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Patient suffering of major depressive disorder (MDD) often complain that subjective time
seems to “drag” with respect to physical time. This may point toward a generalized
dysfunction of temporal processing in MDD. In the present study, we investigated
temporal preparation in MDD. “Temporal preparation” refers to an increased readiness
to act before an expected event; consequently, reaction time should be reduced. MDD
patients and age-matched controls were required to make a saccadic eye movement
between a central and an eccentric visual target after a variable duration preparatory
period. We found that MDD patients produced a larger number of premature saccades,
saccades initiated prior to the appearance of the expected stimulus. These saccades
were not temporally controlled; instead, they seemed to reflect reduced inhibitory control
causing oculomotor impulsivity. In contrast, the latency of visually guided saccades was
strongly influenced by temporal preparation in controls; significantly less so, in MDD
patients. This observed reduced temporal preparation in MDD was associated with a
faster decay of short-term temporal memory. Moreover, in patients producing a lot of
premature responses, temporal preparation to early imperative stimuli was increased.
In conclusion, reduced temporal preparation and short-term temporal memory in the
oculomotor domain supports the hypothesis that temporal processing was altered in
MDD patients. Moreover, oculomotor impulsivity interacted with temporal preparation.
These observed deficits could reflect other underlying aspects of abnormal time
experience in MDD.

Keywords: memory, depression, temporal cognition, eye movement, impulsivity

INTRODUCTION

Major depressive disorder (MDD) is often associated with an altered awareness of the passage time.
Indeed, MDD patients often complain that subjective time is going by at a reduced pace compared
with physical time (Gallagher, 2012; Msetfi et al., 2012; Ratcliffe, 2012; Droit-Volet, 2013; Thönes
and Oberfeld, 2015; Davalos et al., 2018; Vogel et al., 2018). This perturbed time awareness has led
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to a systematic investigation of time “perception” using
quantitative methods requiring an explicit judgment about
durations. An explicit judgment about duration is the outcome
of experimental tasks requiring comparison of time intervals,
production or reproduction of a standard duration or verbal
estimation (see Vatakis et al., 2018). This approach has led to
conflicting results and the precise influence of depression on
time perception remains elusive (see review in Oberfeld et al.,
2014). However, temporal cognition is not limited to explicit
temporal judgments. Implicit timing refers to the capacity to time
actions based on temporal regularities in the environment (Coull
and Nobre, 2008; Coull and Droit-Volet, 2018). It emerges in
non-temporal tasks where temporal information is, nevertheless,
essential to achieve optimal performance, as when making a
saccade to a visual target. This implicit influence of elapsed
time on movement preparation is often referred to as “temporal
preparation” and is still poorly understood in depression (see
Bonin-Guillaume et al., 2004).

Temporal preparation is studied, classically, by using a
warning stimulus (S1) that predicts the occurrence of an
imperative stimulus (S2; Woodrow, 1914). The period between S1
offset and S2 onset is referred to as the foreperiod (“FP”; Niemi,
1981; Niemi and Näätänen, 1981). Temporal preparation builds-
up while waiting during the FP and causes a shorter reaction
time after S2 appearance. Foreperiod duration could either
remain constant, making the timing of S2 entirely predictable,
or FP duration could vary randomly between different values
drawn from a given probability distribution. If FP duration is
randomly drawn from a uniform probability distribution, the
latency of the motor response to S2 decreases with elapsed
time. This “foreperiod effect” is the behavioral measure of
temporal preparation. Temporal preparation could be explained
by hypothesizing that subjects estimate the hazard rate of the
target defined as the probability that S2 will occur given that it
has not occurred yet. As time elapses during the FP, the hazard
rate of the S2 increases and sensorimotor systems could use that
information to reduce reaction time (Trillenberg et al., 2000;
Janssen and Shadlen, 2005; Nobre et al., 2007). In addition,
temporal preparation could also be modulated by the previous
FP experienced by the subject (Alegria and Delhaye-Rembaux,
1975; Los and Van den Heuvel, 2001; Los et al., 2014, 2017).
For instance, reaction time to S2 appearance during the current
FP will tend to be shorter, if the previous FP was shorter.
Therefore, short-term temporal memory (i.e., sequence effects)
plays a crucial role in temporal preparation (Los et al., 2017).
Accordingly, it has been shown that the FP effect on saccadic
eye movements could be accounted for by the remaining trace
of previous FP duration (Ameqrane et al., 2014). This influence
of short-term memory on the RT-FP function could be altered
given the known impact of depression on memory (Burt et al.,
1995). Therefore, altered temporal cognition in depression could
be mainly due to a deficit of temporal memory.

Another factor that deeply influences response preparation
in general is inhibitory control (Greenhouse et al., 2015; Lebon
et al., 2016; Duque et al., 2017). More precisely, in order to
prevent premature responses (i.e., responses before the onset of
S2), inhibition is necessary to reduce the increasing tendency

to initiate a motor response as time elapses (Burle et al., 2010;
Correa et al., 2010). Inhibitory control is not only important
for current FP, but also associated with short-term temporal
memory. It has been suggested that when the preceding FP
is longer than the current FP, inhibition induced during the
preceding FP could cause a longer RT during the current FP.
This indicates that inhibition could modulate the influence of
short-term memory during the FP (Los, 2013). Therefore, it
is plausible that the FP effect could be altered because of a
dysfunctional inhibitory control. Inhibitory dysfunction is one
aspect of impulsivity (Evenden, 1999). Impulsivity could be
defined as the tendency to act without forethought and is
commonly considered as one aspect of personality trait. To
evaluate the magnitude of impulsivity, the Barratt Impulsiveness
Scale (BIS-11; Patton et al., 1995) is often adopted. Studies
have shown that impulsivity was exacerbated in neurologic (e.g.,
Parkinson’s disease, Voon et al., 2011; Nombela et al., 2014),
psychiatric (e.g., ADHD, Barkley et al., 2001; Smith et al., 2002)
and affective disorders (e.g., MDD; see review in Evenden, 1999;
Dalley and Robbins, 2017). There is a strong association between
depression and impulsivity, suggesting that impulsivity could
potentially lead to an increased risk of suicide (Corruble et al.,
2003). Therefore, increased impulsivity in depression could cause
more premature motor responses, altered temporal preparation
and a different RT-FP function.

The aim of the present study was two-folds. Firstly, we
examined whether temporal processing was altered in depressive
patients by using a saccadic version of temporal preparation.
Precise and accurate control of the timing of eye movements is
essential to “catch” with the fovea the image of visual objects
(Badler and Heinen, 2006; de Hemptinne et al., 2007; Barnes,
2008; Collins and Barnes, 2009). The same scenario also applies
to temporal preparation. When both S1 and S2 are visual targets,
temporal preparation plays a major role in oculomotor control
(Oswal et al., 2007; Ameqrane et al., 2014; Degos et al., 2018).
The saccadic system is kept under constant top-down inhibitory
control in order to avoid unwanted eye movements that could
blur the image of a visual object of interest on the retina
during fixation periods (Rucker et al., 2011). The saccadic system
therefore could be particularly sensitive to a lack of inhibitory
control during temporal preparation and premature saccades and
could be a valuable indicator of impulsivity. This phenomenon
will be referred to as “oculomotor impulsivity” in this study.
Additionally, according to the literature from above, short-term
temporal memory and inhibitory control could potentially be
altered and disrupt the FP effect in depressive patients. Thus,
secondly, we further examined whether short-term temporal
memory and inhibitory control affects temporal preparation in
participants diagnosed with depression.

MATERIALS AND METHODS

Ethical Approval and Informed Consent
This study was approved by the Joint Institutional Review Board,
Taipei Medical University, Taipei City, Taiwan (N201603080).
Methods were carried out in accordance with relevant guidelines
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and regulations. All participants were informed about the
purpose of the study and procedures before being asked to give
informed consent. Written informed consent was obtained from
all participants prior to their participation in this study.

Patients
Twenty-nine patients diagnosed with MDD (24 females;
38.4 ± 2.5 years old, n = 29) were recruited by the Department
of Psychiatry at Taipei Medical University Shuang-Ho Hospital,
located in New Taipei City, Taiwan. The MINI-international
neuropsychiatric interview (Sheehan et al., 1998), was used
to confirm the diagnosis of current major depressive episode,
to detect suicidal risk, and to exclude patients with psychotic
symptoms and any comorbid mental disorder or substance use
disorder according to the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition. Patients with poor visual
acuity and comorbid medical conditions including neurological
disorders (e.g., stroke, seizure, traumatic brain injury, post-brain
surgery), brain implants (neurostimulators), cardiac pacemakers,
or pregnant were also excluded. The Beck Depression Inventory
(BDI-II; Beck et al., 1996), and the Generalized Anxiety Disorder
7 (GAD-7; Spitzer et al., 2006) were administered to evaluate the
severity of depression and anxiety. BDI-II score for patients in
this study was 30.1 ± 13.4 and depressive symptoms duration
was 9.2 ± 10.2 years. In addition, the BIS-11 (Patton et al.,
1995) was used to quantify Impulsive level on each individual.
All patients but seven were on medication at the time of testing
(see Table 1).

Controls
Twenty-nine healthy control participants (27 females,
37.7 ± 2.4 years old) without any current or history of
neurological or psychiatric disorder, or use of psychotropic
medication, were recruited from the community. They were
matched for age and gender, except for two healthy control
participants, whose gender did not match the patients.

Experimental Design and Statistical
Analysis
Subjects were facing an LCD screen which presented stimuli
at a refresh rate of 60 Hz. An EyeLink 1000 infrared eye
tracking system (SR Research, Mississauga, ON, Canada) was
used to record eye movements at 1 KHz. Saccade initiation was
measured using the algorithm provided by SR Research. This
algorithm uses a saccadic velocity threshold of 30◦/s, a saccade
acceleration threshold 8000◦/s2 and a saccade motion threshold
of 0.15◦. Stimulus display and oculomotor data collection were
synchronized on a frame-by-frame basis using Experimental
Builder (SR Research, Mississauga, ON, Canada). Figure 1A
depicts the time line of stimuli presentation on the screen facing
the subject. Each trial started with an initial fixation period of
a small empty box (1.4 × 1.4◦) appearing on the screen for a
random duration (850 ± 100 ms; Figure 1A). At the end of this
period four additional empty square “boxes” appeared on the
screen at an eccentricity of 8◦ together with a warning stimulus S1
that was briefly presented in the central box for 50 ms. Extinction

TABLE 1 | Summary of drug treatments received by patients.

Patient 1 2 3 4 5 6

p01 SNRI Non-BDZ BDZ ATA BDZ

p03 MRA Non-BDZ

p04 SSRI BDZ

p05 BDZ Non-BDZ NDRI

p06 NIL

p07 ATA SSRI

p08 NDRI

p09 MRA

p11 SSRI ATA

p12 SSRI ATA NDRI

p13 SNRI ATA

p14 SSRI

p15 SNRI Non-BDZ BDZ

p17 NIL

p18 SSRI

p19 NIL

p20 NIL

p21 SNRI Non-BDZ Non-BDZ SARI ATA ATA

p25 SSRI

p26 SSRI BDZ BDZ

p28 SNRI ATA BDZ BDZ SARI BDZ

p29 SSRI BDZ ATA

p30 Non-BDZ BDZ

p31 NDRI

p32 NIL

p34 NIL

p35 SNRI BDZ Non-BDZ ATA

p37 SNRI ATA

p41 NIL

Each line represents one patient. Columns show treatments received by each
patient (1–6). ATA, atypical antipsychotic; BDZ, benzodiazepine; SNRI, serotonin–
norepinephrine reuptake inhibitor; MRA, melatonin receptor agonist; NDRI,
norepinephrine–dopamine reuptake inhibitor; NIL, no pharmacological treatment;
Non-BDZ, non-benzodiazepine hypnotic; SARI, serotonin antagonist and reuptake
inhibitor; SSRI, selective serotonin reuptake inhibitor.

of the S1 stimulus indicated to subjects the beginning of the
foreperiod (FP). Subjects were required to fixate on the central
box until a target was briefly and randomly presented for 50 ms,
in one of the four eccentric boxes (imperative stimulus S2). The
background of the screen was always black and stimuli were white
(boxes) or green (S1 and S2 stimuli). One of four different FP
durations (400, 900, 1400, and 1900 ms) was chosen randomly,
each with the same probability (Probability = 0.25). Subjects
were required to wait until targets appeared in the eccentric
box before making a saccade (black arrowhead on Figure 1A).
Saccadic latency (reaction time) was defined as the time elapsed
between the appearance of the eccentric target and movement
onset. Saccades that occurred during the foreperiod (period
indicated with a red line on Figure 1A) are here referred to as
“premature saccades” (red traces on Figure 1B). The propensity
to initiate premature saccades will be referred to as “oculomotor
impulsivity.” Saccades that occurred after the appearance of the
eccentric target (period indicated with a blue line on Figure 1A)
are here referred to as “visually guided saccades” (blue traces
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FIGURE 1 | (A) Oculomotor version of the 4-CSRTT task. Schematic
representation of the visual display in front of subjects. See text for details. (B)
Example of premature (red traces) and visually guided (blue traces) saccades
during a 1900-ms foreperiod in a control subject (subject #9). Time zero on
the X-axis indicates extinction of the warning stimulus (S1OFF). At the end of
the FP, the imperative stimulus appeared (S2ON). Note that most premature
saccades tended to cluster during the early part of the FP. The period during
which premature saccades were recorded is represented in red in panel (A).
The period during which visually guided saccades were recorded is
represented in blue in panel (A).

on Figure 1B). The amplitude of visually guided saccades had
to be >5◦ This criterion was rendered necessary in order to
eliminate dysmetric primary saccades between the S1 and S2
stimuli. Dysmetric primary saccades were more frequent in
MDD and were not included in the analyses presented here
(see Sweeney et al., 1998).

In order to suppress express saccades, saccadic latency had to
be longer than 100 ms. In order to avoid long latency saccades
likely initiated in a decreased state of alertness or motivation,
saccade latency had to be less than 600 ms. Altogether, these
conservative criteria eliminated 5% of the total number of
saccades in controls (5377/5683 saccades) and 13% in MDD
patients (4074/4710 saccades).

At the end of each trial, boxes were removed and there was a
variable inter-trial-interval of between 2000 and 2500 ms. A block
contained 120 trials and each subject performed two blocks for a
total of 240 trials. This paradigm is an oculomotor version of the
well-known four choices serial reaction time task (i.e., 4-CSRTT)
used in humans (Voon et al., 2014).

A linear mixed model approach (LMM) was used to analyze
eye movement data. In all analyses, subject identity was used as
a random factor to account for the influence of uncontrolled,
between-subject variability. To compare the percentage of
premature responses, a single average value was computed for
each subject before applying the LMM analysis and testing
for fixed effects. In order to analyze saccadic latencies, we
used a repeated-measures LMM. In this analysis, each saccadic
latency measured for each subject was a data point. Indeed,
the LMM approach does not require a preliminary averaging
of data for each subject and condition. Therefore, it avoids
information loss due to data averaging (see West et al., 2015;
Boisgontier and Cheval, 2016) and is more selective to test
experimental effects and interactions (Baayen et al., 2008).
The LMM method is also more robust to normality violations
and missing data (e.g., no saccade triggered) than standard
ANOVA or ANCOVA.

In summary, LMM provides unbiased analysis of balanced
and unbalanced repeated-measures data, detection of within-
subject effects (fixed effects), and individual subject effects
(random effects), thereby making the best use of all available data
(Laird and Ware, 1982).

The number of degrees of freedom (df) was estimated using
the Satterthwaite algorithm calculated by the MIXED algorithm
in SPSS 25 (SPSS Inc., Chicago, IL, United States). With this
algorithm, the number of df could be fractional. Significance of
observed effects was tested using the F-statistics. The significance
threshold α for all analysis was 0.05.

Results are presented as mean ± standard error of the
mean, unless otherwise specified. Because saccadic reaction
time distributions are often non-normal, we used a logarithmic
transform of saccadic RT for statistics. For presentation purposes,
however, untransformed saccadic latencies in milliseconds are
presented on figures.

A preliminary version of this paper was posted on
bioRxiv by Hsu et al. (2019).

RESULTS

Demographics and Clinical
Characteristics
Average age of control subjects was 37.7 ± 2.4 (n = 29) and
38.4 ± 2.5 (n = 29) for patients. Age did not differ between groups
(F[1,56] = 0.048; p = 0.827; n = 29). Average scores of the Beck’s
Depression Inventory-II were 7.6 ± 1.4 in controls (n = 25/29; 4
untested controls) and 30.1 ± 13.4 in patients (n = 22/29; seven
untested patients). These group scores were statistically different
(χ2 = 20.455; p < 0.001) confirming the diagnosis of MDD.
Average total scores of the BIS-11 were 64.6 ± 1.2 in controls
(n = 29/29) and 71.3 ± 2.0 in patients (n = 27/29). These between-
group scores differed significantly, (χ2 = 4.577; p = 0.032) with
patients scoring higher than controls.

Premature Saccades
In the oculomotor version of the 4-CSRTT task, subjects were
instructed to keep looking at the S1 stimulus in the central
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FIGURE 2 | (A) Latency distribution of all premature saccades in controls
pooled together. (B) Latency distribution of all premature saccades in MDD
patients. Time zero on the X-axis represents disappearance of the S1

stimulus.

fixation box and wait for the appearance of the eccentric S2
stimulus before initiating a visually guided saccade. However,
saccades were often initiated before the appearance of the S2
stimulus (see red traces on Figure 1B). These movements will be
referred to as “premature” saccades. Figure 2 shows the latency
distribution of premature saccades for all controls (Figure 2A)
and patients (Figure 2B). Most premature saccades occurred
approximately 200 ms after the offset of the warning stimulus.
The percentage of premature saccades was measured and served
as an index of inhibition. We found that the percentage of
premature saccades was more than twice as high in patients
than in controls (in controls: 14 ± 2%, n = 29 subjects, 937
premature saccades/6620 trials; in patients: 31 ± 5%, 2064
premature saccades/6776 trials) and there was a significant
main effect of subject group on this percentage (F[1,56] = 8.4;
p = 0.005). Premature saccade latency was longer in controls
(598 ± 13 ms; n = 937) than in MDD patients (491 ± 7 ms;
n = 2066; F[1,2926] = 13.410; p < 0.001) supporting the
hypothesis of increased oculomotor impulsivity in patients.
Next, we investigated whether there was a correlation between
trait impulsivity as estimated with the BIS-11 questionnaire
and oculomotor impulsivity. However, we found no correlation
between the percentage of premature saccades and the BIS-11
score (in MDD patients: F[1,20] = 0.34; p = 0.856; n = 22; seven
patients not tested; in controls: F[1,23] = 0.216; p = 0.647; n = 25;

four subjects not tested) suggesting that these measures reflect
different facets of impulsivity.

Influence of Temporal Preparation on
Visually Guided Saccades
Most saccades were visually guided, as expected, in accord
with the instructions provided to subjects (blue traces on
Figure 1B; 76% visually guided saccades, 9451/12452 saccades
all subjects included; average latency 239 ± 1 ms, n = 5377
saccades; MDD: 259 ± 1 ms, n = 4074 saccades). Figure 3A
shows the relationship between saccadic latency and foreperiod
duration in the two groups of subjects. This relationship will
be referred to as the RT-FP function. It can be observed that
saccadic latencies were similar between groups, if current FP
duration was 400 ms. But there was an increasing difference
between groups for FP duration longer than 400 ms. We
found a statistically significant main effect of FP duration
(F[3,9394.324] = 274.374; p < 0.001) on saccadic latency,
but no significant main effect of group on average saccadic
latency (F[1,55.082] = 0.472; p = 0.495). The interaction
between FP duration and subject group was significant
(F[3,9394.324] = 22.715; p < 0.001). These results show that
average reaction time was statistically similar in controls and
MDD subjects but that temporal preparation was reduced in the
latter group.

In order to better understand the origin of the different RT-FP
functions between groups, we analyzed the influence of previous
FP duration (FPn−1) on saccadic latency during the current FP.
For instance, if current FP duration was 400 ms and FPn−1 was
400 ms as well, saccadic latency could be shorter than if the
same FP was preceded by FPn−1 of 1900 ms (see Figure 3B).
Statistically, we found that there was a significant main effect of
FPn−1 duration (F[3,9314.030] = 22.841; p < 0.001) on saccadic
latency, but not subject group (F[1,55.229] = 1.077; p = 0.304).
The interaction between FPn−1 duration and subject group was
not significant (F[3,9314.030] = 1.633; p = 0.179). These results
suggest that the FPn−1 effect was present and similar in both
controls and patients. Therefore, the reduced FP effect that we
found could not be due to a reduced influence of FPn−1 duration
held in short-term memory. This conclusion was reinforced by
the analysis presented on Figure 3C that shows the influence
of FPn−1 as a function of FP duration in controls and MDD
patients. The influence of FPn−1 was stronger for short FP
durations than longer ones. This effect is often referred to as
the “asymmetry” of the sequential effect (Los et al., 2017). This
asymmetry was present in both groups and was statistically
similar (no significant interaction between FP, FPn−1 and subject
group: F[9,9290.307] = 1.38; p = 0.190]). However, more than
one step back into the past could still play a significant role in
the timing of eye movements and explain the different RT-FP
functions between groups. Therefore, we investigated whether
FPn−1, FPn−2, FPn−3, FPn−4 could also play a significant
role in determining saccadic latency during the current FPn
in both groups. We found that FPn−1, FPn−2, FPn−3, and
FPn−4 played a significant role in determining saccadic latency
in controls (FPn−1, F[3,4935.335] = 16.090; p < 0.001; FPn−2,
F[3,4935.316] = 9.382; p < 0.001; FPn−3, F[3,4935.283] = 4.126;
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FIGURE 3 | (A) RT-FP function in controls (continuous line; n = 29 subjects; n = 5377 saccades) and MDD patients (dotted line; n = 29 subjects; n = 4074
saccades). Average values of saccadic latency (in milliseconds) and 95% confidence interval. Note the shallower slope of the function between 400 and 1400 ms FP
durations. (B) Relationship between previous foreperiod duration (FPn−1) and saccadic latency in controls (continuous line) and MDD patients (dotted line). Same
data set as on panel (A). (C) Asymmetry of the foreperiod effect. Colors shows the duration of the previous FP (FPn−1). Same data as in panel (A) but with a
classification of saccadic latency according to previous FP. The influence of FPn−1 is larger for short FP durations. (D) Graphical representation of the slope of the
linear relationships between previous FPs and saccadic latency for an increasing number of trials back into the past (1–4) in controls (dark bars) and MDD patients
(open bars). Same data set as on panel (A). The symbol ∗ is used to represent multiplication; ∗∗ indicates P < 0.01.

p = 0.006; FPn−4, F[3,4935.237] = 3.562; p = 0.014). But only
FPn−1 played a significant role on saccadic latency in MDD
patients (FPn−1, F[3,3654.868] = 6.270; p < 0.001). Therefore,
the reduced FP effect found in patients could be attributed to
a different processing of past FP durations, with a faster decay
of the memory trace of previous FPs in MDD patients. This is
further illustrated on Figure 3D, which shows the value of the
slope of a multiple linear regression analysis between previous
FPs and saccadic latency. Star symbols indicate when slopes
were significantly different from zero. This figure shows a faster
extinction of the influence of previous FPs on movement latency
in MDD patients than in controls.

Analyses presented above suggest that short-term temporal
memory of previous FPs affected saccadic latency in MDD

patients differently than in controls. Temporal preparation,
however, could also be guided by a sense of elapsed time
during the current FP. Therefore, we applied a hierarchical
linear regression analysis in both groups using two different
models. In controls, the first model contained FPn−1, FPn−2,
FPn−3, and FPn−4 as independent factors. The second model
contained FPn−1, FPn−2, FPn−3, FPn−4, and FPn as independent
factors and will be referred to as “model 2.” The aim was to
determine the contribution of both short-term temporal memory
(FPn−x) and current foreperiod (FPn) in movement latency.
In controls, we found that both model 1 (F[4,5213] = 17.269;
p < 0.001) and model 2 (F[5,5212] = 89.276; p < 0.001)
provided a significant explanation of observed variance. The
coefficient of determination for model 1 was r2 = 0.013
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(p < 0.001); however, the coefficient of determination for
model 2 was higher with r2 = 0.079. Therefore, r2 variation
due to adding current FPn in the model was approximately
7% (0.066) and the F-value variation related to this addition
was significant (F[1,5212] = 372.384; p < 0.001). In patients,
we found that both model 1 (F[1,4038] = 12.559; p < 0.001)
and model 2 (F[2,4037] = 38.633; p < 0.001) also provided a
significant explanation of the variance observed. The coefficient
of determination for model 1 was weak r2 = 0.003 but significant
(p < 0.001). But the coefficient of determination for model 2 was
higher with r2 = 0.018 and the r2 variation due to adding FPn
in the model was approximately 2% (0.016). F-value variation
related to the addition of FPn in the model was significant
(F[1,4037] = 64.511; p < 0.001). In summary, the FP effect
was observed in both groups but in MDD patients memory of
previous FPs declined faster, given that only FPn−1 played a
significant role on saccadic latency. Using a hierarchical model
analysis, we showed that the model including previous FPs and
current FPn explained a larger proportion of the variance of
saccadic latency. Influence of the current FP was present in both
controls and patients but its influence was weaker in the latter
group. Therefore, the reduced influence of current FP on saccadic
latency co-occurred with a reduced short-term temporal memory
in MDD patients.

Was Short-Term Memory in the Spatial
Domain Similarly Affected in MDD
Patients?
If the answer to this question were positive, then observed
effects were not specific to temporal preparation. Instead, they
might reflect a more general short-term memory impairment in
patients. In order to determine whether there was a significant
effect of previous target position, we compared saccadic latency
when the target appeared at the same or at a different spatial
location during the previous trial. We hypothesized that there
could be a response facilitation by repetition in the temporal
domain only, but not in the spatial domain. Indeed, we
found no evidence of a significant interaction effect between
subject group and previous target location on saccadic latency
(F[1,9318.688] = 0.081; p = 0.776; see Figure 4A). We applied the
same approach to temporal preparation by comparing saccadic
reaction time when FPn and FPn−1 were the same or different. In
the temporal domain, there was a significant interaction between
subject group and FP duration on saccadic latency (same or
different; F[1,8907.674] = 4.077; p = 0.043; see Figure 4B). These
results show that temporal short-term memory was selectively
affected in patients, but the same was not true for spatial short-
term memory of target location.

Influence of Oculomotor Impulsivity on
Temporal Preparation
As hypothesized in the Introduction section, the shape of the
RT-FP function could be influenced by oculomotor impulsivity.
Therefore, we compared the RT-FP functions in low and high
oculomotor impulsivity patients and controls. Patients were
categorized into two groups, using the median of the percentage

FIGURE 4 | Comparison of spatial and temporal short-term temporal memory.
(A) Saccadic latency in MDD and control subjects when the visual target was
at the same position during trialn as during trialn-1, or not. (B) Saccadic
latency when FP duration was the same during trialn as during trialn-1, or not.

of premature saccades distribution in this group (median = 21%).
The low impulsivity MDD group produced less than 21%
premature responses (n = 15 subjects; n = 2864 saccades); the
high impulsivity MDD group, more than 21% (n = 14 subjects;
n = 1210 saccades). We re-examined the FP effect within these
two groups. Figure 5A shows that the asymmetric FP effect was
present in the low impulsivity group, but it was considerably
altered in the high impulsivity group. Accordingly, a significant
interaction between impulsivity group and FP duration on
saccadic latency was found (F[3,4048.361] = 4.655; p = 0.003).
In high oculomotor impulsivity patients, saccadic latencies for
the 400 ms duration FP were reduced by approximately 30 ms.
Figure 5B shows the same analysis applied to control subjects
(median percentage of premature saccades: median = 10%). The
RT-FP function in high (n = 15 subjects; n = 2313 saccades)
and low impulsivity (n = 14 subjects; n = 3064 saccades)
control subjects also significantly differed (significant interaction
between impulsivity group and FP duration on saccadic latency;
F[3,5342.181] = 4.125; p = 0.006), but to a lesser extent. Indeed,
as already mentioned, oculomotor impulsivity was lower in this
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FIGURE 5 | (A) Influence of impulsivity on the RT-FP function in MDD patients (low impulsivity; n = 15 subjects; n = 2864 saccades; high impulsivity group: n = 14
subjects, n = 1210 saccades). (B) Same relationship in controls (low impulsivity; n = 15 subjects; n = 2864 saccades; high impulsivity group: n = 14 subjects,
n = 1210 saccades). (C) RT-FP function for patients (n = 19, nine subjects removed; n = 3546 saccades) and controls (n = 26, two subjects removed; n = 4972
saccades) that were matched for oculomotor impulsivity. (D) RT-FP function in seven untreated patients (n = 1305 saccades) and 7 age-matched controls (n = 1530
saccades).

group; therefore, its influence on the RT-FP relationship was
less. In summary, impulsivity increased temporal preparation to
the temporally proximal target in both controls and patients,
with a more pronounced effect in the latter group. It could be
hypothesized that the shallower RT-FP relationship in impulsive
patients could be partly attributed to a reduced asymmetry
of the sequential short-term memory effect. However, we
found no interaction between FPn, FPn−1 and subject group
(F[9,4008] = 0.691; p = 0.717; see Supplementary Figure 1).

The perception of elapsed time, however, could also be
modified by depression, independent of impulsivity. In order
to test this hypothesis, patients and controls were matched for
oculomotor impulsivity. If the shape of the RT-FP relationship
was different for the same oculomotor impulsivity, then
depression per se is affecting temporal preparation. In order
to obtain matched oculomotor impulsivity groups, we removed
patients and subjects producing more than 30% premature
responses and identified two overlapping groups — controls
(n = 26, 2 subjects removed; n = 4972 saccades) and depressed
patients (n = 19, 9 subjects removed; n = 3546 saccades)

producing 12 and 14% of premature responses, respectively.
Figure 5C shows that the RT-FP functions were different,
nevertheless, in patients and controls (significant interaction;
F[3,8467.292] = 13.082; p < 0.001) with a reduced FP effect in
patients. Therefore, the shape of the RT-FP function could be
altered by both oculomotor impulsivity and depression.

One additional factor that could influence temporal
preparation is drug treatments administered to MDD patients.
Most subjects (22/29) received several drug treatments that
could have influenced temporal preparation (see Table 1). Due to
ethical considerations, it would not have been acceptable to ask
patients to suspend their treatment for research purposes. But
seven subjects were investigated before the start of the treatment
and temporal preparation could be estimated (n = 1305
saccades). Figure 5D shows a strong alteration of the RT-FP
function for drug-free patients, compared to age-matched
controls (n = 1530 saccades). This subset of seven, untreated
subjects presented a similar alteration of the RT-FP function
as was found when all subjects were pooled together (see
Figure 3A), and a significant interaction between group and FP
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duration on saccade latency was found (F[3,2815.141] = 10.639;
p < 0.001). This result suggests that temporal preparation
alteration in depression is a robust observation, and that it is not
caused by drug treatment. However, we found no correlation
between the BDI score and the slope of the RT-FP relationship
(Pearson correlation, −0.032, p = 0.88, n = 22).

Influence of Trait Impulsivity on Temporal
Preparation
In the present study, the percentage of premature responses
was used to evaluate oculomotor impulsivity. The percentage
of premature responses was not correlated with the BIS-11
score (see above). However, could the BIS-11 score predict the
shape of the RT-FP function? In order to answer this question,
we divided MDD patients into a high and low impulsivity
groups based on the median of the total BIS-11 score. The
same LMM procedure was applied to test whether the RT-
FP function was different between groups. However, we found
that there was no main effect of trait impulsivity on saccadic
RT (F[1,24.250] = 0.001; p = 0.973). Moreover, no significant
interaction was found between trait impulsivity and FP duration
(F[3,3777.549] = 2.235; p = 0.082). In conclusion, temporal
preparation was not significantly altered by trait impulsivity.

DISCUSSION

The aim of this study was to determine how temporal preparation
and short-term temporal memory were affected in MDD as well
as the influence of the lack of inhibitory control (or impulsivity).
In general, we found that temporal preparation was reduced
in MDD compared with age-matched healthy controls. We
suggest that psychomotor retardation could not fully explain
observed results. Indeed, our analysis revealed that average
reaction time to visual targets was not statistically different
between groups. We found that temporal preparation depended
on both the duration of the current FP and short-term memory
of previous FPs. In MDD, the influence of current FP duration
was reduced and the decay of short-term temporal memory
was faster. Indeed, the influence of previous FPs was 3–4 trials
deep in controls, but only one trial deep in depressed patients.
A significant reduction of the FP effect was found in seven MDD
patients who were not undergoing pharmacological treatment;
this finding suggests that abnormal temporal preparation occurs
independently of therapeutic drugs. In addition, we found
that lack of inhibition also influenced temporal preparation.
The RT-FP function was statistically flat in high oculomotor
impulsivity patients.

Premature Saccades and Oculomotor
Impulsivity
Premature saccades reflected the lack of inhibitory control during
the foreperiod. Inhibitory control plays a crucial role while
waiting for an expected event (Logan et al., 1997) and motor
responses occurring before the appearance of the imperative
S2 stimulus must be actively suppressed. We observed that
premature saccades clustered between 200 and 400 ms after

S1 offset. We suggest that two hypotheses could explain this
observation. First, there could be an increased expectancy of
S2 appearance after a short FP. This increased expectancy
could be caused by a more salient representation of the short
FP in memory. Second, response inhibition might be reduced
at the beginning of the FP. But the observation that short-
term temporal memory was reduced in MDD patients does
not support the first hypothesis. Indeed, a reduced memory
span and an increased saliency of memory traces of short FPs
are inconsistent. On the other hand, the second hypothesis is
supported by observations made in humans and rodents. It has
been suggested that the frontal and prefrontal cortices could
exert inhibitory control over behavior, cognition and emotions
although there is not yet a consensus about the networks involved
in the different domains of inhibition (Jahanshahi and Rothwell,
2017). Interestingly, Narayanan et al. (2006) have shown that in
rat reversible inactivation of the dorsomedial prefrontal cortex
caused an increase in premature responses and an accelerated
reaction time after a short foreperiod, just as was observed in
the present study. Therefore, premature saccades might reveal
a lack of top-down inhibitory control exerted by the prefrontal
cortex; this would be particularly important at the beginning of
the FP. Later, during the FP, an excitatory drive could prepare
movement initiation when the imperative stimulus occurs. The
inhibitory control normally opposes this excitatory drive. But
if the inhibitory drive were reduced then the excitatory drive
could trigger either a premature response during the FP or a
short latency saccade to the imperative visual target during a
400 ms FP. An increased occurrence of premature responses
is often observed in psychiatric disorders and addictions where
impulsivity is increased (Dalley and Robbins, 2017; Paasche et al.,
2018). Among psychiatric diseases, MDD seems to be a special
case. It is usually associated with heightened inhibitory control
and reduced motor activity (American Psychiatric Association,
2013). But increased impulsivity has also been reported (Corruble
et al., 2003) and top-down inhibitory control is likely to be
affected by MDD (Palmwood et al., 2017). This hypothetical
reduction of top-down inhibitory control in MDD could be
related to reduced serotoninergic neurotransmission. Indeed,
it has been shown in humans that a dietary tryptophan
depletion procedure that reduces serotonin neurotransmission
causes waiting impulsivity (Dalley and Roiser, 2012; Worbe
et al., 2014). Therefore, increased oculomotor impulsivity could
be a consequence of altered serotoninergic transmission in
depressed patients (Coppen, 1967; see Yohn et al., 2017).
The saccadic system is a high gain system constantly kept
under strong inhibitory control in order to avoid unwanted
eye movements (Missal and Keller, 2002; Otero-Millan et al.,
2018) and this delicate balance could be easily perturbed by
reduced top-down inhibitory control (see review in Pouget
et al., 2017). Additionally, increased impulsivity could also be
related to therapeutic drugs taken by subjects. Indeed, the
RT-FP function of untreated subjects was similar to the one
observed in low-impulsivity patients in general. Measuring
the percentage of premature saccades could be a clinical tool
to estimate the influence of pharmacological treatment on
impulsive behavior.
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The absence of correlation between the percentage of
premature saccades and trait impulsivity (BIS-11 total score)
supports the hypothesis that impulsivity is a complex construct
with different aspects and several different neurotransmitters
involved (Evenden, 1999; Dalley and Robbins, 2017). Premature
responses characterize the motor side of impulsivity but does not
reflect higher order cognitive aspects of this phenomenon.

The Origin of Temporal Preparation
Trace conditioning model suggests that the shape of the RT-FP
function could be explained by a single learning mechanism
based on previously experienced FPs (Los et al., 2014). In this
model, inhibition during FPn−1 causes a longer RT during
the current FP. This explains the asymmetry of the FP effect.
Therefore, less inhibitory control (oculomotor impulsivity)
should be associated with a reduced influence of short-term
temporal memory and a shallower slope of the RT-FP function
in MDD. Although the slope of the RT-FP function was reduced
in impulsive patients, there was still a significant influence
of FPn−1. We could not validate this prediction of the MTP
model in our data set. However, an updated model from the
same group, the multiple tract theory of temporal preparation
(abbreviated as “MTP”; Los et al., 2017) suggested that the
shape of the entire RT – FP function reflects accumulated
inhibition across all previous trials (stored in memory traces).
That is, the complete area below the RT – FP function is
an expression of accumulated inhibition. The asymmetry of
the sequential effect is a reflection of inhibition according
to MTP, where recent memory traces have a higher weight.
Our findings also support that the FP effect has multiple
origins (Vallesi and Shallice, 2007; Vallesi et al., 2007a,b) both
affected in MDD.

When controls and patients were matched for
impulsivity, temporal preparation was nevertheless reduced
in the latter group. Therefore, impulsivity alone cannot
explain observed results and depression by itself reduced
temporal preparation. We suggest that depression could
reduce the influence of elapsed time on movement
latency for long FPs.

Using the exquisite temporal sensitivity of the oculomotor
system we have shown that the implicit processing of time
is altered in MDD patients. This implicit processing of
time probably involves early neuronal activity in the frontal
cortex. It has been shown by Los and Heslenfeld (2005)
that the effects of previous FPs were paralleled by similar
effects on the fronto-central contingent negative variation
(CNV). We suggest that this modulation of the CNV by
sequence effects (or short-term temporal memory) should
be reduced in MDD.

Implicit Timing, Time Perception, and
Awareness
Based on questionnaires, depressed patients report often a
“slowing down” of subjective time (Blewett, 1992; Ratcliffe,
2012; see review in Droit-Volet, 2013). This desynchronization
between the subjective experience of time and physical time

seems to be a characteristic of depressive states without
being systematically studied and compared with other
cognitive functions. How temporal preparation, explicit
timing and awareness of time relate to each other is unknown.
Although temporal preparation and time awareness could be
considered as very different phenomena they could rest on
overlapping neurophysiological mechanisms. We suggest that
alteration of these mechanisms could underlie the abnormal
temporal organization of thought and behavior often reported
in this disease.
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