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Methamphetamine (METH) is a psychomotor stimulant that is reported to enhance
sexual desire and behavior in both men and women, leading to increases in unplanned
pregnancies, sexually-transmitted infections, and even comorbid psychiatric conditions.
Here, we discuss our rodent model of increased sexually-motivated behaviors in which
the co-administration of METH and the ovarian hormones, estradiol and progesterone,
intensify the incentive properties of a sexual stimulus and increases measures of sexually-
motivated behavior in the presence of an androgen-specific cue. We then present
the neurobiological mechanisms by which this heightened motivational salience is
mediated by the actions of METH and ovarian hormones, particularly progestins, in
the posterodorsal medial nucleus of the amygdala (MePD), a key integration site for
sexually-relevant sensory information with generalized arousal. We finally demonstrate
the cellular and molecular mechanisms underlying this facilitation of sexual motivation
by METH, including the upregulation, increased phosphorylation, and activation of
progestin receptors (PRs) in the MePD by METH in the presence of ovarian hormones.
Taken together, this work extends our understanding of the neurobiology of female
sexual motivation.

Keywords: methamphetamine, dopamine, proceptive behavior, progesterone, sexual motivation, medial amygdala

INTRODUCTION

Sexual behaviors are a complex, coordinated suite of actions that arise from the integration of
psychological and physiological processes with external elements. One key component of sexual
behaviors is that of sexual motivation, a hypothetical, internal willingness to engage in sexual
behaviors (Holder and Mong, 2017). Although research into female sexual motivation is an
active and growing field, relatively little is understood about the neurobiological origins of sexual
motivation in women. Many of these mechanistic questions cannot be currently answered in
women, so rat models are most frequently used to study sexual motivation and behavior (Pfaus
et al., 2003; Blaustein, 2008).

In this review article, we discuss the modulators of female sexual motivation, using the
concept of incentive motivation as a foundational working model. Next, we summarize what is
known in regard to the neurobiology of female sexual motivation in rats. We then describe our
methamphetamine (METH) model of increased sexually-motivated behaviors in female rats. We
finally detail insights into the neurobiology and mechanisms of enhanced female sexual motivation
gained using this model.
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RODENT SEXUAL BEHAVIORS

The female rats show a wide range of specific sexual behaviors
that are displayed in the presence of a male rat. Following
anogenital investigations, the female will typically engage in
approach and solicitation behaviors, which serve to initiate sexual
contact with a male (McClintock and Adler, 1978; Erskine,
1989; Pfaus et al., 2003). The female approaches the male with
a head-wise orientation then quickly runs away (Pfaus et al.,
2003). This runaway takes the form of proceptive behaviors such
as hopping and darting, with and without ear wiggling, in a
traditional behavioral arena (Madlafousek and Hlindk, 1983).
Hopping is distinct from general locomotion as it is a rapid,
stiff-legged upward jump, followed by a bow-shaped return to
the floor, and ends in a crouch. A hop covers the distance
of approximately one extended body length (Madlafousek and
Hlinak, 1977). Darting is a specialized form of a runaway from
the male in which the female accelerates swiftly, using rapid
low steps with the body held near the floor (Hemmingsen,
1933; Beach, 1942). The series of hopping-and-darting typically
ends with a presentation behavior, or a pre-lordotic crouch
(Madlafousek and Hlindk, 1977). This crouch serves to help
support the male’s mounting behaviors. Upon a successful mount
by the male, the female rat displays a behavioral reflex known as
lordosis, in which the female arches her back, elevates her head
and rump, and deflects her tail to one side (reviewed in Erskine,
1989). Proceptive behaviors typically precede the first lordosis
during the period of sexual receptivity, and the numbers of
proceptive events increase in the minute preceding lordosis (Chu
and Agmo, 2015). Indeed, females that display more proceptive
behaviors are pursued more frequently by males (Chu and Agmo,
2014). In addition, the female’s display of proceptive behaviors
precedes nearly all male sexual behaviors (Bergheim et al., 2015).

In arenas that allow for separation between the male and
female rat, such as a paced mating arena with escape chamber(s)
or bilevel chambers, the female rat controls the tempo and
occurrence of the sexual behaviors (McClintock and Adler, 1978;
Erskine and Baum, 1982; Erskine, 1985; Pfaus et al., 2003). If
female rats are given the opportunity to choose between two
males, they display a consistent partner preference, as indicated
by increased time with a preferred male and by returning to
him more rapidly in a paced-mating environment even across
multiple encounters (Lovell et al., 2007).

MODULATORS OF SEXUAL MOTIVATION
Central Motive State

There are two necessary components of any motivated behavior:
(i) the incentive properties of an external stimulus; and (ii) a
central motive state (Bindra, 1974; Agmo, 1999). The external
stimulus has incentive or aversive qualities that serve to influence
the hedonic, or pleasurable values. Incentive stimuli create a
tendency for an individual to approach the object; whereas,
aversive stimuli create a tendency for avoidance behaviors
(Bindra, 1974). The central motive state is the integration of
the physiological processes, such as hormones, with the neural
processes that direct the motivational behaviors (Bindra, 1974;

Agmo, 1999). It is the interplay between the incentive qualities
of the stimulus and the central motive state that ultimately
determine the likelihood of a particular behavioral response,
whether it be approach or avoidance behaviors (Figure 1).

One major assumption of the central motive hypothesis is
that of the hedonic value of the external stimulus. In order to
apply this hypothesis to the study of female sexual motivation,
it must, therefore, be established that females engage in sexual
behavior to experience sexual pleasure (Pfaus et al., 2003; Agmo,
2007). Sexually-motivated female rats lever press (Bermant,
1961; French et al., 1972), cross an electrified grid (Meyerson
and Lindstrom, 1973), and nose-poke (Matthews et al., 1997;
Cummings and Becker, 2012) to gain access to a sexually-active
male. When female rats can pace sexual behavior, as in bilevel
arenas or those with escape chambers, they show conditioned
place preference in that they spend more time in the portion
of an arena in which a sexual encounter occurred (Paredes
and Alonso, 1997; Meerts and Clark, 2007). Subsequent studies
indicate that female rats will only develop this conditioned
place preference when copulation is at their preferred pacing
interval (Jenkins and Becker, 2003b). Finally, female rats show
evidence of orgasm-like behavior as indicated by contractions of
the pelvic-floor muscles and short-term changes associated with
reward state such as ultrasonic vocalizations (USVs; Pfaus et al.,
2016). Taken together, these studies indicate that sexual behavior
may, in itself, be rewarding to the female rat, at least under
certain conditions.

The central motive state determines the external stimulus’s
incentive value through modulation of the hedonic value of that
stimulus (Berridge, 2004). It would then follow that changes
to the central motive state could increase the attractivity to
a sexually-relevant stimulus (Pfaus et al., 2003; Agmo, 2007).
That is, an increased activation of the central motive state
would enhance the strength of behavioral responses toward
sexually-salient cues. This may take the form of more olfactory
investigations and displays of the solicitation, proceptive, and
pacing behaviors in the presence of a male rat. In addition, it is
possible that this enhanced activation of the central motive would
also lead to the abolition of mate preferences, as the same sensory
cues may increase in incentive qualities.

We can conceive of the central motive state as arising from
two components: (i) a generalized state common to all forms
of motivated behavior; and (ii) a specific drive that depends
on physiological needs (Pfaff, 1999). The first component is
generalized arousal which energizes all motivated behaviors
(Pfaff et al., 2008). The specific neurobiological signals known to
mediate the sexual motivation and behavior in the female rat are
the ovarian hormones estradiol and progesterone (Cummings
and Becker, 2012; Uphouse et al.,, 2015). Although these are
not the only neurobiological factors that could alter the central
motive state to lead differences in sexual motivated behaviors,
we will focus discussion on the factors of generalized arousal and
ovarian hormones in this review article.

Generalized Arousal
Generalized arousal is a hypothetical construct that energizes
all behavioral processes by promoting wake, alertness, and
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FIGURE 1 | A conceptual model of sexual motivation, which are represented by thin, black arrows and enhancements by methamphetamine (METH), which are
represented by thick, green arrows. The olfactory, such as the major histocompatibility complex | and Il (MHC | and MHC lI), which contribute to pheromones,
auditory, such as ultrasonic vocalizations (USVs), and tactile, such as the flank stimulation, qualities of a sexual stimulus interact with the central motive state, which
itself is modulated by the generalized arousal state and the activation of a specific drive (e.g., the presence of ovarian hormones and activation of their cognate
receptors). METH requires the activation of dopaminergic and progestin receptors (PRs) to enhance the activation of the central motive state and female sexual
motivation. The presence of a sexual stimulus and activation of the central motive state then influences the likelihood of sexual behavioral responses, which then
have the ability to feedback and alter the central motive state itself. Changes to the central motive state then feedback to alter the salience of particular qualities of
the sexual stimulus. METH increases the salience of androgen-specific cues of a sexual stimulus, which in term lead to increases in display of solicitations, proceptive
hops and darts, and paced mating behaviors. There is also a decrease in the number of rejection behaviors.

responses to and interaction with the environment (Pfaff et al.,
2008). Generalized arousal has been demonstrated by: (i) a
responsiveness to sensory stimuli across multiple modalities;
(ii) motor activity; and (iii) emotional or affective reactivity
(Pfaff et al., 2008). The ascending, diffuse neuromodulatory
systems that form the reticular activating formation contribute
to generalized arousal. Noradrenergic projections to the
cerebral cortex modulate the sensory responsiveness, whereas
the nigrostriatal dopaminergic projections mediate the motor
activity directed towards salient stimuli (Pfaff et al., 2008).
Mesolimbic dopaminergic projections, which comprise part of
the natural reward circuit, facilitate the incentive salience, or
the “wanting” of some stimulus (reviewed in Berridge, 2007,
2019). As such, certain types of sexual behaviors (e.g., female-
paced sexual behavior) will result in a release of dopamine in
the nucleus accumbens (Jenkins and Becker, 2003a). Further,
the administration of agonists of noradrenergic or dopaminergic
receptors will enhance, and antagonists will reduce, measures of
female sexual behavior (Foreman and Moss, 1979; Fernandez-
Guasti et al., 1985a,b, 1987; Grierson et al., 1988; Petitti and
Etgen, 1990; Chu and Etgen, 1999; Chu et al., 1999). Thus, both
neurotransmitters appear to work in conjunction to modulate
general arousal and prime a female towards sexual behavior.

Ovarian Hormones

The period of sexual receptivity in rats is limited to a few hours
prior to the onset of ovulation (Nequin et al., 1979; Freeman,
1994). Several classic studies have demonstrated the role of both
estradiol and progesterone in triggering both proceptive and
receptive sexual behaviors in the rat (Beach, 1976). High levels
of estradiol are sufficient and activation of the estrogen receptors

(ERs) is necessary to induce lordosis behaviors; however, the
intensities of lordosis, based on the degree of spinal curvature,
is highly variable with frequent displays of rejection behaviors
(Boling and Blandau, 1939; Beach et al., 1942; Whalen, 1974;
Spiteri et al, 2010). Progesterone increases the efficacy of
estradiol in the induction of lordosis. In addition, progesterone
and the activation of the PRs is necessary for the occurrence of
the solicitation, proceptive, and paced mating behaviors (Boling
and Blandau, 1939; Beach et al., 1942; Beach, 1976; Whalen,
1974; Fadem et al., 1979; Tennent et al., 1980; Edwards and
Pfeifle, 1983; Olster and Blaustein, 1988; Blaustein, 2008). These
hormones strongly affect the responses to olfactory and tactile
stimuli, with modest effects on generalized arousal (Chu et al,
2015), providing evidence that the ovarian hormones contribute
to the central motive state to modulate the incentive qualities of
the male rat.

NEUROBIOLOGY OF SEXUAL
MOTIVATION

The historical focus of the neurobiology of female sexual
behavior has been focused on the neurocircuit that controls
lordosis. Aslordosis is a behavioral reflex, the neural mechanisms
of it are more readily elucidated than the neural mechanisms
of sexual motivations. The lordosis circuit has been exquisitely
detailed wusing multilateral approaches including electric
stimulation and lesions of each of the nuclei in the circuit
(Mathews and Edwards, 1977; Davis et al., 1979; Pfaff and
Sakuma, 1979; Sakuma and Pfaff, 1979; Brink and Pfaff, 1980;
Schwartz-Giblin and Pfaff, 1980; Femano et al., 1984a,b),
patterns of neuronal activation (Flanagan et al., 1993; Tetel et al.,

Frontiers in Behavioral Neuroscience | www.frontiersin.org

September 2019 | Volume 13 | Article 203


https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

Rudzinskas et al.

Methamphetamine-Enhanced Female Sexual Motivation

1993; Flanagan-Cato and McEwen, 1995; Polston and Erskine,
1995; Pfaus et al., 1996; Pfaus and Heeb, 1997), and viral tract
tracing studies to map the anatomical connections (Daniels et al.,
1999). Of primary importance for lordosis is the ventrolateral
portion of the ventromedial nucleus of hypothalamus (VMN;
reviewed in Pfaff et al, 1994). The ovarian hormones serve
to activate the neurons of the VMN, which then overcomes
the tonic inhibition on lordosis (Powers and Valenstein, 1972;
Moss et al., 1974; Pfaff and Sakuma, 1979; Kow et al., 1985;
Fahrbach et al., 1989).

The mechanisms and the neural circuitry controlling female
sexual motivation have not been as well elucidated. Furthermore,
if motivated behavior arises from both the incentive properties
of a sensory stimulus and mediators of the central motive
state, it is likely that the neural circuitry that processes these
sensory cues also contribute to sexual motivation. The work of
ourselves and others indicates that sexual motivation arises from
an interplay of activation of the natural reward circuity and the
processing of olfactory cues in the limbic/hypothalamic social
behavior circuitries.

The posterodorsal nucleus of the medial amygdala (MePD) is
a good candidate region for the regulation of sexual motivation
and the modulation of the output sexual behavior (Mascod
and Carrer, 1980, 1984; Erskine, 1989; Kondo and Sakuma,
2005; Afonso et al, 2009). Changes to generalized arousal
would influence the activation of the MePD as it receives both
noradrenergic and dopaminergic input (Gray, 1999; Pitkéinen,
2000). The MePD contains both ERs and PRs (Pfaff and
Keiner, 1973; Simerly et al., 1990), making it sensitive to
the specific drivers of sexual motivation. The MePD also
receives chemosensory signals of pheromones from the accessory
olfactory bulb (Keller et al., 2009), so it would be activated by
sexually relevant olfactory cues. The projections of the MePD
target and can activate several key output nuclei involved in social
and sexual behaviors including the VMN (Kevetter and Winans,
1981; Simerly, 2002; Keller et al., 2009). Finally, lesions of the
MePD lead to fewer lordosis responses (Masco and Carrer, 1984),
proceptive behaviors (Mascé and Carrer, 1980; Afonso et al.,
2009), and a reduction in conditioned place preference (Garcia-
Horsman et al, 2008) and sensitivity to sexual stimulation
(Guarraci, 2010).

METHAMPHETAMINE INCREASED
MEASURES OF SEXUAL MOTIVATION
TOWARDS AN INCENTIVE STIMULUS

To better explore the neurobiology of sexual motivation in
females, we created a model of enhanced motivation by
administering METH. METH is a drug of abuse that intensifies
sexual drives, desires, and sexual activities in women (Rawson
et al., 2002; Semple et al, 2004a). In addition, METH use
is also associated with a more pleasurable sexual experience
(Lorvick et al., 2012). These anecdotal and clinical self-reports
are supported by the increased rates of sexually-transmitted
infections and of unplanned pregnancies (Semple et al., 2004b;
Mansergh et al., 2006). As users of METH tend to administer it

several times over the course of a few days (Haile et al., 2009),
we administer METH (5 mg/kg/day) once a day for 3 days
to ovariectomized female rats at the same time as the ovarian
hormones estradiol benzoate and progesterone (Holder et al.,
2010). The optimal time to test for female sexual behavior is
4-6 h following the administration of progesterone (Nequin
et al., 1979; Freeman, 1994). Importantly, neither stereotyped
behavior nor hyper-locomotor behavior are present 4-6 h after
METH administration, suggesting that any increase in sexual
behavior due to METH reflects heightened sexual motivation,
not motor responses (Holder et al., 2010).

The acute administration of METH enhances measures of
sexual motivation in hormonally-primed female rats (Holder
and Mong, 2010; Holder et al, 2010; Winland et al., 2011).
METH treatment increases the lordosis response in addition to
doubling the frequency of proceptive behavior of hops, darts,
and ear-wiggles (Figure 2A; Holder et al,, 2010). When tested
in a paced-mating arena, female rats treated with METH are
less likely to leave the male rat following sexual stimulation,
and if they leave, they return to him more rapidly compared
to saline-treated, hormonally-primed females (Holder et al.,
2010; Winland et al., 2011). In addition, these METH-treated
female rats displayed more solicitation and proceptive behaviors,
especially during the post-ejaculatory interval (Holder and
Mong, 2010). The possibility remains that METH may alter
the timing and displays of sexual behavior instead of sexual
motivation per se; however, there is growing evidence that
motivation and timing of behaviors are not independent
processes such that changes to the hedonic value lead to
alterations in interval duration, indicating that the changes in
timings of a behavior are produced by changes in motivational
state (reviewed in Galtress et al., 2012). While the decreased
latency to return to the male is suggestive of an increased tempo
for sexual behavior, the timing aspects should be further explored
using more direct measures of sexual motivation in female rats
(e.g., operant responding).

METH may also alter the preferences of specific sexual
partners based upon relevant sensory cues. For example,
METH-treated, hormonally-primed female rats make more
approaches and spend more time with a potential sexual partner
(e.g., amale or a castrated male treated with dihydrotestosterone)
compared to a non-sexual partner (e.g., a female or a castrated
male; Winland et al, 2011; Rudzinskas and Mong, 2016).
Dihydrotestosterone provides the necessary androgen-mediated
cues, such as pheromones (Orsulak and Gawienowski, 1972;
Drewett and Spiteri, 1979), sufficient to elicit solicitation, hops,
and darts, with METH treatment increasing the number of
proceptive behaviors (Figure 2B; Rudzinskas and Mong, 2016).
These pheromonal cues are olfactory in nature, and while
there are no differences in anogenital investigations induced
by METH, there are significantly fewer sniffing behaviors.
Consistent with an increase in generalized arousal as part of
the central motive state, this work suggests that METH may
enhance the detection of olfactory cues. Future work is necessary
to explore the potential effects of METH on olfaction. Taken
together, these data suggest that METH does not alter the ability
of females to discriminate between stimuli, but rather enhances
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FIGURE 2 | The enhancement of sexually-motivated behaviors by METH.
(A) METH treatment doubles the number of proceptive events displayed in
10 min regardless of progesterone (P) dose, compared to the respective
saline-treated females. (B) Replacement of androgen-specific cues in
castrated males induces more markedly increased proceptive behaviors in
hormonally-primed female rats treated with METH. Data represents means +
standard error of the mean (SEM); *p < 0.05, **p < 0.01. Reprinted with
permission from Elsevier, Inc., Amsterdam, Netherlands.

central motive state arousal to increase sexual motivation in a
context-specific manner by potentiating the behavioral responses
towards an incentive stimulus.

A LOCUS FOR ENHANCED SEXUAL
MOTIVATION

The combination of METH and ovarian hormones enhances
the measures of sexual motivation; therefore, we hypothesized
that METH would converge with ovarian hormone actions to
increase neuronal activity and induce neuroplasticity of the
neurocircuitry that underlies sexual motivation and behavior.

There is an additive effect of METH and ovarian hormones on
the expression of cFos, an immediate early gene that is used as
a marker of neuronal activation, in both the MePD and VMN
(Figure 3A; Holder et al, 2010; Williams and Mong, 2017).
The MePD projects to and can activate the VMN (Kevetter and
Winans, 1981; Simerly, 2002; Keller et al., 2009). Therefore, it is
likely that the increase in cFos in the VMN follows the increase in
neuronal activation of the MePD. In further support, spinophilin,
a cytoskeleton-associated protein found in dendrite spines, has
a 60% increase in the MePD, but not the VMN, following the
administration of METH and ovarian hormones (Figure 3B;
Holder and Mong, 2010). This increase in spinophilin suggests
that METH and ovarian hormones synergize to increase the
density of dendritic spines and, thus, synaptic connectivity in
the MePD. Taken together, the increase in neuronal activation
and spinophilin in the MePD suggest that the METH-induced
enhancement of female sexual motivation and behavior arise
from converging actions of the ovarian hormone in the MePD.

It has been previously reported that lesions of the MePD do
not abolish the expression of female sexual behavior, but rather,
reduces the expression of sexually-motivated behaviors (Masco
and Carrer, 1980, 1984; Afonso et al., 2009). Lesions of the MePD
also prevent the METH-induced increase in proceptive behaviors
(Figure 3C; Holder et al, 2015). The Daun02 inactivation
techniques allow for a more precise investigation of the cells
activated in the MePD and the interactions of METH and ovarian
hormone signaling on sexually motivated behaviors. Briefly,
neuronal activation induces both cFos and p-galactosidase
expression in Sprague-Dawley cFos-lacZ trans-genetic rats
(Koya et al., 2016). The B-galactosidase both serves as another
method of visualizing activated neurons, but it also converts
the prodrug Daun02 into daunorubincin, which then triggers
apoptosis of the activated cell populations (Santone et al,
1986; Farquhar et al., 2002; Pfarr et al., 2015). Therefore, this
Daun02 inactivation technique produces selective lesions of the
cells that are activated by METH and/or ovarian hormones. As
with the cFos expression, the combination of METH and ovarian
hormones produces an increase of B-galactosidase over that of
ovarian hormones in a discrete population of cells within the
MePD (Figures 3D,E; Williams and Mong, 2017). In addition,
successful Daun02 lesions of this neuronal ensemble reduce
the proceptive behaviors to baseline levels, further supporting
the notion that the MePD utilizes signals from METH on
hormonally responsive neurons to augment the behavioral
response (Figure 3F; Williams and Mong, 2017). Furthermore,
the Daun02 inactivation does not alter receptive/reflexive sexual
behaviors, supporting the MePD’s role as an integration center
specifically for sexual motivation. Taken together, these results
indicate a synergy of intracellular signaling cascades induced by
METH and ovarian hormones within MePD cells. This will be
further explored in subsequent sections.

One way in which this synergy of intracellular signaling
cascades could result in an increase in sexual motivation is via
changes in epigenetic modifications, which can then lead to
marked changes in gene expression. These epigenetic changes
could occur on the DNA directly, leading to localized regulation
of gene transcription, or by modification of the histones, an
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integral part of the chromatin around which the DNA spools,
which lead to more global alteration of gene transcription
(reviewed in Robison and Nestler, 2011). DNA methylation,
in which methyl groups are added to DNA molecules by
DNA methyltransferase (DNMT), results in repression of

gene transcription. Both METH and ovarian hormones reduce
the enzymatic activity of DNMT in the MePD (Rudzinskas
and Mong, 2018). Acetylation of the histones enables gene
transcription by allowing chromatin expansion, and histone
deacetylases (HDAC) are enzymes that remove the acetyl groups,
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leading to more tightly coiled DNA and a reduction of gene
transcription. The combination of both METH and ovarian
hormones reduces the enzymatic activity of HDAC in the MePD
(Rudzinskas and Mong, 2018). Reduced activity of both HDAC
and DNMT should allow for enhanced gene transcription in cells
of the MePD. Moreover, these data further support the notion
that the MePD is a locus for this enhanced sexual motivation,
as no significant changes in HDAC or DNMT activity occur
in the VMN. In addition, these changes in enzymatic activity
are not the result of changes in the total protein levels of the
enzymes (Rudzinskas and Mong, 2018). Taken together, these
data suggest that dynamic epigenetic changes may play some
role in the genetic mechanisms which underlie METH-enhanced
proceptivity. As such, these changes should be investigated
further on a gene-by-gene basis, particularly in relationship to
the genes explored in the next section of this review article.

MECHANISMS OF ENHANCED SEXUAL
MOTIVATION

Dopamine Receptors

While cells within the MePD mediate the METH-facilitated
increase in proceptive behavior, it remains unclear how METH
and ovarian steroids specifically activate this cellular population
to increase neural activation. One likely source of neural
activation is dopamine, as one of the primary responses following
METH administration is the release of a bolus of dopamine into
the synapse (Sulzer et al., 2005; Fleckenstein et al., 2007). The
MePD receives both direct and indirect inputs from the ventral
tegmental area, a major source of dopaminergic synthesis in
the mesolimbic, natural reward pathway (reviewed in Ikemoto,
2007). Thus, it is likely that dopamine receptor (DR) activation in
the MePD mediates the enhanced sexually motivated behaviors
by METH.

Activation of the excitatory D1-type DRs (D1Rs), which
comprise both D;R and DsR, in the MePD in the absence of
METH increases the number of proceptive events above levels
induced by ovarian hormones alone (Figure 4A). In addition,
administration of an antagonist to these DIRs in the MePD
prevents the METH-induced increase in proceptive behaviors
(Figure 4B; Holder et al., 2015). In contrast, administration of
agonists or antagonists to the D2-type DRs, which comprise
DR, D3R and D4R, in the MePD has no effect on the number
of proceptive behaviors displayed. Interestingly, the overall
quantity of D1Rs in the MePD remained unchanged between
treatment groups (Rudzinskas, 2017). These experiments suggest
that METH, through a release of dopamine, may work through
the activation of a stable population of DIRs in the MePD
to directly modify the expression of genes underlying female
sexual motivation.

The DR agonists and antagonists were administered once a
day, for 3 days; therefore, it is probable that the genes affected
would be both those necessary for the immediate display of sexual
motivation and behavior and those involved in more long-lasting
changes to the sexual motivation circuit. One such gene whose
expression could be modified via changes in DIR activation is
the PR (Olesen et al., 2005, 2007). Indeed, METH alone, in the
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FIGURE 4 | Effects of microinfusions into the posterodorsal medial
amygdala (MePD) on sexually-motivated behaviors. (A) Infusion of the
dopamine type-1 receptor (D1R) agonist SKF38393 increases the number of
proceptive events displayed in 10 min. (B) Infusion of the D1R antagonist
SCH23390 prevents the METH-induced increase in proceptive behaviors.
(C) Infusion of the progestin receptor (PR) antagonist RU486 prevents the
increase in proceptive behavior induced by METH treatment. Data represents
means + SEM; *p < 0.05. Reprinted with permission from Elsevier, Inc.,
Amsterdam, Netherlands.

absence of estradiol, increases PRs in the MePD (Holder et al.,
2015). However, in a follow-up study, a D1R antagonist infused
into the MePD at the same time of METH administration failed
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signaling. (D) Following activation of the D1R, Src interacts with the PR, leading to phosphorylation of Src and PR at Ser294. This results in downstream

Behavior

to change PR levels in the MePD (Williams et al., 2018). It may be
microinfusions of the antagonist at a longer time course prior to
METH administration may have prevented the METH-induced
increase in PRs.

Progesterone Receptors

Progesterone and activation of the PRs are necessary for the
display of proceptive behavior, and there is functional specificity
of the two isoforms of the nuclear receptor. PR, activation
contributes primarily to the display of lordosis, whereas PRp
activation seems to contribute primarily to proceptivity (Mani
et al, 2006). PR activation, primarily through PRg, in the
MePD may facilitate increases in proceptive and other sexually-
motivated behavior. While the contributions of the PR isoforms
in the MePD to enhancement of sexual motivation by METH
has not been determined, it has been demonstrated that the
microinfusion of RU486, a PR antagonist, into the MePD
decreases the METH-facilitated proceptive behaviors (Figure 4C;
Holder et al, 2015). Finally, recent work demonstrates that
increasing PR protein expression with a lentiviral overexpression
vector injected into the MePD in the absence of METH increases

proceptive behaviors and lordosis intensity, with no other noted
effects on social, exploratory, or rejection behaviors (Williams
et al, 2018). Taken together, it is clear that PRs in the
MePD have functional relevance toward the induction of female
sexual motivation.

Intracellular Mechanisms
In addition to activated DIR increasing the number of PRs
in the absence of estradiol, DIR activation can also activate
PRs in the absence of progesterone (Auger, 2001); therefore,
METH-facilitated activation of DIR could work via other,
intracellular mechanisms in conjunction with the increased
PRs to enhance sexual motivation. The ligand-bound PR is
necessary to modulate proceptive behaviors; however, METH
can facilitate these proceptive behaviors even in the presence
of subthreshold doses of progesterone (Figure 2A; Holder
et al., 2010). Taken together, this evidence suggests that METH
administration enhances PR sensitivity to ligand in the MePD
(Weigel et al., 1995).

The changes to PR sensitivity and/or functionality may
arise from post-translational modifications, which include

Frontiers in Behavioral Neuroscience | www.frontiersin.org

September 2019 | Volume 13 | Article 203


https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

Rudzinskas et al.

Methamphetamine-Enhanced Female Sexual Motivation

phosphorylation, acetylation, sumoylation, and ubiquitination
(Hagan et al., 2012). Of these, the phosphorylation is thought to
be the primary regulator of PR actions, such that phosphorylation
of specific sites on the PR enhances transcriptional activity
(Denner et al,, 1990; Bai et al, 1997; Weigel and Moore,
2007). In fact, activation of DIRs leads to a sequence of
kinase phosphorylation events, which could then modulate the
activational state of the PRs (Auger, 2001). The PR is highly
promiscuous, as it is able to dock onto activated mitogen-
activated protein kinases, such as the extracellular signal-
regulated kinases (ERK1/2), Src kinases, and the ERs (Lu and Xu,
2006; Dressing et al., 2009). ERK1/2 has been reported to directly
phosphorylate the progesterone receptor, while both ERK1/2 and
Src kinase have been reported to act in a complex with both
ERs and PRs (Migliaccio et al, 1998; Boonyaratanakornkit
et al., 2001). The activation of these kinase cascades leads
to enhancements of both receptive and proceptive behaviors
(Gonzalez-Flores et al., 2009, 2010; Lima-Hernandez et al., 2012).

As the activation of both D1Rs and PRs in the MePD are
necessary for the METH-induced enhancement of proceptive
behaviors, it is likely that the behaviorally-relevant neurons
contain both DIRs and PRs and that the METH-induced
enhancement of sexual motivation arises due to the activity
of kinases. In support, METH administration leads to
phosphorylation of the ubiquitous kinases ERK1/2 and cSrc
in hormonally intact or primed rats (Hebert and O’Callaghan,
2000; Choe et al., 2002; Zhang et al., 2004; Pascoli et al., 2005;
Williams et al., 2018). The cytosolic-dependent kinase pathways
that could be induced by DIR activation converge with the
hormone-dependent kinase pathways at two serine sites in the
PRs, serine 294 and 345, suggesting a molecular mechanism
through which METH may modulate PR activity (Figure 5).

The combined actions of METH and the ovarian hormones
increased the phosphorylation of PR serine 294, but not serine
345, in the MePD. Moreover, the administration of a DIR
antagonist prevented this increase in phosphorylation of the PRg
at serine 294 (Williams et al., 2018), further supporting the role
of the PRp isoform in the mediation of proceptive behaviors. The
activity of the Src kinase to phosphorylate serine 294 of the PR is
required for the enhancements of sexual motivation of METH;
however, blocking the activation of the ERK1/2 also prevents
the METH-induced increases of proceptive behaviors without
affecting the serine 294 phosphorylation. Taken together, these
data provide evidence of a direct molecular interaction of D1R
and PR actions such that the intracellular signaling cascades
initiated by DIR activation phosphorylate a site on the PRs in
order to modulate the activational states of the PRs. Further
studies are necessary to elucidate the role of serine 294 in the
MePD and in the relative contributions of the different kinase
activation pathways in the MePD on the enhancement of sexual
motivation in the female rat. The utilization of modern tools such
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