homberg, 2015; Pinna and Izumi, 2018; Aspesi and Pinna,
2019). However, establishing correlative analyses among altered
neuroactive chemicals in patients’ plasma, serum, and CSF is
key to translate findings to animal models. Animal models
are essential investigative tools to understand the etiopathology
of a disease/disorder, how this develops over time and what
targets can be affected by new pharmacological treatments.
While it is beyond impossible to precisely model complex
behavioral expressions of human symptoms that recapitulate
to PTSD, basic behavioral endophenotypes can be reproduced
in animals (reviewed in Siegmund and Wotjak, 2006, 2007).
At this regard, animal models must satisfy criteria including
face, construct and predictive validity Geyer and Markou,
2002). Face validity is the collection of phenotypes (behavioral
and neurochemical) that relate finding in PTSD patients
to rodent stress or genetic models. Construct validity is
the process involved in the onset and the manifestation
of the disorder and this, ultimately, is recapitulated in
the animal model. Finally, predictive validity reflects the
capability of animals to inform by means of predictors on the
human disorder.

Probably the most commonly used stressful experimental
condition to elicit stress-induced behavioral deficits that
recapitulate to PTSD symptoms includes the restraint
stress. Rodents are generally restraint under one single
exposure that may last up to 2 h (Whitaker et al., 2014) or
during repeated sessions that vary from few days to several
weeks (Gameiro et al., 2006).

Pairing the restraint stress with forced swimming and
other stressors is part of the unpredictable variable stress,
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which reproduces PTSD behavioral deficits that are ameliorated
by administration with SSRIs or ketamine (Garcia et al.,
2009; Yin et al., 2016). This procedure is believed to model
the unpredictable stress that soldiers often experience in
warzones (Wakizono et al., 2007; Goswami et al., 2013;
Shepard et al., 2016). In addition to a PTSD-like phenotype,
the unpredictable protocol is associated with depressive-like
deficits typically observed in PTSD patients with comorbidity
with depression.

The inescapable shocks is another unpredictable stressor-based
model, which relies on an unexpected single stress-exposure,
an electric foot or tail shock and is generally used to model
fear responses and fear extinction learning (Pryce et al., 2011;
Desmedt et al., 2015). The inescapable shock model can be
combined with restraint (Nagata et al., 2009).

The predator-stress model protocol includes the exposure of
rodents to a predator or to its scent (Adamec et al., 2004; Wilson
et al., 2014a). This stressor induces hyperarousal, avoidance,
fear, and reduces fear extinction (Cohen et al., 2010; Zoladz
et al., 2015; Seetharaman et al., 2016). Exposure to predators also
increases anxiety-like behavior (Adamec et al., 2005). Behavioral
deficits are heightened when rodents are directly exposed to
a predator rather than the predator scent. These animals also
respond to sertraline, which reduces anxiety-like behavior and
cue avoidance (Zoladz et al., 2013; Wilson et al., 2014b).

The single prolonged stress consists in three stressors
that are administered in succession: restraint stress (2 h),
forced swimming (20 min) and exposure to diethyl ether
(Liberzon et al., 1997, 1999). Cue-conditioned fear and its
extinction are unaffected; however, this procedure induces
consistent impairment in extinction retention (George et al.,
2015). This model also induces hyperarousal and enhanced
contextual freezing (Imanaka et al., 2006; Yamamoto et al.,
2009). Cue-induced fear can be attenuated by paroxetine
(Perrine et al., 2016).

The social defeat stress model is mostly performed in male
rodents by a resident-intruder test, which results in aggressive
behavior and social stress for the intruder (Björkqvist, 2001;
Hammels et al., 2015). This increases social avoidance and other
behavioral traits of PTSD, including hyperarousal and anhedonia
(Warren et al., 2013; Der-Avakian et al., 2014).

The 129S1/SvlmJ genetic mouse model of PTSD (Camp et al.,
2009) is characterized by impaired fear extinction (Hefner et al.,
2008). Importantly this model allows investigating the molecular
and genetic mechanisms underlying fear extinction from a
genetic perspective allowing studies on individual vulnerability,
as well as, their predisposition to PTSD. Similarly to most of
PTSD rodent models reviewed above, the 129S1/SvlmJ mouse
also responds to SSRIs, such as fluoxetine that improves the fear
responses (Camp et al., 2012).

Finally, serotonin 2C receptors (5-HT2CR) are well
characterized in anxiety, and a new model in mice having
the fully VGV edited isoform of 5-HT2CR, which overexpresses
brain 5-HT2CR, was recently established to study PTSD
predisposition (Règue et al., 2019). VGV mice expressed greater
fear responses, fear extinction deficits, and fear generalization.
These dysfunctions were normalized by paroxetine in VGVmice

given acutely and decreased when administered chronically. This
treatment also improved deficits in brain derived neurotropic
factor (BDNF) expression in the amygdala and the hippocampus.
VGV-transgenic mice express neurobiological features relevant
to PTSD and its treatment (Règue et al., 2019).

By far, ‘‘PTSD model’’ has often been an overused
terminology to depict basic research studies that include a
number of stressors to induced behavioral deficits (Siegmund
and Wotjak, 2006). The human condition should probably
be modelled by applying an uninterrupted chronic stress in
combination with an acute traumatic event. Generally, the first
serves an essential substrate for ‘‘trauma/fear incubation’’ and
the second is a trigger that challenges the individual susceptibility
to develop resilience or PTSD symptoms. However, reproducing
chronic stress in animal models is a hard task in that most
paradigms administer repeated acute stressors, which results in
an intermittent stress model. Protracted social isolation stress
may offer an alternative to this methodological problem and
provide the advantage of administering the chronic stressor
continuously and for as long as desired (often weeks; reviewed
in Zelikowsky et al., 2018). This phase of neurochemical changes,
such as social isolation stress-induced neurosteroid biosynthesis
downregulation, may provide the required conditions that
precipitate PTSD-like behavior following the administration
of acute stressors (i.e., foot shocks that are part of the fear
conditioning paradigm; Torok et al., 2018).

THE SOCIALLY ISOLATED MOUSE

The protracted social isolation stress, in humans, called
perceived social isolation (PSI) or loneliness, elicits a number
of physical, neurological and psychological deficits that range
from Alzheimer’s disease to major depression, anxiety disorders
and suicidality (Cacioppo and Cacioppo, 2016). Social and
community support is fundamental for emotional regulation
following traumatic stress, their absence puts at risk for PTSD
and other mental disorders (Nemeroff et al., 2006; Charuvastra
and Cloitre, 2008; Mehnert et al., 2010). An individual
inability to manage emotional memories often results in
avoidance, re-experiencing symptoms and hypervigilance (Cahill
et al., 2003; Rothbaum and Davis, 2003; Pitman et al., 2006;
Rauch et al., 2006).

Rodents that have been exposed to a prolonged social isolation
in individual cages for 3–4 weeks, express time-dependent
behavioral deficits, including increased anxiety-like behavior and
aggression (Guidotti et al., 2001; Pinna et al., 2003; Rau et al.,
2005; Pibiri et al., 2008; discussed in Locci and Pinna, 2019b).
Individual housing is likewise a powerful stressful condition
that may increase the susceptibility to develop behavioral
dysfunctions when rodents are additionally exposed to an
acute traumatic stressor, for example, the electric shocks that
constitute the fundamental of the Pavlonian fear conditioning
test (Charuvastra and Cloitre, 2008; Pinna, 2010).

Behavioral deficits following protracted social isolation are
associated with a number of physical and neuronal dysfunctions,
including impairment of the HPA axis, neurotransmitter
systems, neuropeptides, neurohormones, and neurotropic
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factors (reviewed in Nin et al., 2011a). Importantly, studies
have investigated the potential role for tachykinins in regulating
social isolation-induced aggression in mice. Studies focusing
on the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB)
showed that in the central amygdala the peptide plays a role
in fear memory consolidation. A more recent study showed
that Tac2/NkB is dramatically upregulated throughout the
brain following protracted social isolation, which resulted in
aggression and impairment of other behaviors by acting on
multiple brain regions (Zelikowsky et al., 2018).

Studies from this lab have mainly focused on the effects
of social isolation on the GABAergic neurotransmission
dysfunction caused by impaired neurosteroid biosynthesis, and
changes in the expression of several GABAA receptor subunit
subtypes. The role of neurosteroids in regulating the expression
of neurotropic factors (i.e., BDNF) during social isolation has
also been one important research interest.

Behavioral Deficits in Socially
Isolated Mice
Mice that are socially isolated for 3–4 weeks post-weaning
(PN21) express a number of behavioral deficits relevant to
model aspects of human mood disorders (reviewed in Pinna

and Rasmusson, 2012; Zelikowsky et al., 2018; Aspesi and
Pinna, 2019; Locci and Pinna, 2019b). Specifically, male mice
when exposed to a fear conditioning test with administration
of a conditioned (CS, acoustic tone) and an unconditioned
stimuli (US, footshock, please see Figure 2), in a novel context,
comprising a contextual chamber (Pibiri et al., 2008; Pinna et al.,
2008), show elevated freezing, which is an index of elevated fear
responses, 1 day post-training session. Time-course experiments
have unveiled that freezing increases time-dependently during
4 weeks of isolation and similarly to the expression of aggressive
behavior, reaches a plateau between week 4 and 6 of isolation
(Pibiri et al., 2008; Pinna et al., 2008). In this mouse model
of enhanced fear responses, socially isolated mice exhibit an
impaired fear extinction memory as compared with group-
housed control male mice and a re-emergence of fear after
the passage of time or, in other words, they show impaired
fear extinction retention (Pibiri et al., 2008). On a translational
standpoint, social isolation can be seen as a prolonged
stress that is often associated with a precipitating traumatic
event, which leads to maladaptive post-stress adaptations and
emergence of PTSD in patients. Thus, social isolation offers
a suitable model to study vulnerability to PTSD (discussed in
Aspesi and Pinna, 2019).

FIGURE 2 | Experimental procedure to measure fear conditioning responses, fear extinction, and fear extinction retention in socially isolated mice. Contextual fear
conditioning responses in socially isolated is studied after 4 weeks of isolation when the decline of allopregnanolone is maximal (Pibiri et al., 2008; Pinna et al., 2008).
Group-housed mice of the same age as the socially isolated mice serve as control. Socially isolated mice express a decrease of corticolimbic allopregnanolone levels
that is associated with an enhancement of contextual fear responses and impaired fear extinction (Pibiri et al., 2008). The fear-conditioning apparatus, which
schematized in the figure, consists of a transparent acrylic chamber measuring 25 cm wide, 18 cm high, and 21 cm deep (San Diego Instruments). The cage floor is
composed of stainless-steel rods connected to an electric shock generator. A small fan is located on the top wall of the enclosure. The chamber is surrounded by a
frame with 16 infrared photo beams. A computer controls the delivery of electric foot shocks and auditory stimuli and records beam interruptions and latencies to
beam interruptions (freezing time). Training Test. During the training, mice are placed into the training chamber and allowed to explore it for 2 min. After this time, they
receive an unconditioned stimulus (US, electric footshock, 2 s, 0.5 mA). The footshock is repeated three times every 2 min. After the last tone plus shock delivery,
mice are allowed to explore the context for an additional minute before removal from the training chamber (total of 8 min). Contextual Test. Twenty-four hours after
training, the mice are placed in the contextual cage, and freezing behavior is measured for 5 min (Freeze Monitor System, San Diego Instruments) without footshock
presentation. Extinction Test. For contextual extinction experiments, mice are placed in the contextual cage for 5 consecutive days starting 24 h after the training
session. Fear extinction retention. Retention of fear extinction is measured by placing the mice to the context for 5 min following an interval of 10 days. Freezing
behavior is measured for 5 min without tone or footshock presentation. Freezing is defined by the absence of any movement except for those related to respiration
while the animal is in a stereotypical crouching posture (Pibiri et al., 2008). To disrupt aversive memories through a reconsolidation blockade (Stern et al., 2012),
drugs are given immediately after a contextual fear conditioning reactivation session (Pinna and Rasmusson, 2014; Locci and Pinna, 2019b).
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Other behavioral deficits expressed by socially isolated mice
include increased aggression to a same-sex intruder, as well as,
anxiety-like and depressive-like phenotypes. These behavioral
traits are consistent with behavioral aspects that are reminiscent
of PTSD symptoms often observed in PTSD patients following
re-exposure to trauma reminders (Grillon and Morgan, 1999;
Rauch et al., 2006). Limitations of this animal model include
studies that were conductedmostly inmalemice. Socially isolated
female mice investigation was mostly limited to the study of
depressive-like behavior (Weiss et al., 2004; Grippo et al., 2007).

A number of pharmacological agents, including SSRIs
administered at low doses that act like selective brain
steroidogenic stimulants (SBSSs) and increase corticolimbic
allopregnanolone levels (Pinna, 2015), or allopregnanolone
analogs, including ganaxolone, by a contextual fear
reconsolidation blockade, normalize fear response and facilitate
fear extinction (Pibiri et al., 2008; Pinna and Rasmusson, 2014;
Rasmusson et al., 2017). Most importantly, these agents prevent
the reemergence of fear after the passage of time, during recall
(Pinna and Rasmusson, 2014; reviewed in Aspesi and Pinna,
2019; Locci and Pinna, 2019a; Raber et al., 2019). Furthermore,
the novel allopregnanolone’s analogs BR297 and BR351 showed
strong anti-aggressive effects in isolated mice (Locci et al.,
2017). Another strategy to increase allopregnanolone levels
and enhance activation of emotion regulation neurocircuits
includes administration with the allopregnanolone precursor
pregnenolone (Sripada et al., 2013). Recently, neurosteroidogenic
agents, including the endocannabinoid-like, PEA by a similar
mechanism, which include upregulation of allopregnanolone
biosynthesis, showed to improve fear extinction and its retention
in socially isolated mice compared to non-stressed mice
(Locci and Pinna, 2019b). PEA also decreased anxiety-like and
depressive-like behavior and aggression in socially isolated mice
(Locci et al., 2017; Locci and Pinna, 2019b). Recently, by directly
manipulating the endocannabinoid system by administering the
endocannabinoid reuptake inhibitor AM404 facilitated safety
learning in a CB1-dependent manner and attenuated the relapse
of avoidance (Micale et al., 2017). Although a direct evidence
that endocannabinoids stimulate brain neurosteroid biosynthesis
has not been provided, recent studies show THC increases
allopregnanolone’s precursor, pregnenolone by activating CB1
(Vallée et al., 2014; Vallée, 2016). The detailed description
on endocannabinoid and neurosteroidogenic neuronal targets
and novel molecules that are currently investigated for the
development of new treatments for PTSD has been the focus of
recent reviews (Pinna, 2014; Aspesi and Pinna, 2019; Locci and
Pinna, 2019a; Raber et al., 2019).

GABAA Receptor Subunit Expression and
Benzodiazepine Inefficacy in Socially
Isolated Mice
Altered corticolimbic GABAergic neurotransmission, including
GABAA receptor subunit composition have been linked with
a number of mental disorders (Akbarian et al., 1995; Dean
et al., 1999; Lewis, 2000; Ishikawa et al., 2004). Affinity for
the benzodiazepine binding at GABAA receptors is strongly

dependent on α1–3,5 and γ2 subunits (Rudolph et al., 1999;
Rudolph and Möhler, 2004). Intriguingly, GABAA receptor
subunit expression is highly susceptible to stress effects,
pharmacological interventions, as well as, alcohol and substance
abuse (Impagnatiello et al., 1996; Pinna et al., 2006a; Bohnsack
et al., 2017, 2018; Locci and Pinna, 2017). Protracted stress
induces profound changes in the expression of GABAA receptors
that alters the receptor sensitivity to endogenous modulators
and synthetic agonists (reviewed in Locci and Pinna, 2017). In
socially isolated mice, the mRNA and protein expression of α1,
α2, and γ2 of the GABAA receptor subunits were found reduced
by 50% when compared to those of control group-housed mice
(Pinna et al., 2006a; Nin et al., 2011b). The expression of α4 and
α5 subunits was instead over-expressed by 130% (Pinna et al.,
2006a). Protein expression of α1 and α5 in frontal cortices and
hippocampal synaptic membranes were likewise decreased and
elevated, respectively (Pinna et al., 2006a; reviewed in Locci
and Pinna, 2017). Studies at the cortical layer- and cell-specific
levels showed that in laser microdissected frontocortical layer
I, expression of α1 subunit was decreased by 50% and it was
unchanged in the layer V pyramidal neurons following social
isolation (Pinna et al., 2006a).

Behavioral pharmacological studies showed that socially
isolated mice exhibit a robust resistance to the sedative
and anxiolytic pharmacological properties of diazepam and
zolpidem. These synthetic agonists act at GABAA receptor-
containing α1–3, 5 subunits (Pinna et al., 2006a). Thus, α1 and
2 subunit downregulation per se may explain the decreased
responsiveness of socially isolated mice to sedative and anxiolytic
benzodiazepines. These results further suggest that γ2 subunit
downregulation may have originated a switch with γ subunits
that are largely expressed in extrasynaptic GABAA receptors with
a loss of benzodiazepine binding sites that was determined in
cortical synaptosomes (Pinna et al., 2006a). Hence, prolonged
stress may be associated with formation of benzodiazepine-
insensitive GABAA receptors in cortical neurons that modulate
anxiolytic responses (Rudolph et al., 1999; Rudolph and Möhler,
2004; Nin et al., 2011b).

Intriguingly, increases in α4 and δ-subunits in frontocortical
membranes from socially isolated rodents (Pinna et al., 2006b;
Serra et al., 2008) may originate GABAA receptors for which
endogenous modulators, including allopregnanolone, show a
stronger affinity (Belelli and Lambert, 2005; Belelli et al., 2005).
Actually, allopregnanolone administered to socially isolated mice
induces anxiolytic effects (Pinna et al., 2008).

Translationally, GABAA receptor expression in the socially
isolated mouse shows several commonalities with PTSD patients.
Indeed, stress-induced remodeling of GABAA receptors in
PTSD patients results in loss of benzodiazepine pharmacological
actions due to decreased benzodiazepine-binding sites to
cortex, hippocampus, and thalamus (Geuze et al., 2008).
These preclinical and clinical findings provide support for the
observation that treatment with benzodiazepine is ineffective for
PTSD treatment and prevention. Furthermore, risks associated
with their administration generally outweighs the short-term
benefits. Benzodiazepine use in the general population is
associated with adverse effects (tolerance, dependence and
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withdrawal symptoms), in patients with PTSD side effects are
even more severe and a study showed significantly increased risk
of developing PTSD with their use after recent trauma, worse
psychotherapy outcomes, aggressiveness, depression symptoms,
and substance use (Deka et al., 2018). In another study, veterans
with PTSD administered with benzodiazepines showed higher
rates of health care utilization and were more likely to attempt
and complete suicide (Guina et al., 2015). Benzodiazepines are,
thus, contraindicated for patients with PTSD or recent trauma,
evidence-based treatments for PTSD should be favored.

Allopregnanolone Downregulation and
Fear Circuitry in Socially Isolated Mice
Allopregnanolone biosynthesis has been found altered in
several mood disorders, including depression, anxiety, PTSD,
post-partum depression and premenstrual syndrome (Romeo
et al., 1998; Uzunova et al., 1998; Rasmusson et al., 2006, 2019;
Nemeroff, 2008; Lovick, 2013; Dichtel et al., 2018; Pineles et al.,
2018). This deficit was more recently observed in the fronto-
cortical pyramidal neurons of the Broadman area 9 (BA9) of
male patients affected by major depression (Agis-Balboa et al.,
2014). As previously mentioned, therapeutically, elevating the
down-regulated allopregnanolone levels in patients with mood
disorders also correlated with improved patients’ symptoms
(Romeo et al., 1998; Uzunova et al., 1998; Agis-Balboa et al., 2014;
Kanes S. J. et al., 2017; Kanes S. et al., 2017).

In socially isolated rodents the responsiveness of the HPA
axis is decreased. Levels of corticosterone and release of CRH
are decreased in the blood flow (Sanchez et al., 1998; Chida
et al., 2005;Malkesman et al., 2006). TheHPA axis hypo-function
is even more evident when socially isolated rodents are
exposed to acute stressors. This finding underlies an overall
reduced sensitization of the HPA axis to acute stressful stimuli
(Sanchez et al., 1998). In rodents, corticolimbic neurons express
the biosynthetic enzymes, 5α-reductase type I and 3α-HSD that
synthesize allopregnanolone (Agís-Balboa et al., 2006, 2007).
Consistently, socially isolated rodents show a time-dependent
impairment of neurosteroidogenesis, including the levels of
the GABAergic neurosteroid, allopregnanolone. This deficit has
been associated with appearance of a number of behavioral
dysfunctions, such as delayed and incomplete fear extinction and
reemergence of fear upon fear recall (Pibiri et al., 2008; Pinna
and Rasmusson, 2014) that resemble behavioral deficits showed
in patients affected by anxiety, depressive disorders, and PTSD
(Matsumoto et al., 1999; Pinna, 2010; Schüle et al., 2011).

For over a decade, investigating the neurochemical and
behavioral deficits expressed by socially isolated rodents, this
laboratory, as well as other colleagues, have established that
either rats or mice that undergo individual caging, which
results in a form of prolonged stress for several weeks, express
a downregulation of allopregnanolone levels in corticolimbic
areas. This is maintained and results from a downregulation of
the expression of 5α-reductase type I, a rate-limiting enzyme
in allopregnanolone biosynthesis (Matsumoto et al., 1999;
Serra et al., 2000; Pinna et al., 2003; Bortolato et al., 2011;
reviewed in Matsumoto et al., 2007). The biosynthesis rate of
allopregnanolone and its precursor, 5α-DHP in socially isolated

is decreased by 70% when compared to that of group-housed
mice (Dong et al., 2001; Pinna et al., 2003). New finding also
shows that socially isolated mice express a downregulation of
P450scc, another rate-limiting enzyme involved in the inner
mitochondrial membrane metabolism of pregnenolone from
cholesterol (Locci and Pinna, 2019b). Across several brain
areas analyzed, 5α-reductase largest expression decrease was
observed in the amygdala and hippocampus (Agís-Balboa et al.,
2007). The olfactory bulb and the frontal cortex expressed
a moderate downregulation in the neurosteroid biosynthetic
enzymes. Importantly, 5α-reductase type I expression did not
change in the cerebellum and striatum (Agís-Balboa et al.,
2007). As revealed by in situ immunohistochemical experiments,
5α-reductase was specifically downregulated in layers V–VI
cortical pyramidal neurons, in hippocampal CA3 pyramidal
neurons and in dentate gyrus glutamatergic granular cells as well
as pyramidal-like neurons of the basolateral amygdala (Agís-
Balboa et al., 2007). Importantly, 5α-reductase expression was
not decreased in GABAergic long-projecting neurons of the
reticular thalamic nucleus, central amygdala, cerebellum, and in
the striatum medium spiny neurons. This enzymatic expression
decrease was paralleled by a decreased allopregnanolone in
discrete corticolimbic areas that was quantified by GC-MS,
characterized by unsurpassed structural selectivity and sensitivity
(Pibiri et al., 2008; Locci and Pinna, 2019b).

These findings underlie and sustain a dysfunction
in corticolimbic circuits that in socially isolated mice is
responsible for behavioral deficits (Figure 3). Indeed, amygdala
pyramidal-like neurons are involved in the regulation of
the strength of the inhibitory function of the intercalated
inhibitory spiny GABAergic interneurons (ITC) that mediate the
connectivity between the basolateral amygdala (BLA) and the
central amygdaloid nucleus (CeA; Agís-Balboa et al., 2007). One
of the most replicated traits of PTSD connectivity studies is the
typical exaggerated amygdala hyperactivity, which results from
functional deficits of projections from the prefrontal cortex and
hippocampus (Akirav and Maroun, 2007). These glutamatergic
neurons located in the prefrontal cortex and hippocampus
extend and synapse on GABAergic neurons of the amygdala
and regulate an inhibitory input to these amygdala neurons
(depicted in Figure 3). In normal individual or in resilient
subjects, fear following traumatic events can be suppressed by the
regulatory role exerted by the prefrontal cortex and hippocampus
projections that directly synapse with the amygdala and shut
down its hyperactivity. In maladaptive conditions following a
traumatic event, this process can be impaired and the cortical
inhibitory function on the amygdalar nuclei may be weakened,
which results in amygdala hyperactivity and inappropriate
and exaggerated fear response and impaired fear extinction,
a core neurobiological trait observed in PTSD (Liberzon and
Sripada, 2008). Hence, prefrontal cortex regulation of the
amygdala ITC neurons dictates the responsiveness to stress
and fear (Pare et al., 2004). These GABAergic outputs exert a
pivotal role in emotion regulation following stress and directly
influence fear extinction learning and regulate the CeA output
that mediates responses to conditioned fear (Likhtik et al.,
2008). Several lines of evidence have shown that ITC neuron
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FIGURE 3 | Neurocircuitry underlying the PTSD-like phenotype expressed by socially isolated mice. This is a simplified schematic representation of mouse brain
neurocircuitry regulating emotional behavior under physiological (group-housed) and stress-induced deficits (social isolation). The prefrontal cortex and hippocampus
directly project to the amygdaloid nuclei to regulate their hyperactivity following traumatic events (Herry et al., 2008). In susceptible individuals, a stressful experience
is associated with impairment of cortical inhibitory activity directed to the amygdala, which results in exaggerated hyperactivity and inappropriate fear responses
(Akirav and Maroun, 2007; Raber et al., 2019). In PTSD, amygdala hyperactivity is part of a maladaptive emotional processing resulting from exposure to traumatic
events. The neural substrates of these behavioral deficits may result from decreased GABA release (downregulated allopregnanolone concentrations (Rasmusson
et al., 2006, 2019), in participation with changes in GABAA receptor subunit subtypes (Geuze et al., 2008). Collectively, these neurobiological alterations may explain
emergence of PTSD symptoms (Pinna, 2018). In the socially isolated mice, a stress-induced model of PTSD-like behavioral traits, cortical and hippocampal
projections directed to the basolateral amygdala (BLA) show a downregulation of allopregnanolone biosynthesis and behavioral correlates, including increased fear
responses and impairment of fear extinction (Agís-Balboa et al., 2007; Pinna et al., 2009). In socially isolated mice (right panel), allopregnanolone downregulation in
cortical and hippocampus pyramidal glutamatergic neurons and in pyramidal-like neurons of the BLA may represent the molecular underpinnings that recapitulate an
increased excitability of the neuronal pathway that converges to the intercalated GABAergic neurons (ITC) and central amygdala (CeA) GABAergic spiny neurons
(Agís-Balboa et al., 2007; Pinna et al., 2008). Collectively, reduction of allopregnanolone biosynthesis in corticolimbic glutamatergic neurons may impair
cortico-hippocampal-amygdaloid circuits by inhibiting the GABAergic output neurons of the CeA, which project to the hypothalamus and brainstem and may explain
the excessive fear responses and other behavioral deficits observed in socially isolated mice (Pinna et al., 2008, 2009). Allo, allopregnanolone; 5α-RI, 5α-reductase
type I.

lesions impair fear extinction memory, while activation of these
neurons facilitates extinction learning (Jüngling et al., 2008;
Likhtik et al., 2008). ITC GABAergic and CeA projections to
brainstem and hypothalamus modulate fear responses and
fear extinction following stressful events (Pinna et al., 2009).
Altogether, the corticolimbic circuits that in socially isolated
mice express downregulated allopregnanolone levels, which
include the prefrontal cortex, hippocampus and amygdala
are directly responsible for the expression of emotional
behaviors, including aggressive behavior, fear responses, and
anxious behavior, which are commonly observed in PTSD
patients (LeDoux, 2000; Milad et al., 2007). In socially isolated
mice, these deficits in allopregnanolone biosynthesis and the
behavioral dysfunction have been associated with a decrease of
corticolimbic BDNF expression (Nin et al., 2011a).

It is important to note that most of the studies in humans
with major depressive disorder and PTSD have determined levels
of allopregnanolone in the periphery (serum, plasma, CSF) and
only a few have quantified levels of allopregnanolone in the
post-mortem brain (Agis-Balboa et al., 2014; Cruz et al., 2019).
Oppositely, animal studies have for the most part focused on
allopregnanolone levels in specific brain regions (Pibiri et al.,
2008; Pinna et al., 2008; Locci and Pinna, 2019b). Brain levels

of allopregnanolone may also influence the HPA and HPG
axes. For instance, the HPA axis can be modulated by the
neuronal inhibition initiated by GABAergic neurons within
the hypothalamus. Corticosteroids exert a negative feedback
on the HPA axis by acting on the hippocampus and the
medial prefrontal cortex, which triggers a spike-dependent
elevation in GABA release from inhibitory synapses thus
stimulating the function of GABAergic neurotransmission. By
this mechanism, allopregnanolone may also induce a potent
inhibition on the HPA axis activity, which attenuates plasma
ACTH and corticosterone increase induced by stress. Thus,
locally brain produced allopregnanolone may contribute to
regulating neuronal function by modulating HPA axis activity
(reviewed in Biggio et al., 2014).

TRANSDIAGNOSTIC BEHAVIORAL
FEATURES OF THE SOCIALLY
ISOLATED MOUSE

PTSD/Suicide
The decrease of allopregnanolone in socially isolated mice has
been associated with behavioral deficits, including anxiety-like
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FIGURE 4 | Representation of the main PTSD phenotypes in socially isolated mice. The figure shows the phenotypes in socially isolated mice that recapitulate to
deficits in PTSD patients. The circles at the top of the figure show the behavioral phenotype of socially isolated mice that includes aggression, impaired fear memory,
impulsivity and anxiety, which are all core behavioral symptoms of PTSD. In the center of the figure are reported the abnormalities in GABAA receptors and
neurosteroid levels. The last circles at the bottom report the altered pharmacological response to benzodiazepines that has been reported both in socially isolated
mice and in humans with PTSD. Allo, allopregnanolone; PA, pregnanolone; 5α-RI, 5α-reductase type I.

behavior and aggression. Further, socially isolated mice show
impairment of fear extinction and spontaneous reemergence of
fear following passage of time and determined during a recall
session (Pibiri et al., 2008; Pinna and Rasmusson, 2014; Locci and
Pinna, 2019b). Probably, one of the most remarkable behavioral
deficits of socially isolatedmice regards the heightened aggressive
behavior of a resident socially isolated mouse towards a same-sex
intruder (Pinna et al., 2003). It is intriguing to note that the
expression of aggressive behavior is one prominent behavioral
phenotype used to model behavioral traits of suicide occurring
in men. If one considers that PTSD is often complicated by
comorbid suicidal ideation and suicide attempts, the socially
isolated mouse may entail important transdiagnostic features to
model aspects seen in the spectrum of PTSD-associated with
suicide risk, often observed in veterans (this aspect was recently
reviewed in Locci and Pinna, 2019b).

PTSD/AUD
AUD has a general high prevalence in the American population
and has even higher abuse rates within PTSD patients (Blanco
et al., 2013; Debell et al., 2014; Shorter et al., 2015). Alcohol
consumption in subjects with psychiatric conditions is often
practiced as a form of self-medication. While substance use
disorder is reported to be about double among PTSD patients,
AUD reached a 4-fold higher prevalence than the general

population, which makes alcohol the most abused substance
between PTSD individuals (Jacobsen et al., 2001). Studies in
children victims of sexual, psychological and physical abuse have
evidenced the higher lifetime prevalence of AUD and PTSD
symptoms (Khoury et al., 2010). Comorbidity of PTSD with
AUD is even more increased among military personnel (Gates
et al., 2012). Progress in understanding the neurobiology of this
severe and impactful comorbidity has generally been impeded by
the paucity of animal models of PTSD/AUD.

Social isolation in rodents has been often used as a model to
predict risk factor for both PTSD and AUD (recently reviewed in
Gilpin and Weiner, 2017). Indeed, the social isolation protocol
steadily increases ethanol self-administration in a number of
methodological procedures, including consumption of ethanol
vs. sucrose in a limited-access intermittent two-bottle choice
paradigm. Alcohol intake and preference were reported to
increase up to 8 weeks (Skelly et al., 2015). Another research team
that has used social isolation in male Sprague-Dawley rats during
PD 21–42 observed the same results. In this model, conditioned
place preference for alcohol was increased (Whitaker et al., 2013),
but this model failed to lead to long-lasting anxiety-like behavior
or elevated alcohol drinking in females Long Evan rats (Butler
et al., 2014). While most experiments were conducted using rats,
similar behavioral patterns were noted when mice were isolated
in adolescence, which is also associated with more prominent
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emotional behavioral deficits, such as aggression, sensory gating
and fear deficits (Pibiri et al., 2008; Koike et al., 2009; Gan
et al., 2014; Kumari et al., 2016; Locci et al., 2017). Home-cage
elevated alcohol consumption and preference that lasted even
1 month during adulthood was primarily observed in male
socially isolated mice (Advani et al., 2007; Lopez et al., 2011;
Talani et al., 2014).

Several lines of evidence suggest vulnerability to comorbid
PTSD and AUD results from sensitization of the dopaminergic
mesolimbic system and specifically, decreased dopamine
in nucleus accumbens and elevated responsivity of the
dopaminergic circuitry connecting VTA–NAc may underlie
comorbidity of PTSD and AUD (reviewed in Gilpin andWeiner,
2017). However, other findings have shown that hippocampus
allopregnanolone levels are associated with downregulation in
hippocampal synaptic excitability and LTP in socially isolated
rats (Serra et al., 2000; Pibiri et al., 2008; Sanna et al., 2011; Talani
et al., 2016; Locci and Pinna, 2017).

Collectively, social isolation during adolescence appears as
a critical period to increase susceptibility to both traumatic
stress-induced alcohol drinking and emotional deficits relevant
with symptoms of PTSD in humans (Pibiri et al., 2008; Pinna
et al., 2008; McCool and Chappell, 2009; Skelly et al., 2015;
Locci and Pinna, 2017). Furthermore, these behavioral effects are
heightened in male rodents (Butler et al., 2014).

CONCLUSION

PTSD rodent models are far from optimal because they
only partially reproduce phenotypic expression of PTSD
neurobiology. The symptoms overlap and comorbidity among
several mental disorders (e.g., PTSD, depression, anxiety,
AUD and suicide) make even more challenging assessing a
PTSD preclinical model. The socially isolated mouse model
recapitulates several aspects of PTSD neurobiology, including

downregulated corticolimbic allopregnanolone concentrations,
changes in GABAA receptor subunit composition, lack
of benzodiazepine pharmacological action, and altered
neurocircuitry of fear (summarized in Figure 4). These
neurochemical alterations are associated with a number
of behavioral dysfunctions that are core traits of PTSD,
including heightened fear responses and impaired fear
extinction, as well as, transdiagnostic behavioral features
such as, elevated aggressiveness, a behavioral trait that predicts
suicide, depressive- and anxiety-like behavior and increased
alcohol consumption. Thus, the socially isolated mouse
may reproduce a two-hit PTSD/AUD model as well as a
PTSD/suicide model (Locci and Pinna, 2019a), comorbidities,
which are consistently observed in PTSD patients. These
features make the socially isolated mouse a suitable model to
study new pharmacological approached as well as establishing
a biomarker axis for PTSD and PTSD with comorbid AUD
or suicide.
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