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We have shown that a computer-based program that trains schoolchildren in cognitive
tasks that mainly tap working memory (WM), implemented by teachers and integrated
into school routine, improved cognitive and academic skills compared with an active
control group. Concretely, improvements were observed in inhibition skills, non-verbal
IQ, mathematics and reading skills. Here, we focus on a subsample from the overarching
study who volunteered to be scanned using a resting state fMRI protocol before
and 6-month after training. This sample reproduced the aforementioned behavioral
effects, and brain functional connectivity changes were observed within the attentional
networks (ATN), linked to improvements in inhibitory control. Findings showed stronger
relationships between inhibitory control scores and functional connectivity in a right
middle frontal gyrus (MFG) cluster in trained children compared to children from
the control group. Seed-based analyses revealed that connectivity between the
r-MFG and homolateral parietal and superior temporal areas were more strongly
related to inhibitory control in trained children compared to the control group. These
findings highlight the relevance of computer-based cognitive training, integrated in
real-life school environments, in boosting cognitive/academic performance and brain
functional connectivity.

Keywords: brain functional connectivity, fMRI, computer-based training, attentional networks, inhibitory control,
school-aged children

INTRODUCTION

Sánchez-Pérez et al. (2018) aimed to investigate whether computer-based cognitive training
that combined tasks based on working memory (WM) and some mathematics tasks from a
commercial company (for details, see Supplementary Material), could be effective to improve both
cognitive and academic-related skills in school-aged children of primary education. Because the
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authors found that the main results were due to the training with
WM tasks, in this study we will refer to it as WM-based training.

Improvement of cognitive skills was expected on the basis
of previous evidence that revealed positive near transfer effects
of WM-based training on visual (Thorell et al., 2009; Wong
et al., 2014; Studer-Luethi et al., 2015) and verbal WM (Thorell
et al., 2009; Wong et al., 2014), and intelligence (Jaeggi et al.,
2008). Additionally, WM-based training has been associated with
improvement in some academic-related outcomes, like math
grades (Holmes and Gathercole, 2014), arithmetic (Bergman-
Nutley and Klingberg, 2014), reading (Loosli et al., 2012;
Karbach et al., 2015; Söderqvist and Bergman Nutley, 2015),
and vocabulary (Studer-Luethi et al., 2015). On the other hand,
mathematics training has also proved to improve children’s
mathematics competencies (Dowker and Sigley, 2010; Holmes
and Dowker, 2013) and academic achievements (Starkey et al.,
2004; Bryant et al., 2008; Ehlert and Fritz, 2013; Holmes
and Dowker, 2013). The studies targeting specific cognitive
skills involved in EF (e.g., Rueda et al., 2005; Espinet et al.,
2013; Bergman-Nutley and Klingberg, 2014; Gathercole et al.,
2019) evidence the relevance of such kind of interventions
in comparison with those based on a rather broad curricular
approach (e.g., Bodrova and Leong, 2007; Traverso et al., 2015),
because the implementation of the latter ones in school-based
contexts often include methodological changes to the academic
curricula, which may largely depend on education policy makers.

In contrast to most of previously mentioned studies, Sánchez-
Pérez et al. (2018) computer-based training program was
integrated into the school routine, being carried out under
the supervision of designated teachers who had undergone
a short training program. Because the children worked
independently, the difficulty of the different activities comprising
the program was adapted to each child’s ability and rhythm.
These characteristics, rarely found in previous studies, might have
brought about that both children and teachers thought of our
program as an additional subject rather than an extra-scholar
activity, fostering that far transfer effects involving inhibition
skills, non-verbal IQ, mathematics and reading skills, were
observed in trained children compared to children from the
active control group.

Since attentional mechanisms are suggested to be the
processes underlying the relation between WM and reasoning
skills (Conway et al., 2003; Engle, 2018), as well as between WM
and academic outcomes (Bergman-Nutley and Söderqvist, 2017),
Sánchez-Pérez et al. (2018) argued that behavioral improvement
observed in the trained children might rely on children’s abilities
to control their attention.

Attention improvement has been observed in a variety of
intervention approaches being one form of intervention called
state training, which involves aerobic exercise or a variety of
mindfulness techniques (for reviews, see Posner et al., 2015;
Posner and Rothbart, 2018). However, most important for the
current study is the form of intervention called network training.
Network training comprises repetitions of attentional tasks that
are supposed to tap the executive attentional network mainly
(Rueda et al., 2005), or more complex tasks that require several
forms of attention or executive functions, such as videogames or

computer-based programs (Diamond and Lee, 2011; Diamond,
2016). In the current study, we used the latter form of network
training (WM-based training) to boost attention, a cognitive
control function crucial for children to success at school, which is
thought to be greatly malleable at ages that range from childhood
to adolescence (Rueda et al., 2004; see Zelazo and Carlson, 2012;
Karbach and Unger, 2014, for reviews). Accordingly, here we
just focused on the benefits of our WM-based training in brain
functional connectivity that involves the attentional networks
(ATNs). In addition, given the well-established co-occurrence
of WM and inhibition, being both skills supporting each other
(Diamond, 2013, 2016), we aimed to assess whether brain
connectivity changes were also related to attention-dependent
inhibition skills.

WM and the Attention Networks
In studying WM brain regions, some authors have highlighted
the involvement of the prefrontal cortex, superior parietal cortex,
basal ganglia, and medial temporal lobe (Wager and Smith,
2003; Gazzaley et al., 2004; Collette et al., 2005; Axmacher
et al., 2007; Koenigs et al., 2009; Eriksson et al., 2015),
suggesting that WM emerges from the dynamic interaction
of the prefrontal and parietal cortex, striatum, and medial
temporal lobe (Gazzaley et al., 2004). In turn, these WM
regions are involved in components of the attention networks
(ATNs): the dorsal frontoparietal network (including the frontal
eye field, the intraparietal sulcus, and the superior parietal
lobe), and the ventral frontoparietal network (including the
temporoparietal junction, the inferior frontal gyrus, and the
middle frontal gyrus) (Corbetta and Shulman, 2002). Thus, aside
the well-established relationship between WM and attentional
control at the behavioral level (Engle, 2018), common brain areas
between the two cognitive functions have also been established.

The aforementioned overlapping between brain areas
involved in both WM and the ATNs, may explain previous
results in which WM-based training induced brain activity
changes in attention-related frontal and parietal cortices in
adults (Hempel et al., 2004; Olesen et al., 2004; Klingberg,
2010; Takeuchi et al., 2010; Jolles et al., 2013; Thompson et al.,
2016; Clark et al., 2017). However, these findings might not
being applied to children’s brains, given that WM is notably
under development during childhood (Olesen et al., 2004). In
fact, the networks underlying WM tasks in adults have been
reported as being less recruited or more immature during
childhood and adolescence (Klingberg et al., 2002; Kwon et al.,
2002; Ciesielski et al., 2006; Crone et al., 2006; Scherf et al.,
2006). Importantly, WM-based training effects observed in
children’s brain functional connectivity have not been commonly
addressed, and the results have been found rather inconsistent.
For instance, Jolles et al. (2013) found no effects in children’s
brain functional connectivity after WM-based training, whereas
increased functional connectivity between the right middle
frontal gyrus (r-MFG) and frontoparietal areas was found
in young adults. In contrast, Astle et al. (2015) observed an
increased strength of children’s neural connectivity between
frontoparietal networks, superior parietal cortex, and inferior
temporal cortex, after performing WM-based training sessions
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at home. Although this last study suggests that such training
induces changes in children’s brain connectivity, further studies
are needed to identify the brain effects of WM-based training,
mainly on inhibitory control. Note that inhibitory control has
been thought to be essential to resist preponderant irrelevant
responses, fostering the ability to focus and sustain students’
attention, and helping them to succeed at school.

The Present Study
Parents and children involved in the Sánchez-Pérez et al. (2018)
overarching study were invited to participate in a resting state
fMRI study. A subsample of participants containing children
from the training and control groups volunteered and provided
informed consent to participate. They were scanned just before
the beginning of the training period, concurrently with the
administration of the pre-test tasks, and were scanned again
approximately 6 months after the end of the training. First,
we verified that the behavioral effects of training with the
reduced fMRI sample were equivalent to those found with the
entire sample. Second, we examined whether brain functional
connectivity effects were induced by the WM-based training,
specifically in the MFG area of the attentional networks and the
frontoparietal network (Astle et al., 2015), guided by the results
of previous related studies (Jolles et al., 2013; Astle et al., 2015).
Finally, we investigated whether improvement in inhibition-
related abilities after the training sessions were linked to specific
changes in brain functional connectivity. As the majority of
WM-based training effects can be accounted for in terms of
attentional control, we investigated changes within the right and
left ATNs, as they were expected to underlie WM mechanisms,
as well as changes between some regions of the ATNs and other
brain areas involved in attention-dependent inhibitory control.

MATERIALS AND METHODS

Participants
Participants in this study were a subsample of those who took
part in a study that analyzed the behavioral effects of a computer-
based training program on primary school-aged children (for
further details, see Sánchez-Pérez et al., 2018). The final sample
for the functional connectivity study was composed of 33 children
in the training group (19 boys, 14 girls; ages M = 9.06, SD = 1) and
23 children in the control group (15 boys, 8 girls; ages M = 9.22,
SD = 1.31) (more details about the participants’ recruitment and
exclusion criteria are shown in Supplementary Figure S1).

Procedure
The study was approved by the Ethics Committee of the
University of Murcia and it was conducted in accordance with
the approved guidelines and the Declaration of Helsinki. Written
informed consent was obtained from the parents that volunteered
to participate, and verbal assent was obtained from each child
prior to each session. The parents sent the completed consent
forms back to the school, where they were collected by a research
assistant. After the parental consents were obtained, the parents
completed the socioeconomic questionnaires.

This study followed a longitudinal design with three phases
(baseline, training, and follow-up), and both groups were
required to complete pre- and post-assessments. In the baseline
phase, we collected the behavioral data in approximately 3 weeks
and the fMRI data in another 3 weeks. In the second phase
(training), children from the training group practiced the math
training exercises (first part of the training session) and WM
tasks (second part of the training session) in two weekly 30-
min sessions over 13 weeks (training group). While the training
group was performing the training activities, the active control
group was engaged in the standard educational exercises in
the computer classroom for the same duration. In the follow-
up phase, behavioral data were collected in the training and
control groups 1 week following the end of the training,
whereas the fMRI data were collected by 6 months later.
Relevant details about the activities comprising the computer-
based training program as well as the behavioral data collected
from children are given in the SM (see Sánchez-Pérez et al.,
2018 for a more complete information about both the activities
of the training program and the behavioral results with
the entire sample).

Neuroimaging Acquisition
Children were instructed to lie as still as possible with their
eyes closed and not focus on a specific activity or thought. To
ensure the child’s comfort, a parent sat in silence next to the
child in the room during the scanning session. Hearing was
protected using earplugs, and motion was minimized using soft
pads fitted over the ears.

Functional and anatomical MRI data were acquired in a GE
1.5 T HDX scanner. fMRI analysis was performed according
to a consolidated pipeline (Agosta et al., 2014; Inuggi et al.,
2014; Imperiale et al., 2018) using FSL software (FSL v5.0)1.
For the resting state sequence, 200 echo-planar imaging (EPI)
images sensitive to BOLD contrast were acquired in 6 min
and 30 s with the following sequence parameters: 24 slices;
repetition time (TR), 1.888 ms; echo time (TE), 55 ms; voxel
size, 4 × 4 × 4 mm; FOV, 25.6 cm × 25.6 cm; 64 × 64
matrix; flip angle, 90◦. A high-resolution T1-weighted scan was
acquired using a 3D FSPGR BRAVO sequence to enable co-
registration of the functional data to an anatomical template
(see section “Group template and dual regression” for details).
The sequence parameters were as follows: TR, 12.4 ms; TE,
5.2–15 ms; voxel size, 1 × 1 × 1 mm; flip angle, 12◦; 142 axial
slices. In addition, a one-volume EPI covering the whole brain
(38 slices) with the same sequence acquisition parameters as
those used for the resting state was recorded to improve the
co-registration accuracy.

Pre-processing
Pre-processing was performed using FEAT (Smith et al., 2004)
and included (i) removal of the first four volumes to allow for
signal equilibration, (ii) head movement correction by volume
realignment to the middle volume using MCFLIRT, (iii) global
4D mean intensity normalization, and (iv) spatial smoothing

1http://www.fmrib.ox.ac.uk/fsl
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(5 mm FWHM). We then applied ICA-AROMA (Independent
Component Analysis-based Automatic Removal Of Motion
Artifacts; see Pruim et al., 2015) to identify independent
components (ICs) representing motion-related artifacts. This
method calculates a set of spatial and temporal discriminative
features and accordingly exploits a classification procedure to
identify ICs representing motion artifacts. Specifically, these
features evaluate the spatial overlaps of each component with the
brain and cerebral spinal fluid (CSF) edges, the frequency content
and the temporal correlation with realignment parameters of
the IC time series. Finally, ICs classified as motion-related were
removed from the fMRI dataset by means of linear regression.
The resulting fMRI dataset was then high-pass filtered (cut-off
frequency of 0.01 Hz), and the mean values of the BOLD signal
in both liquor and white matter were regressed from the data.
EPI_CLEAN_INDIVIDUAL images were finally obtained.

Anatomical Group Template
Considering that using an adult-based anatomical template
would have introduced a severe bias into the pediatric imaging
data by introducing anatomical co-registration errors (Hoeksma
et al., 2005), we created a custom pediatric template using
a procedure previously used to analyze resting state data
in children (de Bie et al., 2012; Inuggi et al., 2014). First,
we registered each participant’s T1 image to the MNI152
T1 brain template using a 12-DOF affine transformation
in FLIRT (FMRIB version 5.92, Oxford, United Kingdom).
Then, the mean inverse transformation of all the participants
was calculated and applied to the MNI152 template (4 mm
isotropic resolution) to create the pediatric custom template
of our children participants. Second, we co-registered the
individual RS EPI images to the common template following
a three-step procedure: (a) non-linear co-registration of the
individual RS EPI images to their corresponding one-volume
whole-brain EPI images, (b) co-registration of whole-brain
EPI images to their corresponding T1 image using affine
boundary-based registration as implemented in FLIRT (Greve
and Fischl, 2009), and (c) non-linear co-registration of the
individual T1 image to the pediatric template (resampled at
4 × 4 × 4 mm) using FNIRT (Andersson et al., 2007).
Finally, the resulting multi-step co-registration matrix was
then applied to the individual RS EPI images to obtain the
EPI_CLEAN_TEMPLATE images.

Functional Connectivity Analyses
We first were interested in determining whether our training
program induced exclusive functional connectivity changes
(post-training minus pre-training) in the trained group, that
were not observable in the control one. Then, we addressed
whether these connectivity differences could be directly related
to behavioral changes. According to what it is stated in the
manuscript, we started our exploration from the two Attentional
Networks (ATNs), and later on we extended our analysis
to observe how sensitive regions within the ATNs altered
their connectivity with the rest of the brain. This allowed
us to go deep into the relationships between behavioral and
connectivity changes.

Within-ATNs (MELODIC)
To assess within networks longitudinal differences in brain
connectivity in children, EPI_CLEAN_TEMPLATE images for
each session for each participant were temporally concatenated
across participants to create a single 4D dataset of 112 images.
This fMRI dataset was then decomposed into ICs with a free
estimation of the number of components using MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into
Independent Components (Beckmann et al., 2005). To identify
the participant-specific temporal dynamics and spatial maps
associated with each individuated RSN, a dual regression analysis
was applied (Filippini et al., 2009). This method implies (i) the
use of the selected group-IC spatial maps in a linear model fit
(spatial regression) against the single participant fMRI dataset,
resulting in matrices describing the temporal dynamics for each
IC and participant, and (ii) the use of these time-course matrices,
which are entered into a linear model fit (temporal regression)
against the associated fMRI dataset to estimate participant-
specific spatial maps. After the dual regression, spatial maps of
all the participants were grouped into two single 4D files for
each RSN of interest, containing: (a) all the baseline recordings;
and (b) the algebraic difference of year one recordings minus the
baseline recordings. Candidate RSNs of interest were selected by
visual inspection based on previous literature (Smith et al., 2009).

Using the first 4D file (a) we assessed connectivity group
differences at baseline, in order to exclude any bias originating
from groups composition. Using the second 4D file (b) we
evaluated longitudinal connectivity group differences to assess a
general effect of our training program on these networks. We will
refer to these analyses as group-within-network (GWN) analysis.

Then, to investigate whether behavioral changes in inhibition-
related scores (namely children’s responses in the go/nogo type 1
condition) were directly related to connectivity differences within
the two ATNs, we evaluated the interaction between the two
groups and that brain connectivity score. We will refer to these
analyses as score-within-network (SWN) analysis.

Within-RSN connectivity differences were carried out with
non-parametric permutation tests (5000 permutations), and
analyses were restricted within the spatial RSN of interest using
binary masks obtained by thresholding the corresponding Z
map image (Z > 2.3). Output maps were threshold-free cluster
enhancement (TFCE) corrected using a significance threshold of
p < 0.05. Details of the statistical model used were defined in a
following paragraph.

Seed-Based Function Connectivity Analysis
To understand whether inhibition-related scores also modulated
how regions resulting from the previous analysis connected
with the rest of the brain, we performed a seed-based
functional connectivity analysis evaluating again the group –
by – inhibition-related score changes interaction on brain
connectivity evolution. We will refer to these analyses as score-
whole-brain (SWB) analysis.

At the participant level, the regions of interest (ROIs) in the
previous analysis that were sensitive to the statistical contrasts
of interest were co-registered to each participant’s EPI space
using a 12 DOF linear affine transformation implemented in
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FLIRT, and their mean (across space) time series were then
calculated. These time series were used as regressors in a single
GLM (one for each RSN producing a significant cluster) to
explore correlations between these time series and BOLD signal
fluctuations in the EPI_CLEAN_INDIVIDUAL images. In the
case of multiple clusters emerging from the melodic analysis
of a single RSN, replicating previous studies investigating the
functional connectivity of multiple brain ROIs (Di Martino
et al., 2008; Inuggi et al., 2014), regressors were orthogonalized
according to the Gram Schmidt process as implemented in
FEAT. The outputs of this analysis are subject-level maps
of all those voxels correlating and anti-correlating with each
investigated the ROIs. This process was repeated for the 112
EPI_CLEAN_INDIVIDUAL images of the baseline and follow-
up recordings. Longitudinal differences between these maps were
obtained from a second level, fixed-effects FLAME analysis using
a GLM of 112 rows, 56 columns and 56 contrasts. The latter
outputs were then inputted in a third-level GLM analyses testing
the M2 model (defined in the next paragraph) assessing the
interaction between group and inhibition-related score, using age
as nuisance variable. Such third-level group analyses were carried
out using a mixed-effects (FLAME) model as implemented in
FSL. Corrections for multiple comparisons were carried out at the
cluster-level using Gaussian random field theory (Z > 2.3; cluster
significance: p < 0.05, corrected).

Statistical Models
Two general linear models (GLMs) were tested. The first model
(M1) was used for GWN analysis and aimed to assess whether
a functional connectivity pattern was present in each group
and whether it differed between the two groups of participants.
A preliminary evaluation of the age × group interaction was
conducted. Since no significant results were found, age was
inserted as simple nuisance regressor to correct data for its effect.
This analysis was performed integrating the classical two-sample
unpaired t-tests2 with two additional contrasts for each group ([1
0 0], [−1 0 0], [0 1 0] and [0 −1 0], being each column the control
and the trained group and participants’ ages).

The second model (M2) was used for SWN and for the final
step of SWB and assessed age-corrected interactions between
the group factor and inhibition-related score, by evaluating
group differences in the slope of the linear correlation between
inhibition-related scores and functional connectivity3.

Importantly, while the former model assessed general group-
connectivity differences through the aforementioned GWN
analysis, the latter model provided a specific evaluation of
the modulatory effects of inhibition-related scores over brain
functional connectivity through the aforementioned SWN and
SWB analyses. All the inhibition-related scores were calculated
as follows: baseline values were subtracted from those collected
at year one, and the values (including age) were then demeaned
according to the whole-participant average. Inhibition-related

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Two-Group_Difference_Adjusted_
for_Covariate
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Two_Groups_with_continuous_
covariate_interaction

score was calculated as follows: baseline values were subtracted
from those collected at year one. Resulting values were
then demeaned according to the whole-participant average.
Participants’ age was also demeaned.

RESULTS

Behavioral results were conducted here just to assure that
the main findings of Sánchez-Pérez et al. (2018) with the
entire sample reproduced with the fMRI subsample. Significant
differences were found in SES scores between families of both
groups at baseline, whereas there were not significant results
regarding the mothers’, fathers’, and children’s ages. The difference
in SES between families from the two schools was an unexpected
result. Those schools were chosen precisely because supposedly
families matched in education level and incomes. However, it is
important to note that in the time of testing, our country was
immersed in an important economic crisis that impacted the
rate of unemployment, reducing dramatically families’ monthly
income. It might have affected families from one school more
than families from the other school, producing the observed
differences in the SES scores. It is likely that the observed
differences in SES reflected a timely circumstance rather than a
constant situation of the families, and then that the differences,
mainly regarding family income, were artifactual. Nonetheless,
we decided to include SES as a control variable.

Independent t-tests revealed significant gender effects on the
go/nogo, and math fluency. Also, the ANOVA yielded significant
differences in math grades and scores in standardized tests as a
function of children’s age. Consequently, SES, gender, and age
were included as control variables in further behavioral analyses.

ANCOVAs were conducted to examine the training efficacy
on the children’s academic and cognitive performances between
the training and control groups. As it was argued above, we
used the pre-test scores for each task, SES, gender, and age
as control variables. The results confirmed significant group
effects on post-training scores in the following tasks: math
fluency (F[1,49] = 5.14, p = 0.028, η2

p = 0.10); reading skills
(F[1,49] = 5.53, p = 0.023, η2

p = 0.10); math grade (F[1,48] = 18.66,
p < 0.0001, η2

p = 0.28); non-verbal IQ (F[1,49] = 5.75, p = 0.020,
η2

p = 0.11); and percentage of errors on go/nogo task type 1
(F[1,46] = 4.18, p = 0.047, η2

p = 0.08), type 2 (F[1,46] = 8.69,
p = 0.005, η2

p = 0.16), type 3 (F[1,46] = 8.07, p = 0.007, η2
p = 0.15),

and total nogo (F[1,46] = 11.38, p = 0.002, η2
p = 0.20) (see Table 1).

For these tasks, the analyses indicated that children engaged in
the training group outperformed those in the control group.

Magnetic Resonance Imaging (MRI)
Within-ATNs Connectivity (The Group Within
Network – GWN – Analysis)
The melodic analysis reconstructed 41 ICs, among which twenty-
two could be associated with a resting state network (RSN). We
selected the attentional networks, as illustrated in Figure 1.

Considering that the group differences were calculated over
both the right and the left ATNs, only voxels that showed a
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TABLE 1 | Training vs. control groups on pre- and post-training assessments: means, standard deviations, ANCOVA results (training vs. control groups), and effect sizes
(partial eta squared).

Pre-training Post-training Group effect

Task Group Mean SD Mean SD F Direction Effect size

WJ-III scores

Math fluency Control 50.26 17.53 56.39 17.10 5.14∗ Training > control 0.10

Training 46.06 12.61 59.85 14.81

PROLEC

Reading skills Control 62.94 19.55 73.40 21.61 5.53∗ Training > control 0.10

Training 63.64 17.21 79.65 21.08

School grades

Math grades Control 2.18 1.33 1.64 1.43 18.66∗∗∗ Training > control 0.28

Training 2.94 0.79 3.09 0.81

K-BIT

Non-verbal IQ Control 96.87 13.03 96.30 12.07 5.75∗ Training > control 0.11

Training 100.12 12.97 103.88 11.13

Go/nogo

Nogo (% errors) Control 29.76 12.53 30.65 13.50 11.38∗∗ Control > training 0.20

Training 33.48 18.60 18.85 10.86

Type 1 Control 28.21 15.10 34.47 17.05 4.18∗ Control > training 0.08

Training 36.80 21.14 22.29 16.54

Type 2 Control 33.93 17.17 31.68 17.34 8.67∗∗ Control > training 0.16

Training 31.39 20.20 20.56 13.33

Type 3 Control 27.14 17.89 30.75 15.89 8.07∗∗ Control > training 0.15

Training 29.87 18.85 19.48 13.63

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

p-value below 0.025 after the TFCE correction were reported
as significant (see Table 1). To exclude that longitudinal group
differences might have emerged due to connectivity differences
present at the beginning of the training, a preliminary melodic
analysis with data at baseline was carried out within the two
ATNs. The analysis did not reveal any significant differences in
connectivity between the two groups.

Melodic analysis of R-ATN revealed a cluster, located in the
r-MFG, of increased longitudinal connectivity in the training
group (Figure 2A), which was absent in the control group

FIGURE 1 | The attentional networks.

(not shown). When the connectivity profiles of the two groups
were directly compared (Figure 2C), the training group showed
a significant connectivity increment compared to the control
one. The same result was symmetrically obtained in the left
hemisphere investigating the L-ATN (Figures 2B,D). The results
are summarized in Table 2.

Individual PE (parameter estimate) values of the latter contrast
showed that the increment in functional connectivity observed
in the training group compared with the control group was not
driven by extreme values (see Figure 3).

Inhibition Abilities
We tested children’s inhibitory control abilities through
responses to nogo trials in the go/nogo task. Since in Durston
et al.’s (2002) fMRI study, the difference in signal change was
only statistically significant for the nogo after 1 preceding go trial
type (i.e., type 1 condition), we assessed the interaction involving
group and nogo scores taken children’s responses just in the
go/nogo type 1 condition. For the sake of better legibility, we
used participants’ hit rate in the nogo trials instead of the more
standard children’s error rate (hits = 100 – errors). A hit occurred
when the participant succeeded in withholding the response
when a nogo trial was presented.

Group × nogo hits interactions within-ATNs connectivity
(the Score Within Network – SWN – analysis)
Considering that the interactions were calculated over both
ATNs, only voxels that showed a p-value below 0.025 after the
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FIGURE 2 | Mean connectivity increment within the training group (A,B), and group-within-network (GWN) connectivity increment in the training group with respect
to the control group (C,D).

TFCE correction were reported as significant. Melodic analysis of
R-ATN revealed that in a r-MFG cluster, the positive correlation
between hits in nogo trials and functional connectivity had a
higher slope in the training group compared to the control
group (Figure 4). Thus, the increased connectivity within those
brain areas were more strongly related to the increase of hits in
nogo trials for children belonging to the training group than for
children belonging to the control group. Results are summarized
in Table 3.

Group × nogo hits interactions across whole-brain functional
connectivity of nogo-sensitive ROIs (the Score-Whole-Brain –
SWB – analysis)
To understand how nogo-sensitive regions altered whole-brain
connectivity as a function of the training program executed, we
calculated the interaction between the latter regions’ seed based
functional connectivity (SBFC) and nogo hits evolution. The
interaction analysis revealed that the positive linear correlation
between hits in the nogo condition and functional connectivity
between the r-MFG cluster and the right parietal region (parietal
operculum, supramarginal gyrus) had a higher slope in the
training group compared to the control group, as shown in
Figure 5. The results are summarized in Table 4.

TABLE 2 | Significant differences between the training and control groups in
the GWN analysis.

RSN Contrast Stats (p/t-score) Position
(x,y,z)
[mm]

Anatomical
position

R-ATN TRAINING > CTRL p = 0.020, t = 3.81 34, 30, 28 Right MFG

L-ATN TRAINING > CTRL p = 0.024, t = 3.74 −46, 10, 32 Left MFG

DISCUSSION

We first assured that behavioral findings found with the entire
sample reproduced with the fMRI subsample. As with the
entire sample (see Sánchez-Pérez et al., 2018), the subsample of
trained children showed significant improvement in cognitive
and academic skills compared with children that served as the
active control group. Beneficial effects were observed in non-
verbal IQ, inhibitory control, math and language abilities, and
math grades. Our results agree with previous studies showing
that WM training has also resulted in children’s improvement
in non-verbal IQ (Klingberg et al., 2002, 2005) and inhibition
(Klingberg et al., 2005; Roughan and Hadwin, 2011), and in
academic abilities (Holmes and Gathercole, 2014; Titz and
Karbach, 2014; Blakey and Carroll, 2015; Söderqvist and Bergman
Nutley, 2015; Studer-Luethi et al., 2015). The high correlation
usually observed between WM and fluid intelligence may be
due to the fact that both rely on the ability to control one’s
attention. In other words, attention control appears to be the
common mechanism underlying WM and intelligence (Engle,
2018). These attention control mechanisms would include the
ability to maintain task-relevant information active (WM), and
the versatility to engage relevant information and disengage from
that when it is later proved to be wrong (intelligence). The
inhibitory control relationship may be due to the need to inhibit
distracting information for goal-directed behavior (Diamond,
2013). Concerning children’s academic improvements, WM
likely underlies mental arithmetic and mathematics performance
(DeStefano and LeFevre, 2004), whereas a WM component,
the phonological storage, is believed to play an important
role in the development of a variety of linguistic abilities,
such as reading, vocabulary, and comprehension (Gathercole
and Baddeley, 1990). WM is assumed to improve children’s
abilities to control their attention, which may also affect their
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FIGURE 3 | Scatter plot of individual parameters estimate (PE) of functional connectivity evolution in the training and control groups within R-ATN (right) and L-ATN
(left).

FIGURE 4 | Results of the score-within-network (SWN) analysis within R-ATN: group × nogo hits interaction.

reading skills (Karbach et al., 2015). In summary, our WM-based
training boosted WM-related processes, including cognitive and
academic skills.

As Sánchez-Pérez et al. (2018) argued that attentional
control processes may underlie benefits on both cognitive
and academic outcomes, we just assessed brain functional
connectivity changes in the attentional networks, linked to
attention-dependent inhibitory control. We found a significant
post-training difference between groups consisting of higher
connectivity in ATN areas in the training group compared with

TABLE 3 | Summary of score-within-network (SWN) within R-ATN: group × nogo
hits significant interaction.

RSN FC – nogo hits
correlation

slope

Stats (p/t-score) Position
(x,y,z)
[mm]

Anatomical
position

R-ATN TRAINING > CTRL p = 0.006, t = 3.82 46, 22, 32 r-MFG

p = 0.006, t = 3.80 42, 2, 32 Precentral gyrus

the control group. This difference persisted even 6 months
after the training was terminated, suggesting that the changes
in functional connectivity last in time. Briefly, we observed
an increased connectivity in the MFG, as well as important
relationships between attention-dependent inhibitory control
improvement and functional connectivity in a r-MFG cluster.

Trained children showed higher functional connectivity
within the MFG, a region of the ATNs, compared to children who
did not participate in the training. This substantially increase in
connectivity in attentional areas after WM sessions is consistent
with the connectivity results found in children (Astle et al.,
2015) and young adults (Jolles et al., 2013). Altogether, the
significant post-training effects on the ATNs support the notion
that WM and attention are related processes in which attentional
skills are required to actively keep relevant information in mind
during simultaneous potent internal and external distractions
(Unsworth et al., 2014).

Klingberg (2010) argued that WM-based training induces
changes in a common neural network underlying WM and other
cognitive skills. Our results suggest that, at least, part of this
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FIGURE 5 | Score whole brain analysis. Results of the score-whole-brain (SWB) analysis from R-ATN seed: group × nogo hits significant interaction.

TABLE 4 | Summary of score-whole-brain (SWB) analysis from R-ATN seed: group × nogo hits significant interaction.

Seed Contrast Stats (p/t-score) Position (x,y,z) [mm] Anatomical position

R-ATN TRAINING > CTRL p = 0.009, t = 3374 52, −28, 26 Right parietal operculum/supramarginal gyrus

p = 0.009, t = 3.53 52, −32, 8 Right superior temporal gyrus

common network is the ATNs. The higher connectivity within
the ATNs after training might also explain the aforementioned
behavioral transfer effects. According to Constantinidis and
Klingberg (2016), the transfer from a trained task to a non-
trained task is likely associated with a shared reliance of those
tasks on a frontoparietal network. Consequently, performing
WM tasks would have boosted connectivity in the ATNs,
which in turn might have enhanced children’s academic and
cognitive performance.

Seed-based functional connectivity analyses also revealed
that connectivity between the r-MFG and homolateral parietal
and superior temporal areas was more strongly related to
inhibitory control improvement in the training group than
in the control group. The present results were consistent
with prior ones in which the ability to inhibit preponderant
responses was mainly lateralized in the right hemisphere
(Garavan et al., 1999) and related to parietal areas (Durston
et al., 2002). From a developmental perspective, previous studies
have found that prefrontal areas and networks underlying
WM in adults were less recruited or more immature during
childhood and adolescence (Klingberg et al., 2002; Kwon
et al., 2002; Ciesielski et al., 2006; Crone et al., 2006; Scherf
et al., 2006). For instance, Mehnert et al. (2013) found that
adults responded faster and more accurately than children in
a go/nogo task, and importantly they also showed stronger
frontoparietal brain activation in the former than in the
latter group. However, as the frontoparietal network usually
matures from childhood to adulthood, we should expect
that any targeted intervention with tasks that involve that
network, as well as other related attentional networks, should
accelerate brain maturation. In line with this contention,
Rueda et al. (2005) found effects after 5-day of executive
attention training observing that children’s prefrontal ERP
patterns resembled those exhibited by adults after the attention

training. Interestingly, here we have found that children who
performed the WM activities showed an increased functional
connectivity in areas involved in these WM and attentional
common networks, which resulted in a pattern of brain
functional connectivity more similar to the adults’ findings.
Therefore, our results indicate that WM training boosted
school-aged children’s developmental changes in brain functional
connectivity. Consequently, those children participating in
the training group might have undergone enhanced brain
maturation, rendering their connectivity patterns more similar
to those of adults, resulting in increased inhibition abilities.
We also observed a stronger relationship between inhibition
improvement and higher connectivity between the r-MFG and
right temporal areas, such as the superior temporal gyrus. This
association is in line with the results of Rubia et al. (2007),
in which adolescents’ probability of inhibition correlated with
activation in the superior temporal gyrus.

Despite the open controversy regarding the benefits of WM-
based training on children’s cognitive and academic skills, to
our knowledge, few studies have addressed this question by
analyzing the neuroimaging effects during childhood. In one of
those studies, published by Jolles et al. (2013), children were
required to practice a verbal WM task for 6 weeks 15 times, but
no effects were found after the training. It is likely that increasing
the length of the WM-based training, as we did in the current
study, may help discerning brain functional connectivity changes
in children, and hereby extend the benefits of training to cognitive
and academic outcomes.

Although our findings shed light on the benefits of
WM-based training on children’s academic and functional
connectivity when applied in school settings, there are also some
limitations. For instance, our fMRI follow-up measurements
were collected approximately 6 months after the training sessions
concluded; yet, taking the measurements also after 12 months
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is recommendable to observe long-term effects of the training.
Additionally, our reduced sample did not allow analysis of
potential age-related effects. Thus, further research should test
whether age differences in functional connectivity patterns
exist during childhood. Finally, convergent evidence by using
alternative imaging techniques, such as EEG, is also desirable
due to the limitation that oxygenation level-dependent (BOLD)
measures convey concerning the origin of the recorded signals.

CONCLUSION

This research contributed to the study of behavioral and
functional connectivity benefits of WM-based training in school-
aged children. Specifically, children of the training group
were found to exhibit significantly improvement in attention-
dependent inhibitory control, non-verbal IQ, mathematics
and reading skills, compared to those in the active control
group. More relevant, brain functional connectivity analyses
showed that children undertaking the computer-based training
exhibited higher connectivity in attentional brain areas after
the sessions. A main characteristic of our training program
that overcomes other previous interventions, is that it has
been designed to be part of the school routine. The ease
with which such a program can be implemented in real-life
school environments, may have important positive consequences
for academic success, not only for children with typical
development, but also for children with special educational
needs. Additionally, the simplicity of our computer-based
training program, witnessed by the ease with which the
involved teachers and students learned to manage it, suggests
that with very few usability modifications, the program could
be easily adapted to a remote utilization. Semi-automatic,
computerized, remote training programs would represent a
key strategy for national educational systems to increase the
quantity and quality of their academic offer. Also, such a
program could be carried out at students’ home environment,
according to a flexible schedule, without the need of further
supervision, and without increasing education costs. Altogether,
this approach may thus contribute to reach a broader
interest, including parents, teachers, and specially education
policy makers. We hope that the present findings will have
a notable impact in society, above all in those countries
very much concerned with the high rate of their children
that fail at school.
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B. J. (2002). A neural basis for the development of inhibitory control. Dev. Sci.
5, F9–F16. doi: 10.1111/1467-7687.00235

Ehlert, A., and Fritz, A. (2013). Evaluation of maths training programme for
children with learning difficulties. South Afr. J. Child. Educ. 3, 117–140.

Engle, R. W. (2018). Working memory and executive attention: a revisit. Perspect.
Psychol. Sci. 13, 190–193. doi: 10.1177/1745691617720478

Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., and Nyberg, L.
(2015). Neurocognitive architecture of working memory. Neuron 88, 33–46.
doi: 10.1016/j.neuron.2015.09.020

Espinet, S. D., Anderson, J. E., and Zelazo, P. D. (2013). Reflection training
improves executive function in preschool-age children: behavioral and neural
effects. Dev. Cogn. Neurosci. 4, 3–15. doi: 10.1016/j.dcn.2012.11.009

Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith,
S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the
APOE-ε4 allele. Proc. Natl. Acad. Sci. U.S.A. 106, 7209–7214. doi: 10.1073/pnas.
0811879106

Garavan, H., Ross, T. J., and Stein, E. A. (1999). Right hemispheric dominance of
inhibitory control: an event-related functional MRI study. Proc. Natl. Acad. Sci.
U.S.A. 96, 8301–8306. doi: 10.1073/pnas.96.14.8301

Gathercole, S. E., and Baddeley, A. D. (1990). Phonological memory deficits in
language disordered children: is there a causal connection? J. Mem. Lang. 29,
336–360. doi: 10.1016/0749-596X(90)90004-J

Gathercole, S. E., Dunning, D. L., Holmes, J., and Norris, D. (2019). Working
memory training involves learning new skills. J. Mem. Lang. 105, 19–42.
doi: 10.1016/j.jml.2018.10.003

Gazzaley, A., Rissman, J., and D’Esposito, M. (2004). Functional connectivity
during working memory maintenance. Cogn. Affect. Behav. Neurosci. 4, 580–
599. doi: 10.3758/cabn.4.4.580

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image alignment
using boundary-based registration. Neuroimage 48, 63–72. doi: 10.1016/j.
neuroimage.2009.06.060

Hempel, A., Giesel, F. L., Garcia Caraballo, N. M., Amann, M., Meyer, H.,
Wüstenberg, T., et al. (2004). Plasticity of cortical activation related to working
memory during training. Am. J. Psychiatry 161, 745–747. doi: 10.1176/appi.ajp.
161.4.745

Hoeksma, M. R., Kenemans, J. L., Kemner, C., and van Engeland, H.
(2005). Variability in spatial normalization of pediatric and adult brain
images. Clin. Neurophysiol. 116, 1188–1194. doi: 10.1016/j.clinph.2004.
12.021

Holmes, J., and Gathercole, S. E. (2014). Taking working memory training from
the laboratory into schools. Educ. Psychol. 34, 440–450. doi: 10.1080/01443410.
2013.797338

Holmes, W., and Dowker, A. (2013). Catch Up Numeracy: a targeted intervention
for children who are low-attaining in mathematics. Res. Math. Educ. 15, 249–
265. doi: 10.1080/14794802.2013.803779

Imperiale, F., Agosta, F., Canu, E., Markovic, V., Inuggi, A., Jecmenica-Lukic,
M., et al. (2018). Brain structural and functional signatures of impulsive–
compulsive behaviours in Parkinson’s disease. Mol. Psychiatry 23, 459–466.
doi: 10.1038/mp.2017.18

Inuggi, A., Sanz-Arigita, E., González-Salinas, C., Valero-García, A. V., García-
Santos, J. M., and Fuentes, L. J. (2014). Brain functional connectivity changes in
children that differ in impulsivity temperamental trait. Front. Behav. Neurosci.
8:156. doi: 10.3389/fnbeh.2014.00156

Jaeggi, S. M., Buschkuehl, M., Jonides, J., and Perrig, W. J. (2008). Improving fluid
intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105,
6829–6833. doi: 10.1073/pnas.0801268105

Jolles, D. D., van Buchem, M. A., Crone, E. A., and Rombouts, S. A. (2013).
Functional brain connectivity at rest changes after working memory training.
Hum. Brain Mapp. 34, 396–406. doi: 10.1002/hbm.21444

Karbach, J., Strobach, T., and Schubert, T. (2015). Adaptive working-
memory training benefits reading, but not mathematics in middle
childhood. Child Neuropsychol. 21, 285–301. doi: 10.1080/09297049.2014.89
9336

Karbach, J., and Unger, K. (2014). Executive control training from middle
childhood to adolescence. Front. Psychol. 5:390. doi: 10.3389/fpsyg.2014.00390

Klingberg, T. (2010). Training and plasticity of working memory. Trends Cogn. Sci.
14, 317–324. doi: 10.1016/j.tics.2010.05.002

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P.,
Dahlström, K., et al. (2005). Computerized training of working memory
in children with ADHD-A randomized, controlled trial. J. Am. Acad.
Child Adolesc. Psychiatry 44, 177–186. doi: 10.1097/00004583-200502000-
00010

Klingberg, T., Forssberg, H., and Westerberg, H. (2002). Training of working
memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791.
doi: 10.1076/jcen.24.6.781.8395

Koenigs, M., Barbey, A. K., Postle, B. R., and Grafman, J. (2009). Superior
parietal cortex is critical for the manipulation of information in working
memory. J. Neurosci. 29, 14980–14986. doi: 10.1523/JNEUROSCI.3706-09.
2009

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 October 2019 | Volume 13 | Article 247

https://doi.org/10.3389/fpsyg.2017.00069
https://doi.org/10.3389/fpsyg.2017.00069
https://doi.org/10.3389/fpsyg.2015.01827
https://doi.org/10.3389/fpsyg.2015.01827
https://doi.org/10.1177/0741932507309712
https://doi.org/10.1016/j.neuroimage.2006.07.028
https://doi.org/10.1016/j.bbr.2017.07.030
https://doi.org/10.1002/hbm.20118
https://doi.org/10.1038/nrn.2016.43
https://doi.org/10.1016/j.tics.2003.10.005
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1073/pnas.0510088103
https://doi.org/10.1073/pnas.0510088103
https://doi.org/10.1002/hbm.21280
https://doi.org/10.1080/09541440244000328
https://doi.org/10.1080/09541440244000328
https://doi.org/10.1093/cercor/bhn041
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1037/14797-002
https://doi.org/10.1126/science.1204529
https://doi.org/10.1126/science.1204529
https://doi.org/10.1348/97818543370009X12583699332492
https://doi.org/10.1348/97818543370009X12583699332492
https://doi.org/10.1111/1467-7687.00235
https://doi.org/10.1177/1745691617720478
https://doi.org/10.1016/j.neuron.2015.09.020
https://doi.org/10.1016/j.dcn.2012.11.009
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1073/pnas.96.14.8301
https://doi.org/10.1016/0749-596X(90)90004-J
https://doi.org/10.1016/j.jml.2018.10.003
https://doi.org/10.3758/cabn.4.4.580
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1176/appi.ajp.161.4.745
https://doi.org/10.1176/appi.ajp.161.4.745
https://doi.org/10.1016/j.clinph.2004.12.021
https://doi.org/10.1016/j.clinph.2004.12.021
https://doi.org/10.1080/01443410.2013.797338
https://doi.org/10.1080/01443410.2013.797338
https://doi.org/10.1080/14794802.2013.803779
https://doi.org/10.1038/mp.2017.18
https://doi.org/10.3389/fnbeh.2014.00156
https://doi.org/10.1073/pnas.0801268105
https://doi.org/10.1002/hbm.21444
https://doi.org/10.1080/09297049.2014.899336
https://doi.org/10.1080/09297049.2014.899336
https://doi.org/10.3389/fpsyg.2014.00390
https://doi.org/10.1016/j.tics.2010.05.002
https://doi.org/10.1097/00004583-200502000-00010
https://doi.org/10.1097/00004583-200502000-00010
https://doi.org/10.1076/jcen.24.6.781.8395
https://doi.org/10.1523/JNEUROSCI.3706-09.2009
https://doi.org/10.1523/JNEUROSCI.3706-09.2009
https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-13-00247 October 21, 2019 Time: 15:30 # 12

Sánchez-Pérez et al. Cognitive Training Improves Brain Connectivity

Kwon, H., Reiss, A. L., and Menon, V. (2002). Neural basis of protracted
developmental changes in visuo-spatial working memory. Proc. Natl. Acad. Sci.
U.S.A. 99, 13336–13341. doi: 10.1073/pnas.162486399

Loosli, S. V., Buschkuehl, M., Perrig, W. J., and Jaeggi, S. M. (2012). Working
memory training improves reading processes in typically developing children.
Child Neuropsychol. 18, 62–78. doi: 10.1080/09297049.2011.575772

Mehnert, J., Akhrif, A., Telkemeyer, S., Rossi, S., Schmitz, C. H., Steinbrink, J., et al.
(2013). Developmental changes in brain activation and functional connectivity
during response inhibition in the early childhood brain. Brain Dev. 35, 894–904.
doi: 10.1016/j.braindev.2012.11.006

Olesen, P. J., Westerberg, H., and Klingberg, T. (2004). Increased prefrontal and
parietal activity after training of working memory. Nat. Neurosci. 7, 75–79.
doi: 10.1038/nn1165

Posner, M. I., and Rothbart, M. K. (2018). Temperament and brain networks of
attention. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170254. doi: 10.1098/rstb.
2017.0254

Posner, M. I., Rothbart, M. K., and Tang, Y.-Y. (2015). Enhancing attention through
training. Curr. Opin. Behav. Sci. 4, 1–5. doi: 10.1016/j.cobeha.2014.12.0082

Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., and Beckmann,
C. F. (2015). ICA-AROMA: a robust ICA-based strategy for removing motion
artifacts from fMRI data. Neuroimage 112, 267–277. doi: 10.1016/j.neuroimage.
2015.02.064

Roughan, L., and Hadwin, J. A. (2011). The impact of working memory training in
young people with social, emotional and behavioural difficulties. Learn. Individ.
Differ. 21, 759–764. doi: 10.1016/j.lindif.2011.07.011

Rubia, K., Smith, A. B., Taylor, E., and Brammer, M. (2007). Linear age-
correlated functional development of right inferior fronto-striato-cerebellar
networks during response inhibition and anterior cingulate during error-related
processes. Hum. Brain Mapp. 28, 1163–1177. doi: 10.1002/hbm.20347

Rueda, M. R., Posner, M. I., and Rothbart, M. K. (2004). Attentional control and
self-regulation. Handb. Self Regul. Res. Theory Appl. 2, 284–299.

Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., and Posner,
M. I. (2005). Training, maturation, and genetic influences on the development
of executive attention. Proc. Natl. Acad. Sci. U.S.A. 102, 14931–14936.
doi: 10.1073/pnas.0506897102

Sánchez-Pérez, N., Castillo, A., López-López, J. A., Pina, V., Puga, J. L.,
González-Salinas, C., et al. (2018). Computer-based training in math and
working memory improves primary school children’s academic and cognitive
competences: behavioral results. Front. Psychol. 8:2327. doi: 10.3389/fpsyg.2017.
02327

Scherf, K. S., Sweeney, J. A., and Luna, B. (2006). Brain basis of developmental
change in visuospatial working memory. J. Cogn. Neurosci. 18, 1045–1058.
doi: 10.1162/jocn.2006.18.7.1045

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al.
(2009). Correspondence of the brain’s functional architecture during activation
and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045. doi: 10.1073/pnas.
0905267106

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,
T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. Neuroimage 23, S208–S219.
doi: 10.1016/j.neuroimage.2004.07.051

Söderqvist, S., and Bergman Nutley, S. (2015). Working memory training is
associated with long term attainments in math and reading. Front. Psychol.
6:1711. doi: 10.3389/fpsyg.2015.01711

Starkey, P., Klein, A., and Wakeley, A. (2004). Enhancing young children’s
mathematical knowledge through a pre-kindergarten mathematics
intervention. Early Child. Res. Q. 19, 99–120. doi: 10.1016/j.ecresq.2004.01.002

Studer-Luethi, B., Bauer, C., and Perrig, W. J. (2015). Working memory training
in children: effectiveness depends on temperament. Mem. Cogn. 44, 171–186.
doi: 10.3758/s13421-015-0548-9

Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro,
N., et al. (2010). Training of working memory impacts structural
connectivity. J. Neurosci. 30, 3297–3303. doi: 10.1523/JNEUROSCI.4611-09.
2010

Thompson, T. W., Waskom, M. L., and Gabrieli, J. D. (2016). Intensive working
memory training produces functional changes in large-scale frontoparietal
networks. J. Cogn. Neurosci. 28, 575–588. doi: 10.1162/jocn_a_00916

Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., and Klingberg,
T. (2009). Training and transfer effects of executive functions in
preschool children. Dev. Sci. 12, 106–113. doi: 10.1111/j.1467-7687.2008.00
745.x

Titz, C., and Karbach, J. (2014). Working memory and executive functions: effects
of training on academic achievement. Psychol. Res. 78, 852–868. doi: 10.1007/
s00426-013-0537-1

Traverso, L., Viterbori, P., and Usai, M. C. (2015). Improving executive function in
childhood: evaluation of a training intervention for 5-year-old children. Front.
Psychol. 6:525. doi: 10.3389/fpsyg.2015.00525

Unsworth, N., Fukuda, K., Awh, E., and Vogel, E. K. (2014). Working
memory and fluid intelligence: capacity, attention control, and secondary
memory retrieval. Cogn. Psychol. 71, 1–26. doi: 10.1016/j.cogpsych.2014.
01.003

Wager, T. D., and Smith, E. E. (2003). Neuroimaging studies of working memory:
a meta-analysis. Cogn. Affect. Behav. Neurosci. 3, 255–274.

Wong, A. S., He, M. Y., and Chan, R. W. (2014). Effectiveness of computerized
working memory training program in Chinese community settings for children
with poor working memory. J. Atten. Disord. 18, 318–330. doi: 10.1177/
1087054712471427

Zelazo, P. D., and Carlson, S. M. (2012). Hot and cool executive function in
childhood and adolescence: development and plasticity. Child Dev. Perspect. 6,
354–360. doi: 10.1111/j.1750-8606.2012.00246.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Sánchez-Pérez, Inuggi, Castillo, Campoy, García-Santos,
González-Salinas and Fuentes. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 12 October 2019 | Volume 13 | Article 247

https://doi.org/10.1073/pnas.162486399
https://doi.org/10.1080/09297049.2011.575772
https://doi.org/10.1016/j.braindev.2012.11.006
https://doi.org/10.1038/nn1165
https://doi.org/10.1098/rstb.2017.0254
https://doi.org/10.1098/rstb.2017.0254
https://doi.org/10.1016/j.cobeha.2014.12.0082
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.lindif.2011.07.011
https://doi.org/10.1002/hbm.20347
https://doi.org/10.1073/pnas.0506897102
https://doi.org/10.3389/fpsyg.2017.02327
https://doi.org/10.3389/fpsyg.2017.02327
https://doi.org/10.1162/jocn.2006.18.7.1045
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.3389/fpsyg.2015.01711
https://doi.org/10.1016/j.ecresq.2004.01.002
https://doi.org/10.3758/s13421-015-0548-9
https://doi.org/10.1523/JNEUROSCI.4611-09.2010
https://doi.org/10.1523/JNEUROSCI.4611-09.2010
https://doi.org/10.1162/jocn_a_00916
https://doi.org/10.1111/j.1467-7687.2008.00745.x
https://doi.org/10.1111/j.1467-7687.2008.00745.x
https://doi.org/10.1007/s00426-013-0537-1
https://doi.org/10.1007/s00426-013-0537-1
https://doi.org/10.3389/fpsyg.2015.00525
https://doi.org/10.1016/j.cogpsych.2014.01.003
https://doi.org/10.1016/j.cogpsych.2014.01.003
https://doi.org/10.1177/1087054712471427
https://doi.org/10.1177/1087054712471427
https://doi.org/10.1111/j.1750-8606.2012.00246.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Computer-Based Cognitive Training Improves Brain Functional Connectivity in the Attentional Networks: A Study With Primary School-Aged Children
	Introduction
	WM and the Attention Networks
	The Present Study

	Materials and Methods
	Participants
	Procedure
	Neuroimaging Acquisition
	Pre-processing
	Anatomical Group Template
	Functional Connectivity Analyses
	Within-ATNs (MELODIC)
	Seed-Based Function Connectivity Analysis

	Statistical Models

	Results
	Magnetic Resonance Imaging (MRI)
	Within-ATNs Connectivity (The Group Within Network – GWN – Analysis)
	Inhibition Abilities
	Group ×  nogo hits interactions within-ATNs connectivity (the Score Within Network – SWN – analysis)
	Group × nogo hits interactions across whole-brain functional connectivity of nogo-sensitive ROIs (the Score-Whole-Brain – SWB – analysis)



	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


