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Overeating in individuals with obesity is hypothesized to be partly caused by automatic

action tendencies to food cues that have the potential to override goal-directed dietary

restriction. Individuals with obesity are often characterized by alterations in the processing

of such rewarding food, but also of non-food stimuli, and previous research has

suggested a stronger impact on the execution of goal-directed actions in obesity.

Here, we investigated whether Pavlovian cues can also corrupt the learning of new

approach or withdrawal behavior in individuals with obesity. We employed a probabilistic

Pavlovian-instrumental learning paradigm in which participants (29 normal-weight and 29

obese) learned to actively respond (Go learning) or withhold a response (NoGo learning)

in order to gain monetary rewards or avoid losses. Participants were better at learning

active approach responses (Go) in the light of anticipated rewards and at learning to

withhold a response (NoGo) in the light of imminent punishments. Importantly, there

was no evidence for a stronger corruption of instrumental learning in individuals with

obesity. Instead, they showed better learning across conditions than normal-weight

participants. Using a computational reinforcement learning model, we additionally found

an increased learning rate in individuals with obesity. Previous studies have mostly

reported a lower reinforcement learning performance in individuals with obesity. Our

results contradict this and suggest that their performance is not universally impaired:

Instead, while previous studies found reduced stimulus-value learning, individuals with

obesity may show better action-value learning. Our findings highlight the need for a

broader investigation of behavioral adaptation in obesity across different task designs

and types of reinforcement learning.

Keywords: obesity, prediction error, reinforcement learning, instrumental, Pavlovian

INTRODUCTION

Over-consumption of high-caloric food is thought to be one of the main contributing factors
to the development of human obesity. Affected individuals often maintain their dysfunctional
eating behavior over long periods of time, even in the light of short- and long-term negative
consequences. Thus, overeating shows a paradoxical effect: despite the negative consequences of
unhealthy nutrition and the motivation to change their eating behavior, individuals with obesity
often struggle with effective behavioral change (Andreyeva et al., 2010).
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It has been hypothesized that this may in part be caused by
automatic action tendencies to rewarding food cues that increase
the likelihood of consumption (Johnson, 2013; Rangel, 2013).
Pavlovian cues signaling the prospect of a (food) reward typically
induce feelings of desire (wanting) and active approach behavior
to obtain the reward. These hard-wired responses occur even
when this behavior may not be beneficial in the current situation,
i.e., they can corrupt goal-directed actions. Consequently, it may
be easier to learn and execute an active approach response in the
prospect of a reward, while the threat of punishment may foster
action inhibition (Guitart-Masip et al., 2011, 2012; Huys et al.,
2011; Cavanagh et al., 2013; Lindström et al., 2015). Evidence
suggests that this corruption of goal-directed behavior could
be amplified in some individuals. For instance, Garofalo and
di Pellegrino (2015) found that individuals with a strong focus
on reward-predicting cues show a stronger bias of instrumental
choice behavior by these stimuli. Similarly, individuals who rate
rewards as more valuable show a stronger distortion of goal-
directed behavior than individuals who rate them as less valuable
(Lehner et al., 2017b).

In obesity research, several theories argue that obesity is
characterized by an increased responsivity to rewarding food
cues (Berridge et al., 2010; Chen et al., 2018; Stice and Burger,
2018). In support of this, multiple studies have consistently
found increased neural activation to palatable food cues (Stice
et al., 2008; García-García et al., 2014; Feldstein Ewing et al.,
2017) as well as a potentially stronger reinforcing efficacy
(Saelens and Epstein, 1996). This increased responsiveness to
cues of reward may similarly affect the execution of goal-
directed behavior. Indeed, Horstmann et al. (2015b) reported
that food reward cues were able to trigger approach behavior
in individuals with obesity even after they had consumed the
food ad libitum and reported being less motivated to obtain
it. Together, these results suggest that individuals with obesity
may show a stronger corruption of goal-directed behavior by
“stimulus-driven” automatic action tendencies.

In dynamic environments not only the execution, but also
the learning of beneficial actions may be corrupted by the
presentation of salient Pavlovian cues. To date, most studies
in individuals with obesity have focused on tasks that require
an active choice of more advantageous (reward or punishment
avoidance predicting) choice options. They have consistently
found individuals with obesity to be impaired in this type of
reinforcement learning (Coppin et al., 2014; Kastner et al., 2017;
Mathar et al., 2017; Kube et al., 2018). However, by focusing
on active choice responses these tasks have largely ignored
the inherent coupling of reward—approach and punishment—
inhibition tendencies. Learning and integrating an inhibitory
response in the light of a prospective reward may be more
challenging to individuals with obesity, who show an increased
responsiveness to cues of reward (Berridge et al., 2010; Chen et al.,
2018; Stice and Burger, 2018).

Importantly, early research focused on the processing of
palatable food cues. However, the same mechanisms likely also
affect behavior outside of the food context. Ample evidence
suggests that food and non-food rewards are processed in largely
overlapping neural areas (Levy and Glimcher, 2012; Bartra et al.,

2013; Clithero and Rangel, 2013; Sescousse et al., 2013) and
individuals with obesity also show altered neural responses to
non-food reinforcers (Balodis et al., 2013; Opel et al., 2015).

Here, we investigate behavioral differences between normal-
weight and obese individuals in instrumental learning and
determine the influence of Pavlovian cues on learning
performance in individuals with obesity. A probabilistic
Pavlovian-instrumental learning paradigm adopted from
Guitart-Masip et al. (2012) was employed. Participants were
asked to learn correct approach (Go) or inhibitory (NoGo)
responses to cues that predicted reward or punishment.
Monetary reinforcement stimuli (gains and losses) were used
as they show obesity-related brain activity alterations that are
similar to those found for food-stimuli in other studies (e.g.,
Balodis et al., 2013; García-García et al., 2014; Opel et al., 2015),
and may be less prone to momentary evaluation fluctuations
than food cues (Field et al., 2016). In addition to the primary
task, two brief control experiments were carried out. These tasks
separately evaluated whether individuals with obesity have more
general alterations in basic Pavlovian- or instrumental learning
processes. Behavioral measurements were complemented by
computational modeling in order to differentiate Pavlovian and
instrumental influences on learning performance (Guitart-Masip
et al., 2012).

We hypothesized that individuals with obesity will show
a stronger influence of reward-predicting Pavlovian cues, on
the learning of goal-directed actions, than normal-weight
participants. Specifically, we expected enhanced learning
performance when learning an active approach response (reward
Go) and impaired performance when learning to withhold an
active response while anticipating a monetary gain (reward
NoGo). With the two additional monetary loss conditions
(punishment Go and punishment NoGo) we explored the impact
of punishment cues on instrumental learning.

MATERIALS AND METHODS

Participants
Sixty-three participants were recruited from the database of the
Max Planck Institute for Human Cognitive and Brain Sciences
in Leipzig, Germany. All participants underwent an initial
telephone screening to evaluate inclusion and exclusion criteria.
Inclusion criteria encompassed age between 18 and 35 years, as
well as BMI between 18.5 and 24.9 kg/m2 for normal-weight
participants and equal to or above 30.0 kg/m2 for individuals
with obesity. Participants were not selected to participate in the
study if they reported currently smoking, the use of psychoactive
medication or illegal drugs, excessive alcohol consumption, a
history of neuropsychiatric disease, diabetes, or thyroid disease.
Upon participation, we excluded two participants (one normal-
weight male, one obese female) who reported to be normal-
weight/obese at the time of recruitment, but fell outside of
our predefined BMI criteria at the time of measurement.
Further, two participants (one obese female, one normal-weight
female) were excluded due to lack of task compliance and
one participant (normal-weight male) was excluded because
of current depressive symptomatology. The final sample thus
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consisted of 29 normal-weight participants (14 female) and 29
participants with obesity (14 female).

Prior to the main experiment all participants completed a
digit span working memory task from the Wechsler Memory
Scale—Revised (WMS-R, Wechsler, 1987). This was done as
previous studies have suggested an influence of working memory
on reinforcement learning (Collins and Frank, 2012) and cue
conditioning (Coppin et al., 2014). Additionally, all participants
completed a battery of questionnaires to assess personality,
clinical characteristics as well as eating behavior, which may
contribute to differences in learning performance. Specifically,
this encompassed Beck’s Depression Inventory (BDI, Beck and
Steer, 1987), the Barrat Impulsiveness Scale—Short Form (BIS-
15, Spinella, 2007), the BIS/BAS Scales (Carver andWhite, 1994),
and the Three Factor Eating Questionnaire (TFEQ, Stunkard
and Messick, 1985). Weight, height, and waist-circumference
were obtained subsequent to the main experiments in accordance
with the measurement recommendations of the WHO Expert
Consultation (2008).

All participants gave written informed consent prior to their
participation and received a fixed reimbursement of 9e/h with
an average study duration of 2 h. Additionally, all participants
received a monetary bonus depending on their performance
in the Pavlovian-instrumental learning task (10% of their net
outcome; on average 2.28e). The study was carried out in
accordance with the Declaration of Helsinki and was approved
by the ethics committee of the University of Leipzig.

Learning Tasks
Three independent learning tasks were employed in the
current study. Initially, all participants performed a Pavlovian-
instrumental learning task. Subsequently, they completed two
additional control tasks in a pseudorandomized order to
separately evaluate basic group differences in instrumental and
Pavlovian learning. All tasks were presented using Presentation R©

software (Version 16.5, Neurobehavioral Systems, Inc., Berkeley,
CA, www.neurobs.com). Trial structure and timing of all tasks
are displayed in Figure 1.

Main Task: Pavlovian-Instrumental Learning (PIL)
To examine obesity-related alterations in Pavlovian influences
on instrumental learning, we used a task developed by Guitart-
Masip et al. (2012). In this task each trial is comprised of three
main events: the presentation of a cue, target detection, and the
presentation of a financial outcome. At the beginning of a trial
one of four fractal cues was presented. The cues were randomly
assigned to the four different trial types. They indicated whether
the participants were subsequently expected to respond to a target
stimulus (Go) or not (NoGo), and which financial outcome was
at stake in the current trial (reward or punishment). Following
the cue and a variable delay period, a target stimulus (black
square) appeared on the screen. The participants could then
either perform the target detection task (Go response) or wait
until the target stimulus disappeared (NoGo response). If they
decided to act, their task was to press a button to indicate where
the target was presented on the screen. They were instructed to

learn the correct response associated with each cue from the trial
outcomes, which were presented after a second delay period.

In sum, the task orthogonalizes the influences of action (Go,
NoGo responses) and outcome valence (reward, punishment) by
including four trial types: reward Go, reward NoGo, punishment
Go, and punishment NoGo. In Go-Trials participants learned
to respond to the target in order to achieve a beneficial trial
outcome, while in NoGo-Trials the correct response was to
refrain from a button press. This instrumental learning process
was manipulated by the addition of two potential outcome
valences. In reward trials, correct (Go or NoGo) responses were
rewarded by a monetary gain of 50 cents. In punishment trials,
correct (Go or NoGo) responses avoided a monetary loss of
50 cents.

The outcome-contingencies were probabilistic. Correct
responses in reward trials lead to a monetary gain in 80% of the
trials and a financially neutral feedback (±0 cents) in 20% of the
trials. Conversely, 80% of incorrect responses were followed by
neutral feedback, while 20% were followed by a monetary gain.
Similarly, in the punishment condition, correct responses were
associated with an 80% probability of avoiding a monetary loss
and only a 20% risk of losing 50 cents. Incorrect responses were
associated with the reversed contingencies. The participants were
informed about the probabilistic nature of the task.

The task included 240 trials (60 trials per trial type) and had
an average duration of ∼26min. Trial order was randomized
in blocks of 80 trials to ensure a roughly equal number of
trials per trial type at each stage of the experiment. Participants
performed a practice block consisting of 16 trials to familiarize
them with the trial structure, response mode, and probabilistic
outcome presentation. They were informed that at the end of
the experiment they would receive a monetary bonus depending
on their net outcome in the task, but did not know the exact
proportion of the net outcome they would gain.

Control Task 1: Instrumental Learning (INST)
In addition to the primary task, we developed a simple
instrumental learning task to evaluate basic group differences in
instrumental learning, without the influence of an anticipated
monetary gain or loss. Similar to the PIL, a fractal cue was
presented at the beginning of each trial, followed by a delay
period, and a subsequent target stimulus. Participants learned
to respond to the target by pressing a button (Go trials) or
withholding their response (NoGo trials). However, here the
outcome was not differentiated in terms of valence (reward vs. no
reward, punishment vs. avoidance of punishment). This was done
to minimize the motivating effect of monetary reinforcement
on the instrumental learning process. Instead, correct responses
were usually followed by written feedback on the screen saying
“correct,” while incorrect responses were usually followed by
feedback saying “incorrect.”

Similar to the other tasks, feedback was given probabilistically.
To increase task complexity, we employed two different
probability conditions: In high probability trials, 80% of
correct (Go, NoGo) responses were followed by “correct”
feedback, while 20% of the correct responses were followed
by false “incorrect” feedback. Consequently, 80% of incorrect
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FIGURE 1 | Trial structure and outcome contingencies of the experiments.

responses were followed by “incorrect feedback” and 20% of
incorrect responses were followed by false “correct” feedback.
In low probability trials only 60% of correct responses
were followed by “correct” feedback, while 40% of correct
responses were followed by false “incorrect” feedback and
vice versa.

The task thus included 4 trial types (Go high, Go low, NoGo
high, NoGo low), which were signaled by four different fractal
cues. Participants were again instructed to learn the correct
response associated with each cue using the feedback. They were
informed about the probabilistic nature of the task. Participants
performed 80 trials (20 trials per type) that were randomized in
blocks of 40 trials to ensure a roughly equal number of trials per
trial type at each stage of the experiment. The average duration
of the task was ∼9min. It was preceded by a practice block of
12 trials.

Control Task 2: Pavlovian Learning (PAVLO)
Additionally, we investigated basic group differences in
probabilistic stimulus-value learning between normal-weight
and obese participants. In this brief task, participants were again
presented with one of four different fractal cues at the beginning
of each trial. Following a variable delay, they were then asked
to predict which outcome would follow at the end of the trial
(options: −50 cents, ±0 cents, +50 cents). Subsequently, the
trial outcome was presented. It was stressed to the participants
that the trial outcome did not depend on their responses, but on
the cue presented at the beginning of the trial. Thus, participants
had to observe the cue-outcome contingencies over the course of
the task in order to make correct predictions.

Similar to PIL, the task included two outcome valences:
either a monetary reward of 50 cents, or a monetary loss
of 50 cents. Feedback was delivered probabilistically and two
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probability conditions were employed. In high probability trials
the fractal cue was followed by a reward (reward high) or
punishment (punishment high) in 80% of the trials and in
only 20% of the trials it was followed by financially neutral
feedback. In “low probability” trials these contingencies were
reversed, such that a reward (or punishment) was presented
in only 20% of the trials and feedback was neutral otherwise.
The task thus consisted of 4 trial types: reward high, reward
low, punishment high, punishment low with 20 trials per block.
The trials were randomized in blocks of 40 trials to ensure a
roughly equal number of trials per condition at each stage of the
experiment. The average task duration was ∼9min. Participants
again performed a practice block of 12 trials and were instructed
about the probabilistic nature of the task.

Statistical Analyses
The statistical analyses were carried out using IBM SPSS Statistics
24 (Armonk, NY, USA) with a level of significance at p < 0.05.

For the analyses of learning performance in the three tasks,
we applied a generalized estimating equations approach (GEE).
GEE is an extension of the generalized linear model that
accounts for the dependency of observations by specifying
a working correlation structure and is suitable for linear,
ordinal, and categorical outcome variables (Zeger and Liang,
1986). We computed GEE models for count data with a
Poisson distribution, log link function, and unstructured or
exchangeable working correlation matrix. For all analyses we first
set up a full factorial model employing all possible main and
interaction effects. Subsequently, we trimmed down the model
by progressively dropping model effects that did not yield a
significant influence on our outcome variable (Crawley, 2007). To
do that, we inspected the parameter estimates of each model and
removed the least significant terms, starting with non-significant
interaction terms. We then used the corrected quasi likelihood
under independence model criterion (QICC) to compare the
model fit of the current and the reduced model and only retained
the reduced model if it provided a better model fit. This was
repeated until a final model was found, which provided the best
model fit with the fewest number of predictors as determined
with QICC goodness of fit statistics. Bonferroni-corrected t-
tests were utilized as post-hoc tests where the GEE indicated a
significant main or interaction effect. Cohen’s d was calculated
as a measure of effect size for all pairwise comparisons.

Reinforcement Learning Model
Guitart-Masip et al. (2012, 2014) describe a set of reinforcement
learning models that, depending on the incorporated parameters,
model the putatively different instrumental and Pavlovian
influence on task performance. Through model comparison, the
authors identified the model that best fit their behavioral data of
healthy individuals. Given that our data was obtained from an
identical task, we applied the best fitting and most parsimonious
model identified by Guitart-Masip et al. (2014).

The model assigns to each action at on trial t a choice
probability p (at|st) based on action propensities Wt (at , st) with

stimulus st presented on that trial:

p (at|st) =

[

exp (Wt (at , st))
∑

a exp(Wt (a, st))

]

(1− ξ) +
ξ

2

The model includes an irreducible noise parameter ξ , which
implements a choice probability close to chance when
approaching 1. This represents a scenario where an individual’s
choice is largely independent of the presented stimulus and
hence highly inconsistent.

Action propensities were constructed as follows:

Wt (at , st) =

{

Qt (at , st) + b+ πVt (st) if at = go
Qt (at , st) else.

Here, Qt (at , st) implements the instrumental component
depending on action-stimulus pairs in the current trial (at , st)
and is updated by a Rescorla-Wagner-like update equation

Qt (at , st) = Qt−1 (at , st) + ε (ρrt − Qt−1 (at , st))

with learning rate ε, effectiveness parameter ρ, and
reinforcement r ∈ {1, 0,−1} for reward, neutral feedback,
and punishment, respectively. Parameter ρ is divided into ρR
and ρP for reward and punishment trials, respectively. Thus, the
model treats the effective size of reinforcement differentially for
the two outcome categories.

The parameter b implements a constant action bias,
accounting for individuals’ tendency to perform the target
detection task independent of the presented stimulus. Vt (st)
represents the state value of stimulus st and is updated in a
similar manner as the instrumental component. It is scaled by
the Pavlovian parameter π which determines the strength of
Pavlovian influences on the action propensity:

Vt (st) = Vt−1 (st) + ε (ρrt − Vt−1 (st)) .

Thus, in total the model comprises 6 free parameters to be
estimated for each subject.

Following Huys et al. (2011) and Guitart-Masip et al. (2012,
2014) model parameters were determined based on behavioral
data independently for each participant, by calculatingmaximum
posterior (MAP) estimates. The procedure uses maximum
likelihood estimation (MLE) on the population level for prior
distributions over unbounded model parameters. This means, we
used Gaussian priors for the action bias, Pavlovian parameter,
and the effectiveness parameters as well as Beta priors for learning
rate and the irreducible noise parameter, all with mean and
variance equal to the mean and variance obtained fromMLEs.

On each iteration the posterior distribution over the whole
sample for each parameter was used to specify the prior of the
individual parameters on the next iteration. Differences between
normal-weight individuals and individuals with obesity were
assessed after model fitting by two sample t-tests for the two sets
of MAPs.
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RESULTS

Participant Characteristics
Demographic and anthropometric characteristics, working
memory performance as well as personality measures are
presented in Table 1. Expectedly, individuals with obesity had
a significantly higher BMI [t(56) = 12.010, p < 0.001] and
waist-circumference [t(56) = 10.320, p < 0.001] than normal-
weight participants. The groups did not significantly differ in
age [t(56) = −0.272, p = 0.787], sex distribution (X2 = 0.000, p
= 1), school education levels (X2 = 0.000, p = 1), or working
memory scores [t(56) = −0.229, p = 0.820]. However, they
differed in higher education levels (X2 = 9.544, p= 0.049). More
obese participants were currently enrolled in a higher education
program, while more normal-weight participants had already
completed a Bachelor’s degree. Additionally, individuals with
obesity exhibited lower behavioral inhibition scores [BIS; t(56) =

TABLE 1 | Sample characteristics.

Participants with

obesity

n = 29

Participants

without

obesity

n = 29

Test statistic

Demographics

Female/male 14/15 14/15 X2 = 0.000, p = 1

Age 26.79 ± 3.70 27.03 ± 3.04 t(56) = −0.272, p = 0.787

A levels 28 28 X2 = 0.000, p = 1

Higher

education

5/10/5/2/7 2/3/5/8/11 X2 = 9.544, p = 0.049

Anthropometrics

BMI 36.98 ± 6.24 22.60 ± 1.60 t(56) = 12.010, p < 0.001

WC 103.07 ± 13.71 74.69 ± 5.61 t(56) = 10.320, p < 0.001

Tests and questionnaires

DS Forward 10.34 ± 2.06 10.52 ± 1.86 t(56) = −0.334, p = 0.739

DS Backward 8.28 ± 1.65 8.31 ± 2.16 t(56) = −0.068, p = 0.946

DS Total 18.62 ± 3.26 18.83 ± 3.62 t(56) = −0.229, p = 0.820

BDI 5.14 ± 4.24 4.00 ± 3.58 t(56) = 1.138, p = 0.260

BIS/BAS-BIS 2.75 ± 0.58 3.04 ± 0.41 t(56) = −2.177, p = 0.034

BIS/BAS-BAS 3.11 ± 0.38 3.18 ± 0.30 t(56) = −0.742, p = 0.461

BIS-15 32.34 ± 6.32 30.21 ± 6.50 t(56) = 1.269, p = 0.210

TFEQ Dis 8.17 ± 3.56 5.14 ± 2.52 t(56) = 3.750, p < 0.001

TFEQ

Restraint

6.76 ± 5.02 5.38 ± 4.10 t(56) = 1.146, p = 0.257

TFEQ Hunger 5.66 ± 4.06 5.14 ± 3.30 t(56) = 0.533, p = 0.596

A levels, number of participants with A levels education; Higher education, number

of participants with no higher education/ongoing higher education/vocational

training/Bachelor’s degree/Master’s degree; BMI, Body Mass Index in kg/m2; WC,

Waist-circumference in cm; DS Forward, Wechsler Memory Scale–Revised, Subtest

Digit Span Forward; DS Backward, Wechsler Memory Scale—Revised, Subtest

Digit Span Backward; DS Total, Wechsler Memory Scale—Revised, Digit Span

Forward + Digit Span Backward; BDI, Beck‘s Depression Inventory; BIS/BAS-BIS,

Behavioral Inhibition/Behavioral Activation Scale—Subscale Behavioral Inhibition;

BIS/BAS-BAS, Behavioral Inhibition/Behavioral Activation Scale—Subscale Behavioral

Activation; BIS-15, Barrat Impulsiveness Scale—Short Form; TFEQ Dis, Three Factor

Eating Questionnaire—Subscale Disinhibition; TFEQ Restraint, Three Factor Eating

Questionnaire—Subscale Cognitive Restraint; TFEQ Hunger, Three Factor Eating

Questionnaire—Subscale Hunger. Values represent mean ± SD. Independent samples

t-tests are reported for continuous variables, while X2 is reported for comparisons of

categorical data. Results significant at p < 0.05 (two-tailed) are printed in bold letters.

−2.177, p = 0.034] and higher disinhibited eating [TFEQ-Dis;
t(56) = 3.750, p < 0.001] than normal-weight participants.

PIL
To investigate the influence of anticipated reward and
punishment on instrumental learning performance we analyzed
the number of correct responses in each learning condition in
the PIL task. We set up a GEE model including all main and
interaction effects (full model with QICC = 999.026) involving
the predictors valence (reward, punishment), action (Go, NoGo),
group (normal-weight, obese), and sex (male, female) and
subsequently reduced the model (see section Materials and
Methods for a more detailed description). The final reduced
model (QICC = 980.465) included significant main effects of
action [Wald X2 = 20.780, p< 0.001], valence (Wald X2 = 7.545,
p = 0.006) as well as a significant action by valence interaction
(Wald X2 = 25.759, p < 0.001). In line with previous studies,
we found a significantly higher learning performance during
reward Go trials than punishment Go trials (p= 0.001, d = 0.47)
and a better performance for punishment NoGo than reward
NoGo learning trials (p < 0.001, d = 0.64). Further, learning
to approach a reward in reward Go trials was associated with
a significantly higher learning performance than learning to
withhold a response in reward NoGo trials (p < 0.001, d = 0.72).
There was, however, no evidence for a modulation of this effect
by group (3-way interaction of Group × Valence × Action:
Wald X2 = 0.206, p = 0.650), suggesting similar influences
of Pavlovian cues on instrumental learning performance in
normal-weight and obese participants. Rather, we found a
significant main effect of group (Wald X2 = 3.924, p = 0.048, d
= 0.50, Figure 2). Surprisingly this suggests a higher learning
performance in individuals with obesity than normal-weight
participants across conditions. Learning performance was not

FIGURE 2 | Behavioral results of the Pavlovian-instrumental learning task. The

mean percentage of correct responses across Reward Go, Reward NoGo,

Punish Go, and Punish NoGo trials shows that individuals with obesity

achieved a higher learning performance across conditions than normal-weight

participants (main effect of group) *p < 0.05.
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significantly modulated by sex (Wald X2 = 0.000, p= 0.987) nor
a combined influence of sex and obesity weight status (2-way
interaction of Sex× Group: Wald X2 = 0.007, p= 0.935).

Next, we set up additional models to test whether
differences in learning performance were affected by personality
characteristics and alterations in working memory. We found
no evidence for a significant mediation, suggesting that obesity-
related alterations in learning performance were not related to
differences in personality or working memory capacity. For a
more detailed description see the Supplementary Material.

INST
In the next step, we analyzed the number of correct responses
in the instrumental learning paradigm utilizing a GEE model
with all main and interaction effects (full model with QICC =

424.420) involving the predictors action (Go, NoGo), probability
(high, low), group (normal-weight, obese), and sex (male,
female). After model reduction, the final model (QICC =

416.422) included significant main effects of probability (Wald
X2 = 36.616, p < 0.001) and group (Wald X2 = 4.492, p =

0.034, Figure 3A). Learning performance was significantly better
for trials that had a high compared to a low probability of
providing correct feedback (d = 0.92). Interestingly, individuals
with obesity again showed a significantly higher learning
performance than normal-weight participants across conditions
(d = 0.47).

PAVLO
For the analysis of stimulus-outcome learning we examined the
number of correct predictions, i.e., the number of trials in which
a participant predicted the most frequently presented outcome
for a respective stimulus. This information was subjected to
a GEE model (full model with QICC = 217.216) with the

predictors valence (reward, punishment), probability (high, low),
group (normal-weight, obese), and sex (male, female). The
final reduced model (QICC = 205.293) showed significant
main effects of valence (Wald X2 = 23.399, p < 0.001) and
probability (Wald X2 = 36.497, p < 0.001) as well as significant
interactions of sex and valence (Wald X2 = 7.127, p = 0.008)
and sex and probability (Wald X2 = 4.284, p = 0.038).
Bonferroni-corrected post-hoc tests did not yield any significant
differences. At an uncorrected level, male participants were
better than female participants in the punishment condition
(puncorr = 0.021, pcorr = 0.168, d = 0.62) and in the
low reinforcement probability trials (puncorr = 0.041, pcorr =

0.331, d = 0.55). As opposed to the other tasks, there was
no significant difference between normal-weight and obese
participants (main effect of Group: Wald X2 = 1.572, p = 0.210,
Figure 3B).

Reinforcement Learning Models
From the computational model adopted from Guitart-Masip
et al. (2014), MAP estimates for the 6 parameters of interest were
obtained for each participant (Table 2). Bonferroni-corrected
two-sample t-tests yielded no significant group differences in
the model parameters. At an uncorrected level, there was
evidence for a higher learning rate ε for participants with
obesity (puncorr = 0.036). Consistent with the analysis of learning
performance, the Pavlovian parameter π did not significantly
differ between groups.

Supplementary Figure 1 shows a visualization of the
individual parameter estimates. Additionally, the observed
and simulated learning time courses are depicted in
Supplementary Figure 2.

FIGURE 3 | Behavioral results of the instrumental and Pavlovian control tasks. (A) The mean percentage of correct responses in the instrumental learning task shows

that individuals with obesity achieved a higher learning performance across conditions than normal-weight participants (main effect of group). (B) In the Pavlovian

learning task, there was no evidence for a differential learning performance in normal-weight and obese individuals. Error bars represent standard errors of the mean

taking into account the within-subject design (Cousineau, 2005; Morey, 2008). *p < 0.05 (two-tailed).
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TABLE 2 | Parameter estimates from the computational reinforcement learning

model.

Parameter Mean MAP

normal-weight

Mean MAP

obese

p-value (uncorrected/

Bonferroni corrected)

Effect

size d

Learning rate ε 0.235 0.292 0.036/0.217 0.564

Irreducible noise ξ 0.063 0.062 0.680/1 0.109

Pavlovian

parameter π

0.280 0.225 0.475/1 0.189

Bias b 0.545 0.442 0.597/1 0.140

Effectiveness of

reward ρR

7.143 7.193 0.875/1 0.042

Effectiveness of

punishment ρP

6.196 6.316 0.805/1 0.065

Mean MAP estimates for parameters from the reinforcement learning model, p-values and

effect sizes for the statistical comparison between participants with and without obesity.

Results significant at p < 0.05 (two-tailed) are printed in bold letters.

DISCUSSION

In the current study, we investigated the influence of reward
and punishment predicting cues on instrumental approach and
avoidance learning in individuals with obesity. We employed
a paradigm in which participants learned to actively respond
to a target stimulus or withhold an action, in order to gain
an anticipated monetary reward or avoid monetary losses. We
hypothesized that individuals with obesity would show a stronger
corruption of instrumental learning by Pavlovian cues.

Expectedly, our results indicate that participants were
generally better at learning to approach a reward or to
withhold an active response when confronted with imminent
punishment. However, comparing performance of participants
with obesity and normal-weight participants contradicted our
initial hypothesis. We found no conclusive evidence for a
stronger bias on instrumental learning by cues of monetary gains
or losses in individuals with obesity. Instead, obese participants
showed better learning performance as indexed by higher
learning rates and a higher number of correct actions. This was
present for both approach and avoidance learning in the main
task and also in an additional instrumental learning task, where
Pavlovian influences were minimized.

To our knowledge, this study is the first to assess
the corruption of instrumental learning by Pavlovian cues
in individuals with obesity. However, some previous work
examined influences on the execution of goal-directed behavior.
Two studies found that individuals with obesity may be less
sensitive to changes in reward value and thereby show stronger
habitual than goal-directed responding (Horstmann et al., 2015b;
Janssen et al., 2017). This must be contrasted with classical
Pavlovian-instrumental-transfer tasks, which directly assess how
cues associated with a reward alter existing instrumental
behavior. In two studies employing these tasks, obese and
normal-weight individuals exhibited similar response biases,
while goal-directed behavior seemed to be more strongly affected
by rewarding food cues in overweight participants (Lehner
et al., 2017a; Meemken and Horstmann, 2019). Together, these

results suggest that the presence of reward or punishment
predicting cues per se does not bias the execution or learning
of goal-directed responses more strongly in obese than normal-
weight individuals.

Individuals with obesity showed enhanced instrumental
learning with a slightly, but significantly higher number of
correct responses (on average 3.3 more correct responses in 60
trials per condition). This was present across action and valence
conditions and accompanied by an increased model-derived
learning rate in individuals with obesity. We previously also
found evidence for an increased reversal learning performance in
obese individuals under specific task-conditions (Meemken et al.,
2018). However, our current results stand in contrast with several
other previous studies, which found an impaired performance
when learning to predict food (Zhang et al., 2014) and non-food
reinforcement (Coppin et al., 2014; Kastner et al., 2017; Mathar
et al., 2017; Kube et al., 2018). Interestingly, in these studies obese
individuals were not primarily impaired in learning the meaning
of reward predicting cues. Rather, alterations were primarily
found for the stimuli less or non-predictive of positive outcomes.
For instance, Zhang et al. (2014) reported reduced differential
conditioning when learning to predict food vs. no reward. The
reduction was driven by increased reward expectancies toward
cues that were in fact never paired with a reward. Outside of
the food context, we (Mathar et al., 2017; Kube et al., 2018) and
others (Coppin et al., 2014) have found that individuals with
obesity may be slower or less successful in learning the meaning
of unfavorable choice options and consequently learning to avoid
them. This may be linked to impaired learning for outcomes
that were worse than expected (negative prediction errors)
and a reduced utilization of neural prediction error signals in
individuals with obesity (Mathar et al., 2017). Obesity-related
alterations in striatal dopamine D2 receptor signaling (Wang
et al., 2001; Klein et al., 2007; Sevgi et al., 2015) or dopaminergic
tone (Horstmann et al., 2015a) have been suggested to contribute
to this.

As mentioned above, our observation of a better instrumental
learning performance in obese individuals stands in contrast with
the majority of previous studies (Coppin et al., 2014; Kastner
et al., 2017; Mathar et al., 2017; Kube et al., 2018). Participant-
specific characteristics that could explain these differential results
(e.g., age, education, BMI), seem to be relatively consistent across
studies and thus are not likely to have driven these differences.
However, previous obesity studies have mainly used paradigms
in which instrumental learning was defined as learning to
choose stimuli based on their associations with a reward or
punishment avoidance (e.g., Coppin et al., 2014; Kastner et al.,
2017; Kube et al., 2018).While these tasks heavily rely on learning
the value of the stimuli (termed stimulus-value learning), our
task focused on the learning of action values (termed action-
value learning). More specifically, our participants learned to
choose between two actions to obtain a beneficial outcome.
Both processes involve instrumental actions that subserve the
maximization of rewards, but they are in fact distinct forms of
learning with markedly different neural substrates. For instance,
learning to choose between two stimuli has been shown to
depend on the ventral striatum and orbitofrontal cortex, while

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 15

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Kube et al. Go/NoGo Learning in Obesity

choosing between different actions recruits the dorsal anterior
cingulate cortex (Wunderlich et al., 2010; Camille et al., 2011;
Rothenhoefer et al., 2017). Previous studies and our paradigm
therefore likely addressed different aspects of instrumental
learning. Individuals with obesity may be impaired in stimulus-
value-based learning scenarios but show intact learning in action-
based learning scenarios. Future studies should therefore include
both types of instrumental learning paradigms. This way, one
could directly test whether learning differences between normal-
weight and obese individuals are indeed task-specific.

In addition to instrumental learning tasks, classical
conditioning has received considerable attention in obesity
research, as repeated overeating is thought to result in increased
food cue responsiveness through conditioning processes
(Berridge et al., 2010; Stice and Burger, 2018). Further, it has
been suggested that individuals with obesity show a faster
acquisition of appetitive responses toward food reward cues, i.e.,
they need fewer couplings of a cue and a reward to establish a
conditioned response toward the predictive cue (van den Akker
et al., 2017). Evidence on alterations in such Pavlovian learning
processes is, however, mixed. Results range from intact (Meyer
et al., 2015) to impaired conditioning (van den Akker et al., 2017)
to a generalization of reward expectations to non-rewarded
cues (Zhang et al., 2014) and learned preferences for cues not
predictive of food reward (Coppin et al., 2014). Here, we tried to
obtain a related measure for Pavlovian learning from monetary
reward stimuli, but found no significant group differences
between normal-weight and obese participants. The task was,
however, comparatively brief and easy and may not have been
sensitive enough to detect small group differences in Pavlovian
learning performance.

A number of aspects should be considered in future studies.
The model we used here has previously been shown to best fit
participants’ behavior in this task (Guitart-Masip et al., 2014).
Thus, we adopt it in its current form to maintain comparability
across studies. However, it primarily captures the impact of
reward (monetary gain) and punishment (monetary losses)
on behavioral adaptation, but disregards reward omission and
punishment avoidance as alternative forms of feedback. Further,
other applications of this paradigm have recently shown that the
addition of an instrumental learning bias may further improve
model fit (Swart et al., 2017). While the current Pavlovian bias
is conceptualized as a response bias, the addition of a learning
bias may e.g., capture a tendency to believe that a reward
was more likely caused by action than inaction. Lastly, some
previous studies found that overweight and moderately obese
may be more distinct from normal-weight individuals in reward
sensitivity than those with severe obesity (Davis et al., 2004;
Dietrich et al., 2014). Relatedly, an inverted u-shaped relation
between BMI and learning-related dopamine transmission has
been suggested (Horstmann et al., 2015b). Future studies should
therefore consider participants across the whole BMI range
(including overweight).

The current study expands on the hypothesis that obesity
is characterized by enhanced automatic action tendencies that

can override goal-directed behavior in the light of anticipated
rewards or punishments. In sum, we found no conclusive
evidence for a stronger bias in individuals with obesity. Instead,
contrary to previous studies, individuals with obesity showed a
better instrumental learning performance. We therefore argue
that individuals with obesity are not impaired in reinforcement
learning per se. Instead, specific task characteristics may
account for the differential results: Individuals with obesity
may be impaired in tasks incorporating stimulus-value learning,
but perform better in action-value learning scenarios. How
this difference affects effective behavioral change and could
potentially be used for behavioral interventions still has to
be determined.
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