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Duchenne muscular dystrophy (DMD) is the most common form of muscular
dystrophy and the most common neuromuscular disorder. In addition to neuromuscular
consequences, some individuals with DMD experience global intellectual dysfunction
and executive dysfunction of unknown mechanistic origin. The cognitive profile of the
madx mouse, the most commonly used mouse model of DMD, has been incompletely
characterized and has never been assessed using the touchscreen operant conditioning
paradigm. The touchscreen paradigm allows the use of protocols that are virtually
identical to those used in human cognitive testing and may, therefore, provide the most
translational paradigm for quantifying mouse cognitive function. In the present study,
we used the touchscreen paradigm to assess the effects of the madx mutation on
visual discrimination learning, serial reversal learning, and extinction learning. To enable
measuring task-dependent learning and memory processes while holding demands on
sensory-driven information processing constant, we developed equally salient visual
stimuli and used them on all experimental stages. Acquisition of the initial pairwise visual
discrimination was facilitated in madx mice relative to wildtype littermates; this effect was
not explained by genotypic differences in impulsivity, motivation, or motor deficits. The
madx mutation had no effect on serial reversal or extinction learning. Together, findings
from this study and previous studies suggest that mdx effects on cognitive function are
task-specific and may be influenced by discrimination type (spatial, visual), reward type
(food, escape from a non-preferred environment), sex, and genetic background.

Keywords: Duchenne muscular dystrophy, dystrophin, C57BL/10ScSn-Dmd™d*,
touchscreen, behavioral flexibility, cognitive flexibility, stimulus salience

operant conditioning,

INTRODUCTION

Duchenne muscular dystrophy (DMD) is a recessive X-linked neuromuscular disease affecting 1 in
3,500 human males; it is the most common form of muscular dystrophy and the most common
neuromuscular disorder (Hoffman and Kunkel, 1989; Willmann et al., 2009). DMD is caused by
a mutation in the DMD gene, the largest gene in the human genome. The DMD mutation results
in an absence of functional dystrophin, a cytoskeletal protein that is a critical component of the
dystrophin-glycoprotein complex (Ervasti, 2007). The absence of functional dystrophin results in
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progressive muscle degeneration and weakness which is
ultimately fatal due to heart failure in the second or third decade
of life.

In addition to cardiac and skeletal muscles, dystrophin
is expressed in the cerebellum, the cerebral cortex, and
the hippocampus (Lidov et al, 1990; Huard and Tremblay,
1992). The absence of functional dystrophin in these brain
regions is believed to underlie the cognitive deficits that
are present in a subset of individuals with DMD (Cyrulnik
and Hinton, 2008). These deficits include global intellectual
dysfunction as well as executive dysfunction (e.g., cognitive
flexibility and working memory; Snow et al, 2013). There
is remarkable heterogeneity in the type and degree of
cognitive deficits in this population. However, the mechanisms
through which dystrophin dysfunction drives these deficits are
largely unknown.

The mdx mouse (Bulfield et al., 1984) is the most
commonly used mouse model of DMD and lacks functional
dystrophin in muscle tissue and brain due to a spontaneous
mutation in exon 23 of the Dmd gene. Abnormalities in
brain structure, biochemistry, and neurophysiological function
of mice lacking functional dystrophin have been observed and
include changes in cellular antioxidant defenses, osmoregulation,
neurotransmission, and synaptic plasticity (Vaillend et al., 1999,
2004; Vaillend and Billard, 2002; Dallerac et al., 2011; Cohen
et al, 2015; Xu et al., 2015; Vaillend and Chaussenot, 2017;
Pereira da Silva et al., 2018); these biological effects may
underlie the cognitive deficits associated with a lack of functional
dystrophin. Although pathophysiology of the mdx mouse has
been studied extensively (Manning and O’Malley, 2015), the
cognitive profile of the mdx mouse has been studied much less so.
In particular, the effects of dystrophin perturbation on cognitive
flexibility remain largely unexplored. In that regard, cognitive
functions of the mdx mouse including cognitive flexibility have
never been assessed using the touchscreen operant conditioning
paradigm (Izquierdo et al., 2006; Brigman and Rothblat, 2008;
Brigman et al., 2009; Dickson et al., 2013, 2014, 2017). The
touchscreen paradigm allows the use of protocols which are
virtually identical to those used in human cognitive testing such
as the Cambridge Neuropsychological Test Automated Battery
(Robbins et al., 1994). Therefore, touchscreen paradigms in mice
may provide the most translational paradigm for modeling the
effects of dystrophin perturbation on cognitive function.

In the present study, we used a touchscreen operant
conditioning paradigm similar to those we (Dickson et al., 2013,
2014, 2017) and others (Izquierdo et al., 2006; Brigman and
Rothblat, 2008; Brigman et al., 2009) have used previously to
assess the effects of the mdx mutation on visual discrimination
learning, serial reversal learning, and extinction learning. In
addition to cognitive performance on each of these learning
stages, we considered variables including response propensity
and latency as well as reward collection propensity and latency
to dissociate potential effects of the mdx mutation on learning
and cognitive flexibility from effects on neuromuscular function,
impulsivity, and reward valence. We hypothesized that the mdx
mutation would impair learning performance at one or more
stages of the touchscreen assay.

MATERIALS AND METHODS
Subjects

The following experiments were approved by the Institutional
Animal Care and Use Committee at the University of Memphis
and conducted in accordance with the National Institutes of
Health Guidelines for the Care and Use of Laboratory Animals.
Efforts were made to reduce the number of animals used and to
minimize animal pain and discomfort.

Male mice hemizygous for the Dmd™®* spontaneous mutation
(C57BL/10ScSn-Dmd™¥[], #001801) and female wildtype mice
with the same genetic background (C57BL/10ScSn], #000476)
were purchased from The Jackson Laboratory (Bar Harbor,
ME, USA). Two phases of breeding were required to produce
experimental mice. In the first phase, hemizygous male mice
were mated with wildtype female mice to produce litters of
heterozygous females and wildtype males. In the second phase,
heterozygous female mice were mated with wildtype male mice to
produce litters containing both hemizygous and wildtype males.
These hemizygous male mice and their male littermate controls
were used as experimental subjects. This breeding protocol was
chosen because it produced litters consisting of wildtype and
hemizygous experimental mice at a 1:1 ratio. We used littermates
in order to control for litter effects that could be driven by
differences in maternal behavior and intrauterine environment.
All breeding cages contained a single male and single female to
enable correct identification of litter. Genotyping of all mice used
in the study was performed by Transnetyx (Cordova, TN, USA).

We tested mdx mice (n = 23) and wildtype littermates
(n = 23) from 23 litters. By sampling a single hemizygote and
a single littermate control from each litter, we controlled for
the possibility that a single litter would exert a disproportionate
effect on group means. Mice were continuously maintained
in a temperature-controlled environment (21 £ 1°C) on a
12:12 light:dark cycle. After weaning at 4 weeks of age,
experimental subjects were housed in groups of 3-5 until they
entered the experiment; mice were then individually housed to
facilitate food restriction. Mice had free access to food until
they were individually housed, at which point they were food-
restricted such that body weight was 90% of baseline weight at
the beginning of each daily operant conditioning session. Mice
always had free access to water in the home cage. Food restriction
is used in most operant conditioning studies that rely on food
to positively reinforce a lever press or nosepoke response (e.g.,
Izquierdo et al., 2006; Brigman and Rothblat, 2008; Brigman
et al., 2009; Dickson et al., 2013, 2014, 2017).

Apparatus

Behavioral training and testing were conducted in operant
conditioning chambers (Lafayette Instruments, Lafayette, IN,
USA; Med Associates, St. Albans, VT, USA) which have been
described in detail previously (Dickson et al., 2013). Briefly, the
front wall of each chamber consisted of an infrared touchscreen.
The rear wall consisted of: (1) a centrally mounted liquid dipper
which provided access to 0.01 cc of Silk Vanilla Soymilk as a
reward; (2) a trial initiation stimulus light located above the
food receptacle; and (3) a house light centrally mounted at
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the top of the chamber. Operant conditioning chambers were
controlled by a Lafayette Instruments control unit running ABET
II and Whisker software. All operant conditioning schedules
were written in-house using ABET II.

Operant Conditioning: Pairwise Visual
Discrimination, Serial Reversals, and

Extinction

Mice began the experiment at 12 weeks of age and were trained
and tested in the same chamber and at the same time daily
7 days per week until they completed the experiment. Behavioral
training and testing were conducted using methods similar to
those previously described (Dickson et al., 2013).

Training Mice to Use the Operant Conditioning
Chambers

Prior to testing, mice were trained to: (1) nosepoke a stimulus
displayed on the touchscreen at the front of the chamber;
(2) collect a food reward at the back of the chamber following
the nosepoke to the touchscreen; and (3) initiate the next trial
by making a nosepoke to the food receptacle at the back of the
chamber. Following training, mice were tested on a pairwise
visual discrimination, four serial reversals of that discrimination,
and 26 extinction sessions.

Visual Stimuli

During behavioral testing, mice discriminated a single pair of
unidimensional visual stimuli presented on the touchscreen
(Figure 1A). Stimuli were 6.5 cm wide and 6.5 cm high.
Stimulus A was rotated 90° to create stimulus B. Thus, the two
stimuli were identical in all respects (e.g., size, brightness) except
for orientation. In contrast to our previous studies (Dickson
et al., 2013, 2014, 2017), the visual stimuli used in the present
study were designed to be equally salient. Specifically, stimuli
were equally bright, and brightness was equally distributed
across stimulus regions. The goal of this was to enable the
probing of task-dependent (i.e., top-down) learning and memory
processes while holding constant the demands on sensory-driven
(i.e., bottom-up) information processing.

Pairwise Visual Discrimination

Each session started with the illumination of the house light at
the back of the chamber and the beginning of the first trial.
At the beginning of each trial, the trial initiation stimulus light
at the back of the chamber was illuminated signaling that the
mouse could start the trial by making a nosepoke into the food
receptacle. When a nosepoke occurred, the stimulus light was
turned off and the two visual stimuli were randomly presented
on the right and left sides of the touchscreen at the front of the
chamber. Stimulus A was correct for 11 of the litters. Stimulus
B was correct for 12 of the litters. A nosepoke to the correct
stimulus resulted in access to the 0.01 cc vanilla soymilk reward
(i.e., liquid dipper was raised and then lowered after 10 s). A
nosepoke to the incorrect stimulus resulted in a 10 s timeout
which was signaled by turning off the house light. Immediately
following a nosepoke to either stimulus, the visual stimuli were
removed from the screen. A 5 s intertrial interval (ITI) followed
reward or timeout, after which the trial initiation light above the

A
Stimulus A Stimulus B
s 7
N 7
B Visual discrimination

(session 1)

= Stimulus A correct
== Stimulus B correct

Percentage correct
n
o

wildtype mdx

FIGURE 1 | Stimulus salience. Visual stimuli used in the experiment were
equally salient. (A) During all stages of the experiment, mice (23 mdx and
23 wildtype littermates) discriminated a single pair of unidimensional visual
stimuli presented on the touchscreen. Rewarded stimulus was
counterbalanced. (B) We quantified salience of the two stimuli used in the
study by assessing the relative preference for each stimulus on the first
session of the acquisition of the pairwise visual discrimination. There was no
significant main effect of rewarded stimulus, genotype, or their interaction
(p > 0.70 for all tests) indicating that the two stimuli were equally salient for
both wildtype and mdx mice. Moreover, there was no effect of rewarded
stimulus on any stage in the studly.

food receptacle was illuminated signaling that the mouse could
initiate another trial.

As we (Dickson et al., 2010, 2013, 2014, 2017) and others
(Izquierdo et al., 2006; Brigman and Rothblat, 2008; Brigman
et al., 2009) have done previously, a correction procedure was
used to eliminate the development of a side bias: during each
session, the second and all subsequent trials were considered
either “correction” or “non-correction” trials depending on the
correctness of the previous trial. Specifically, a correction trial
followed an incorrect trial and a non-correction trial followed
a correct trial. During correction trials, stimulus presentation
was not randomized. Rather, the correct and incorrect stimuli
were presented on the same side as in the previous trial. The
purpose of this was to prevent the mouse from developing a
strategy in which the mouse ignored the visual stimuli, always
chose the same side and was therefore rewarded on 50% of the
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trials. A non-correction trial followed a correct trial, and stimulus
presentation was randomized.

Sessions continued in this manner until 64 trials were
completed or 60 min had elapsed, whichever occurred first.
Both correction and non-correction trials were counted towards
the 64-trial maximum per session. Mice reached criterion when
they completed a single session at 80% correct (calculated using
non-correction trials). After reaching criterion on the final
session of the visual discrimination stage, mice were advanced
to the reversal stage on the following session.

Serial Reversals of a Pairwise Visual Discrimination
Mice were tested on a series of four serial reversals. Serial
reversal stages were identical to the acquisition stage with the
exception that the response contingencies were reversed relative
to the previous stage. Specifically, mice that were rewarded
for nosepoking stimulus A during the acquisition stage were
rewarded for nosepoking stimulus B on reversal 1, stimulus A on
reversal 2, stimulus B on reversal 3, and stimulus A on reversal
4. Conversely, mice that were rewarded for nosepoking stimulus
B during the acquisition stage were rewarded for nosepoking
stimulus A on reversal 1, stimulus B on reversal 2, stimulus A on
reversal 3, and stimulus B on reversal 4. On each reversal stage,
mice reached criterion when they completed a single session
at 80% correct (calculated using non-correction trials). After
reaching criterion on reversals one, two, and three, mice were
advanced to the next reversal stage on the following session. After
reaching criterion on reversal four, mice were advanced to the
extinction stage on the following session.

Extinction of a Pairwise Visual Discrimination

The extinction stage was identical to reversal four with the
exception that correct responses were not rewarded. Specifically,
when the mouse nosepoked the correct stimulus, the dipper
arm was not raised. Mice were tested for 26 extinction sessions.
Following extinction session 26, the experiment was terminated,
and mice were immediately returned to a free feeding schedule.

Dependent Variables

The following dependent variables were collected on each session
of the visual discrimination, serial reversal, and extinction stages:
number of correct and error responses (non-correction trials
only), number of trials completed, latency to stimulus choice for
correct and error responses, propensity and latency to collect a
reward following a correct response, propensity and latency to
attempt to collect a reward following an error response. Latency
to stimulus choice was defined as the time in seconds between
stimulus onset and a nosepoke to one of the stimuli presented
on the screen. Propensity to collect a reward was defined as the
percentage of correct trials on which a food receptacle head entry
occurred during the 10 s reward following a nosepoke to the
correct visual stimulus. Propensity to attempt to collect a reward
was defined as the percentage of error trials on which a food
receptacle head entry occurred during the 10 s timeout following
a nosepoke to the incorrect visual stimulus. Latency to collect a
reward was defined as the time in seconds between a nosepoke to
the correct stimulus on the screen and a head entry into the food
receptacle. Latency to attempt to collect a reward was defined as

the time in seconds between a nosepoke to the incorrect stimulus
on the screen and a head entry into the food receptacle.

Statistical Methods

Analysis of variance (ANOVA) was used to assess performance
on the visual discrimination, serial reversal learning, and
extinction stages. Normality of all measures was assessed
by inspecting normal probability plots. The assumption of
homogeneity of variance across groups was assessed using
Mauchly’s test of sphericity. The Huynh-Feldt correction was
used when this assumption was violated. The criterion for
statistical significance was p < 0.05. When performing multiple
comparisons, Fisher’s Least Significant Difference procedure
was used.

RESULTS

Stimulus Salience

As we and others have done previously (Bussey et al., 2008;
Dickson et al., 2013), we quantified salience of the two stimuli
used in the study (Figure 1A) by assessing the relative preference
for each stimulus on the first session of the acquisition of the
pairwise visual discrimination. We performed a 2 x 2 between-
subjects ANOVA using percentage correct as the dependent
measure, rewarded stimulus (stimulus A, stimulus B) as a
between-subjects factor, and genotype (wildtype, mdx) as a
second between-subjects factor. There was no significant effect
of rewarded stimulus, genotype, or their interaction (p > 0.70 for
all tests) indicating that stimulus A and stimulus B were equally
salient for both wildtype and mdx mice (Figure 1B). Moreover,
first-pass analysis of data from the visual discrimination,
serial reversal, and extinction stages indicated that there was
no effect of rewarded stimulus on any stage in the study.
Therefore, we dropped rewarded stimulus as a factor in
subsequent analyses.

Pairwise Visual Discrimination Learning

To examine the effect of the mdx mutation on pairwise visual
discrimination learning, we performed one-way ANOV As using
sessions to criterion or errors to criterion as the dependent
measure and genotype (wildtype, mdx) as a between-subjects
factor. Relative to wildtype mice, mdx mice required significantly
fewer sessions to reach criterion (Figure 2A; F( 42 = 5.77,
p < 0.05) and committed significantly fewer errors prior
to reaching criterion (Figure 2B; F(14) = 4.10, p < 0.05).
Genotype explained 11.9% of the variance in sessions to
criterion (n?> = 0.119) and 8.7% of the variance in errors to
criterion (n? = 0.087).

To test the hypothesis that these performance differences
were driven by phenotypes unrelated to learning and memory
(e.g., motivation, impulsivity, motor function), we performed
one-way or mixed-model ANOVAs to examine the effects of the
mdx mutation on number of trials completed per session, the
latency to choose the correct or incorrect stimulus following trial
initiation, the propensity to collect or attempt to collect a reward
following a correct or incorrect stimulus choice, respectively,
and the latency to do so. Genotype (wildtype, mdx) was the
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FIGURE 2 | Visual discrimination learning. mdx mice (n = 23) exhibited facilitated pairwise visual discrimination relative to wildtype littermates (n = 23). (A,B) Relative
to wildtype littermates, mdx mice required significantly fewer sessions to reach criterion and committed significantly fewer errors prior to reaching criterion. (C~F)
These performance differences were not driven by genotype differences in impulsivity, motivation, or motor function: (C) madx and wildtype mice completed almost all
the available 64 trials per session. (D) mdx and wildtype mice rapidly nosepoked the correct or incorrect stimulus after the stimuli appeared on the touchscreen, and
there was no relationship between latency to make a stimulus choice and trial outcome. (E) madx and wildtype mice collected the reward following a correct stimulus
choice on almost all trials; they attempted to collect a reward following an incorrect stimulus choice significantly less frequently. (F) mdx and wildtype mice collected
the reward rapidly following a correct stimulus choice; they attempted to collect a reward significantly less rapidly following an incorrect stimulus choice.

between-subjects factor in all ANOVAs. Trial outcome (correct,
error) was a within-subjects factor in most ANOV As.

Briefly, there was no significant effect of genotype on any of
these measures. Mice completed almost all the available 64 trials
per session (Figure 2C). Mice rapidly nosepoked the correct or
incorrect stimulus after the stimuli appeared on the touchscreen,
and there was no relationship between latency to make a stimulus
choice and trial outcome (i.e., impulsive responding did not
underlie incorrect choices; Figure 2D). Mice collected the reward
following a correct stimulus choice on almost all trials and
attempted to collect a reward following an incorrect stimulus
choice significantly less frequently (Figure 2E; F 42 = 575.14,
p < 0.001). Mice collected the reward rapidly following a correct
stimulus choice and attempted to collect a reward significantly
less rapidly following an incorrect stimulus choice (Figure 2F;
F(142) = 944.019, p < 0.001).

Serial Reversal Learning

To examine the effect of the mdx mutation on serial reversal
learning of a pairwise visual discrimination, we performed
repeated-measures ANOVAs using sessions to criterion or errors
to criterion as the dependent measure, genotype (wildtype,
mdx) as a between-subjects factor, and reversal stage (1-4) as a
repeated-measures factor. For sessions to criterion (Figure 3A),
there was no main effect of genotype, no main effect of

reversal stage, and no interaction of these two factors. For
errors to criterion (Figure 3B), there was a significant main
effect of reversal stage (F(3,132) = 4.45, p < 0.01). Post hoc tests
indicated that this effect was driven by a significant increase
in the number of errors committed across reversal stages.
Specifically, the number of errors committed on the second,
third, and fourth reversal stages was significantly greater than
the number committed on the first reversal stage (p < 0.05 for
all comparisons). Although this effect was more robust in mdx
mice than wildtype littermates, the interaction of genotype and
reversal stage was not significant, and there was no significant
main effect of genotype.

Extinction Learning

To examine the effect of the mdx mutation on extinction of
a pairwise visual discrimination, we performed mixed-model
ANOVAs using the following variables as dependent measures:
number of trials completed, percentage of correct responses, side
bias, latency to make a stimulus choice, attempts to collect a
reward following a correct response, and latency to attempt to
collect a reward following a correct response. Note that a food
reward could not be collected following a correct response on the
extinction stage because the liquid dipper was not activated. In
all ANOV As, genotype (wildtype, mdx) was the between-subjects
factor and extinction session (1-26) was the repeated-measures
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FIGURE 3 | Serial reversal learning. Serial reversal learning of mdx mice

(n = 23) and wildtype littermates (n = 23) did not differ. (A) There was no main
effect of genotype, no main effect of reversal stage, and no interaction of
these two factors on sessions to criterion. (B) There was a significant main
effect of reversal stage on errors to criterion that was driven by a significant
increase in the number of errors committed across reversal stages.
Specifically, the number of errors committed on the second, third, and fourth
reversal stages was significantly greater than the number committed on the
first reversal stage (p < 0.05 for all comparisons). Although this effect was
more robust in mdx mice than wildtype littermates, the interaction of
genotype and reversal stage was not significant, and there was no significant
main effect of genotype.

factor. Analysis of extinction learning was performed using
21 wildtype and 23 mdx mice because two wildtypes were not
tested on the extinction stage.

Neither a significant main effect of genotype nor a significant
interaction of genotype and session were observed for any
of the dependent measures collected during the extinction
stage. Across the 26 extinction sessions, mice as a group
exhibited a significant decrease in the number of trials completed
(Figure 4A; F(25,1050) = 11.99, p < 0.001), a significant decrease
in percentage correct (Figure 4B; F(251050) = 18.22, p < 0.001),
a significant increase in side bias (Figure 4C; F(351050) = 5.85,
p < 0.001), a significant increase in latency to make a stimulus
choice (Figure 4D; F 25,1050y = 19.47, p < 0.001), and a significant
decrease in the percentage of correct trials on which a reward
collection attempt was made (Figure 4E; F(351050) = 2.03,
p < 0.05). Eleven wildtype mice (52%) and 15 mdx mice (65%)
made reward collection attempts on all 26 extinction sessions.
For these mice, repeated-measures ANOVA indicated that the
latency to make a reward collection attempt following a correct

response did not change significantly across sessions (Figure 4F;
F(25,600) = 1.63, p = 0.06).

DISCUSSION

We assessed the effects of the mdx mutation on discrimination
learning, serial reversal learning (an index of cognitive
flexibility), and extinction learning. To accomplish this, mdx
mice on a C57BL/10ScSn] background and wildtype littermates
were tested on a series of touchscreen-based food-reinforced
pairwise visual discriminations that have been adapted from
those used with humans and nonhuman primates. To enable
measuring task-dependent learning and memory processes while
holding demands on sensory-driven information processing
constant, we developed visual stimuli that were equally
salient (Figure 1) and used these stimuli on all stages of
the experiment. Acquisition of the initial pairwise visual
discrimination was facilitated in mdx mice relative to wildtype
littermates (Figures 2A,B); this effect was not explained by
genotypic differences in impulsivity, motivation, or motor
deficits (Figures 2C-F). During serial reversals, mice performed
significantly worse on the final three reversals relative to the
first (Figure 3), but there was no effect of the mdx mutation on
serial reversal learning. During extinction, mice exhibited only a
modest reduction in the number of completed trials per session
despite correct responses no longer being rewarded (Figure 4A).
Despite this high level of responding during extinction sessions,
visual discrimination performance rapidly dropped to chance
levels (Figure 4B), a significant side bias emerged (Figure 4C),
and latency to make a correct response on the touchscreen
increased from 3 to 18 s (Figure 4D). There was no effect of the
mdx mutation on extinction learning.

Visual Discrimination Learning

In the present study, mdx mice exhibited significantly better
touchscreen-based pairwise visual discrimination than their
wildtype littermates (Figures 2A,B). To determine if this
genotypic effect on visual discrimination learning could be
better explained by an effect on another cognitive function,
we compared performance of mdx and wildtype littermates
on several other task-related variables. First, we reasoned
that an effect of the mdx mutation on impulsivity would be
revealed by genotype group differences in latency (beginning
from trial initiation) to make a nosepoke to the correct
or incorrect visual stimulus on the touchscreen. Second, we
reasoned that differences in reward valence, motivation to
perform the task, or ability to perform the task would be
revealed by genotype group differences in latency to collect
a reward, number of rewards collected, or number of trials
completed. Finally, we reasoned that an increase in the
number of attempted reward collections following an incorrect
nosepoke to the touchscreen would reveal uncertainty about
the correctness of the response driven by impaired ability to
use visual feedback (i.e., house light turning off) or auditory
feedback (absence of the motor raising the dipper arm). We
observed no differences between the mdx mice and wildtype
littermates on any of these indexes (Figures 2C-F). Collectively,
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FIGURE 4 | Extinction learning. Extinction learning of madx mice (n = 23) and wildtype littermates (n = 21) did not differ. Neither a significant main effect of genotype
nor a significant interaction of genotype and session were observed for any of the dependent measures collected during the extinction stage. As a group, mice
exhibited (A) a modest but significant decrease in the number of trials completed across the 26 extinction sessions, (B) a significant decrease in percentage correct,
(C) a significant increase in side bias, (D) a significant increase in latency to make a stimulus choice, and (E) a significant decrease in the percentage of trials on
which mice attempted to collect a reward following a correct response. (F) Eleven wildtype mice (52%) and 15 mdx mice (65%) attempted to collect a reward on all
26 extinction sessions. For these mice, latency to attempt to collect a reward following a correct response did not change significantly across sessions.

these data indicate that the facilitated visual discrimination in
mdx mice was independent of effects of the mdx mutation
on impulsivity, reward valence, motivation to perform the
task, ability to perform the task, or ability to use visual or
auditory feedback.

Our observation from the current study that mdx mice exhibit
facilitated visual discrimination relative to littermate controls
is consistent with a previous study by Lewon et al. (2017)
in which mdx mice outperformed wildtype littermates on an
operant food-reinforced lever-press based spatial discrimination.
In contrast, Vaillend et al. (1995) found that mdx mice did
not differ from controls in the acquisition of a food reinforced
lever-pressing task. Studies in which learning in mdx mice has
been assessed using maze-based assays (e.g., Barnes maze, Morris
water maze, radial arm maze, etc.) have observed either no
difference in acquisition between mdx and control mice (Sesay
et al.,, 1996; Vaillend et al., 1998; Remmelink et al., 2016), an
impairment in mdx mice (Chaussenot et al., 2015), or a more
complex phenotype (Vaillend et al., 2004).

Core differences between operant conditioning and
non-operant conditioning protocols may underlie observed
differences between these two categories of studies. For example,
food restriction and food reinforcement are used in operant
conditioning paradigms whereas no food restriction and escape
from water as a motivator are used in water maze paradigms.
It is also worth considering that most of the studies cited
here have assessed the performance of male mice, although
the performance of females has been described (Remmelink

et al., 2016). When interpreting findings from both operant
conditioning and non-operant conditioning paradigms, it is
critical to consider that all these studies were performed using
mdx mice on the C57BL/10ScSn] genetic background. Thus,
observations from these studies are specific to the genetic
modifiers on the C57BL/10ScSn] background.

Many neurophysiological processes critical to learning
and memory are altered in mdx mice or indirectly affected
by the absence of functional dystrophin including synaptic
plasticity and cholinergic, GABAergic, and glutamatergic
neurotransmission (Vaillend et al., 1999, 2004; Vaillend and
Billard, 2002; Dallerac et al., 2011; Cohen et al., 2015; Vaillend
and Chaussenot, 2017; Pereira da Silva et al., 2018). Effects
on these mechanisms may underlie the behavioral alterations
observed in the present study. Collectively, the behavioral
and physiological studies suggest that: (1) mdx effects on
learning may be task-specific, reward-specific, sex-specific,
strain-specific, or specific to an interaction of some combination
of these variables; and (2) these variables may interact with
the mdx mutation to influence neurotransmitter networks
and synaptic plasticity which ultimately influence behaviors
including learning, memory, and visual discrimination.

Stimulus Salience

Through its effect on bottom-up attentional processing, salience
of visual stimuli plays a significant role in the ability to learn
or express a response-reward relationship in humans (Cools
et al,, 2010), nonhuman primates (Crofts et al., 2001), and
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mice (Brigman and Rothblat, 2008; Dickson et al., 2013, 2014).
In one of our previous studies (Dickson et al, 2014), we
observed that stimulus-genotype interactions affecting stimulus
salience may arise from genotype-dependent variation in the
region of the stimulus to which mice attend, and that this
phenomenon may be driven by subtle differences in body
position, head position, or the visual field region to which mice
attend. To address this in the present study, we developed visual
stimuli that were equally bright and complex across all stimulus
regions (Figure 1A). These stimuli were equally salient for both
mdx mice and littermate controls (Figure 1B). This finding
excludes the possibility that the facilitated visual discrimination
in mdx mice observed in the present study (Figures 2A,B) was
influenced by stimulus salience or an interaction of genotype
and stimulus salience. Moreover, these data illustrate that the
relative salience of visual stimuli within a dimension can be held
constant by holding brightness and complexity constant across
stimulus regions. This extends our previous finding that relative
salience of visual stimuli across dimensions can be manipulated
by manipulating stimulus characteristics for all stimuli within
one of the stimulus dimensions (Dickson et al., 2014).

Serial Reversal and Extinction Learning
Several studies have shown that executive function deficits are a
component of the neurocognitive profile of DMD (reviewed in
Snow et al,, 2013). Cognitive flexibility, which can be indexed
across species using the touchscreen reversal-learning task, is a
core executive function enabling adaptation of learned behavior
in the face of changing environmental demands (Dajani and
Uddin, 2015). In the present study, serial reversal-learning
performance was not affected by the mdx mutation (Figure 3).
This is consistent with the work of Chaussenot et al. (2015) who
found no effects of the mdx mutation on cognitive flexibility
using a reversal-learning paradigm in the water maze and
radial-arm maze. In contrast, Remmelink et al. (2016) observed a
deficit in cognitive flexibility in female mdx mice in the absence
of motor dysfunction or general learning impairments using
the Barnes maze and a unique 3-choice assay that required
crawling through one of three holes to obtain a food reward.
In the present study, there was no effect of the mdx mutation
on extinction learning (Figure 4). This observation is consistent
with findings from a previous operant conditioning study in
which extinction of a food reinforced operant bar press response
was not affected by the mdx mutation (Vaillend and Ungerer,
1999). Collectively, these studies suggest that mdx effects on
reversal learning may be task-specific or sex-specific; neither this
study nor a previous study provides evidence supporting an effect
of the mdx mutation on extinction learning. Observations from
these studies are specific to the C57BL/10ScSn] background and
the genetic modifiers on that background.

A Way Forward: Harnessing Genetic
Complexity to Model Natural Variation in
the Effects of Dystrophin Dysfunction on

Cognitive Processes
Although the human literature indicates that cognitive deficits,
including executive dysfunction, are a core component of

the neurocognitive profile of DMD (reviewed in Snow
et al, 2013), findings from the mdx mouse literature are
much less consistent. One interpretation of these data is
that the mdx mouse is a poor model of the cognitive and
executive dysfunction that is observed in DMD. However,
only ~1/3 of individuals with DMD exhibit cognitive
symptoms, and there is profound symptom heterogeneity
in this population. This heterogeneity suggests that some
individuals are genetically vulnerable to the effects of DMD
perturbation on cognitive and executive functions, whereas
others are genetically resistant to these effects. Thus, an
alternative interpretation of the mdx mouse literature is
that the C57BL/10ScSn background on which the mdx
mutation is maintained confers only modest vulnerability
to the effects of the mdx mutation on cognitive dysfunction.
In this regard, the interaction of genetic background and
single gene perturbation on cognitive phenotypes has
been well described (e.g., Morice et al., 2004; Pietropaolo
et al, 2011; Jaramillo et al, 2018). Differential effects
of genetic background (C57BL/10ScSn or DBA/2]) on
the noncognitive effects of the mdx mutation have been
observed (Coley et al., 2016).

To fully understand the pathways and mechanisms through
which dystrophin perturbation affects cognitive function, future
work should focus on the ways in which specific cognitive
phenotypes (e.g., discrimination learning, cognitive flexibility,
working memory, reinstatement following extinction) are
influenced, likely independently, by the interaction of Dmd
perturbation and genetic background. This work should be
done in both males and females and using multiple operant
conditioning protocols (i.e., positive reinforcement, negative
reinforcement, positive punishment, negative punishment).
Recent advances in genetic engineering technologies
(e.g., CRISPR) allow for rapid and relatively inexpensive
genetic perturbation on multiple genetic backgrounds
(Doench, 2018). An even more comprehensive approach
was recently reported by Neuner et al. (2019) who developed
an Alzheimer’s disease transgenic mouse reference panel by
intercrossing a mouse model of Alzheimer’s disease with
28 strains from the BXD recombinant inbred panel. The
interaction of the Alzheimer’s transgene and the 28 BXD
genetic backgrounds resulted in broad phenotypic variation
in cognitive function that mirrored the variation in human
Alzheimer’s patients. By integrating cutting edge genetic
engineering techniques with genetically complex mouse
resources like the BXD or Collaborative Cross recombinant
inbred panels (Dickson et al., 2015, 2016, 2018; Schoenrock
et al, 2018; Bagley et al, 2019a,b), we can model natural
variation in the effects of dystrophin dysfunction on cognition
in order to disentangle the genetic mechanisms through
which Dmd perturbation drives dysfunction in distinct
cognitive processes.
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