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Pyriproxyfen is one of the most used larvicides and insecticides; it acts as an analog of
juvenile insect hormone (a growth regulator). It is highly toxic during all stages of mosquito
development, suppresses metamorphosis, and interferes in insect reproduction and
proliferation. Pyriproxyfen and its main metabolite have been shown to affect brain
development in rodents. This compound is employed mainly to eliminate outbreaks of
the genus Aedes, even in potable water. Despite the increasing number of toxicological
studies about larvicides and insecticides—with an indication of continuous use—there
have been few studies about the effects of pyriproxyfen in non-target species such
as fish. This study evaluated the effects of pyriproxyfen on behavioral, cognitive, and
endocrine parameters in zebrafish. We exposed adult zebrafish to different pyriproxyfen
(Pestanalr) concentrations (0.125, 0.675, and 1.75 mg/l) for 96 h. We analyzed
behavioral parameters, memory, cortisol levels, and gene expression of glucocorticoid
receptor (gr) and corticotrophin-releasing factor (crf ) after pyriproxyfen exposure. This
exposure did not alter locomotion (distance or mean speed), anxiety-like behavior
(latency to enter to the top zone of the tank or time in the top zone of the tank), and
social or aggressive behavior. However, there was impaired inhibitory avoidance memory
at all tested pyriproxyfen concentrations. Cortisol levels were reduced in exposed
groups when compared to control or vehicle. However, gr and crf gene expression
in pyriproxyfen-treated animals were unaltered when compared to control or vehicle
groups. Taken together, these findings indicate that pyriproxyfen may induce cognitive
impairment and altered cortisol levels in zebrafish, a non-target species.

Keywords: locomotion, memory, cortisol, pyriproxyfen, zebrafish

INTRODUCTION

Pyriproxyfen is a larvicide used mainly for the control of mosquitoes of the genus Aedes. Despite
its broad use, pyriproxyfen has been shown to affect the central nervous system. The main
pyriproxyfen metabolite, 4’OH-pyriproxyfen, alters gene expression in mouse neurospheres
cultures, indicating possible consequences on neurogenesis and brain morphology (Spirhanzlova
et al., 2018). Moreover, rat pups chronically exposed to pyriproxyfen showed arhinencephaly
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and reduced brain weight (Evans et al., 2016). Pyriproxyfen
has been approved by the World Health Organization as safe
for use even in potable water [World Health Organization
(WHO), 2006]. It is highly toxic during all stages of mosquito
development, suppresses metamorphosis (Chłopecka et al.,
2018), and interferes in insect reproduction and proliferation. It
acts as an analog of juvenile insect hormone, a growth regulator
[Ishaaya and Horowitz, 1992; World Health Organization
(WHO), 2006; Chłopecka et al., 2018]. Pyriproxyfen may also act
as an acetylcholinesterase inhibitor in fish (Araújo et al., 2018;
Maharajan et al., 2018).

The use of larvicides and insecticides in freshwater can
affect non-target species (Ghelichpour et al., 2018), such as
fish, and trigger an imbalance in the endocrine system and,
consequently, alter the release of cortisol (Koakoski et al., 2014).
Cortisol is a stress biomarker and is a primary product of
the hypothalamic-pituitary–interrenal (HPI) axis in fish and
of hypothalamic–pituitary-adrenal (HPA) axis in mammals
(Pijanowski et al., 2015; Adam et al., 2017). A stressful signal
induces the release of corticotrophin-releasing factor (CRF)
in the neurosecretory preoptic area (NPO) in fish, which is
homologous to the paraventricular nucleus of the hypothalamus
(PVH) in mammals (Herget et al., 2014). In response to CRF,
the pituitary releases adrenocorticotropic hormone (ACTH)
into the bloodstream; this hormone, in turn, stimulates the
release of cortisol from interrenal cells located within the
kidney head of fish. Cortisol is secreted and binds to the
glucocorticoid receptor (GR; Bury and Sturm, 2007; Baker et al.,
2015). The stress response between humans and zebrafish has
a high level of similarity because both produce cortisol as a
hormone in response to stress (Barcellos et al., 2007; Alsop
and Vijayan, 2008; Katsu et al., 2018). Insecticides can cause
changes that modify the endocrine response of fish (Zhang
et al., 2015). These modifications may cause deregulation on
the HPI axis and promote important behavioral alterations
for fish (Boscolo et al., 2018), such as changes in memory
consolidation (Manuel et al., 2014; Bennion et al., 2015).
Memory consolidation prepares animals to defend themselves
from dangerous situations, such as predation risk (Oliveira et al.,
2017), via an aversive memory (Gerlai, 2016). In the memory
process, several distinct mechanisms can be affected by different
chemical compounds (Altenhofen et al., 2017a; Woodcock et al.,
2018) and traumatic effects (Manuel et al., 2014). Studies in
mammals (rats and humans) have demonstrated that negative
emotions are regulated by the hippocampus (Goosens, 2012).
Fish have a high capacity to retain aversive and spatial memory
similar to the functions of the hippocampus in mammals
(Gerlai, 2016). Indeed, fish can preserve important emotional
information that leads them to avoid predation, objects, places,
and disputes (Oliveira et al., 2013; Gaspary et al., 2018).

The zebrafish (Danio rerio) is a highly reliable model. It
usually takes zebrafish less than 2 h to learn a task (Aoki et al.,
2015), and the retention time can exceed 24 h (Altenhofen et al.,
2017b; Bridi et al., 2017). Despite the increasing number of
toxicological studies about larvicides and insecticides with an
indication for continuous use, there are few studies about the
effects of pyriproxyfen in fish, which is an important model

for pollution studies (Charreton et al., 2015; Kais et al., 2015).
Thus, we performed experiments with zebrafish, a teleost that
shares a high degree of gene sequence and functional homology
with mammals (around 70%), including humans. This fish
has a complex behavioral repertoire and many zootechnical
advantages, such as easy maintenance and high fertility (Howe
et al., 2013; Orger and de Polavieja, 2017). Further, it is a
well-established model for studying behavior (Egan et al., 2009;
Zhang et al., 2015; Gerlai, 2017), memory (Al-Imari and Gerlai,
2008; Grossman et al., 2011; Gerlai, 2016; Bridi et al., 2017;
Gaspary et al., 2018), developmental biology (Nery et al., 2014),
cognition (Grossman et al., 2011; Zimmermann et al., 2015),
endocrinology (Abreu et al., 2015; Idalencio et al., 2015), and
toxicology (Altenhofen et al., 2017a). Given that little is known
about the action of pyriproxyfen on non-target organisms, its
evaluation in these animals becomes essential to understand this
insecticide’s mechanism(s) of action. Therefore, this study aimed
to evaluate the effects of pyriproxyfen on behavioral, cognitive,
and endocrine parameters in adult zebrafish.

MATERIALS AND METHODS

Animals and Housing
We used 461 animals from our breeding colony in equal
proportions (male/female) of adult (6–7 months) wild-type
zebrafish. Fish were kept in automated recirculating systems
(Zebtec, Tecniplast, Italy), which contain reverse osmosis filtered
water, at the recommended temperature (28◦C ± 2◦C), pH
(7.0–7.5), conductivity (300–700 µS), hardness (80–300 mg/l),
ammonia, nitrite, nitrate, and chloride levels for the species
(Westerfield, 2000, 2007). We maintained animals on a
light/dark cycle of 14/10 h and fed them with commercial
flakes (TetraMin Tropical Flake Fishr) three times a day.
Fourteen days post-fertilization, we supplemented the diet
with brine shrimp (Westerfield, 2000). All protocols were
approved by the Institutional Animal Care Committee from
Pontificia Universidade Catolica do Rio Grande do Sul (CEUA-
PUCRS, protocol number 7546/2016). We registered this study
in the Sistema Nacional de Gestão do Patrimonio Genetico
e Conhecimento Tradicional Associado—SISGEN (Protocol
No. A3B073D).

Pyriproxyfen Exposure
For all experiments, we exposed animals to one of the
following conditions: water (control group, n = 94), 0.5%
dimethyl sulfoxide (DMSO, n = 95; CAS number 67-68-
5, purity > 99%; vehicle; (Hallare et al., 2006; Nery et al.,
2014), or 0.125 (n = 94), 0.675 (n = 90), or 1.75 mg/l
(n = 88) pyriproxyfen (PESTANALr, CAS number 95737-
68-1 purity 99.3%; Sigma–Aldrich, St. Louis, MO, USA).
Pyriproxyfen has low water solubility, and the concentration
of 0.5% DMSO was chosen as a diluent according to previous
studies (Padilla et al., 2012; Truong et al., 2016). The exposure
time for all groups was 96 h. We chose these pyriproxyfen
concentrations based on recommended use concentrations from
the World Health Organization and Brazilian Ministry of Health
(recommended concentration for drinking water: 0.01 mg/l;
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World Health Organization (WHO), 2006; Brasil, Ministério da
Saúde, 2014) and previous studies in zebrafish (0.16, 0.33 and
1.66 mg/l; Maharajan et al., 2018). Immediately after exposure,
we subjected all groups to behavioral tests and collected tissues
for molecular analysis. We used each animal for just one
experiment. We obtained the water used for the experiments
from enriched reverse osmosis, as indicated for zebrafish
(Westerfield, 2007). After each test session, we completely
changed the water. During the exposure period, there were no
differences in the survival of the exposed groups.

Liquid Chromatography Coupled to
Tandem Mass Spectrometry (LC-MS/MS)
for Pyriproxyfen Analysis
To evaluate the effective pyriproxyfen concentration in the
exposure water at the end of treatment, immediately after the
end of the exposure period, we collected a water sample from
each aquarium and placed it in a 2 ml polypropylene tube.
We froze samples and stored them at −80◦C. For analytic
quantification, we thawed samples at room temperature and
vortexed them for 30 s. We transferred a 1.0 ml aliquot of
each sample to 1.5 ml centrifuge tubes and added 0.1 ml of
methanol to dissolve any insoluble pyriproxyfen particles and aid
precipitation of the suspended materials. After further agitation,
we centrifuged the tubes at 14,000 rpm at 4◦C for 20 min,
transferred the supernatant to 2 ml glass vials, and analyzed
them with LC-MS/MS.

The LC-MS/MS system comprised an Aquity I-Class UPLC
(Waters Corp.) coupled to a Xevo TQ-S micro MS/MS (Waters
Corp.). We performed the separation in the reverse phase with
a C18 Zorbax Bonus-RP Rapid Resolution chromatographic
column (2.1 × 50 mm, 1.8 µm; Agilent Technology), preceded
by a guard column of the same material. The mobile phase
consisted of (A) 0.1% formic acid and (B) 0.1% formic acid in
acetonitrile, 0.4 ml/min flow at 50◦C. The gradient consisted of
15% B up to 1.2 min, increasing to 85% at 3.1 min, and remaining
at that rate for 1 min. Then, we resumed the initial proportion
and performed stabilization for 1 min. We next injected samples
(5 µl) into the system with the use of an autosampler.

We performed MS in positive mode with an electrospray
source operated at 550◦C desolvation temperature, 1,500 V
capillary, 50 V cone, and 20 V collision energy. We adjusted
the spectrometer to monitor the m/z 322–185 and m/z
322–96 transitions, the first quantization transition, and the last
qualification transition in multiple reaction monitoring (MRM)
mode. The retention time of the pyriproxyfen was 3 min; we
quantified its concentration using the regression equation of
the built-in calibration curve with a broad concentration range.
The employed curve model was quadratic, with a coefficient of
determination (R2) greater than 0.99. We adapted the analysis
from a previous work (Liu et al., 2019).

Novel Tank Test
We placed animals individually in experimental tanks (30 cm
long × 15 cm high × 10 cm wide) with water and recorded
them for 6 min. After 60 s of habituation, we analyzed the
locomotion and exploratory patterns of the fish using EthoVision

XTr tracking software (version 11.5, Noldus, Wageningen, The
Netherlands) at a rate of 30 positions per second (Altenhofen
et al., 2017b). We evaluated the following behavioral parameters:
distance (m), mean speed (m/s), time spent in the upper zone
(bottom vs. upper levels; s), crossings, and latency to the upper
zone (s). We considered the time spent in the upper zone and
latency to reach the upper zone as indicators of anxiety-like
behavior (Levin et al., 2007).

Aggressive Behavior
We explored aggressive behavior following the method described
by Gerlai et al. (2000) and adapted by Bridi et al. (2017).
The experimental tank dimensions were: 30 cm long × 15 cm
high × 10 cm wide. We placed a mirror (45 cm × 38 cm) at
the side of the tank at an angle of 22.5◦ to the tank’s back wall,
so that the left vertical edge of the mirror touched the side of
the tank and the right edge was farther away. Thus, when the
experimental fish swam to the left side of the tank, their mirror
image appeared nearest to it. We added an individual zebrafish
to the tank and allowed it to acclimate for 60 s; we subsequently
recorded aggressive behaviors conducted toward its mirrored
image for 5 min. We evaluated behavior using EthoVision XT
software. Within the software, virtual vertical lines divided the
tank into three equal sections and allowed us to measure the
time spent in each section. Both entry and time spent in the
left-most segment indicated a preference for proximity to the
‘‘opponent,’’ whereas entry and time spent to the rightmost
segments implied avoidance.

Social Interaction
We analyzed social interaction using a previously described
protocol (Gerlai et al., 2000; Gerlai, 2003; Meshalkina et al., 2018).
The apparatus comprised three aquaria of the same size (30 cm
long × 15 cm high × 10 cm wide) lined up continuously by
their 10 cm wall. Hence, there was a ‘‘central aquarium,’’ in
which one animal was placed; the ‘‘stimulus aquarium,’’ in which
15 fish were placed as a stimulus; and the ‘‘empty aquarium,’’
which only contained water during the test. The relative position
to the center aquarium (i.e., left or right side) in which the
stimulus aquarium and the empty aquarium were positioned
was counterbalanced. Individual fish were placed in the central
aquarium for a total of 6 min. During the first 60 s, we placed
an opaque division between the central aquarium and the other
aquariums. We did not analyze the habituation period. After
this period, we removed the divisions and started the test. We
recorded behavior for 5 min and evaluated it using EthoVision
XTr tracking software. The software virtually divided the central
aquarium into two equal parts. We used the time spent in the area
closest to the stimulus aquarium as a measurement of stimulus
preference, while we considered time spent in the area closest to
the empty aquarium as a measurement of stimulus avoidance.

Aversive Memory
We evaluated inhibitory avoidance using a glass tank (18 cm
long × 9 cm wide × 7 cm high) with two equal-size
compartments, designated hereon as dark and white and divided
by a sliding guillotine-type partition (9 cm × 7 cm; Blank et al.,
2009; Altenhofen et al., 2017b; Bridi et al., 2017). We defined
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compartments with opaque plastic self-adhesive films in black or
white colors that externally covering the walls, the floor, and the
corresponding sides of the partition. Two electrodes extending
up the wall and placed on each far side of the opposing walls of
the dark compartment were attached to an 8 V stimulator that
administered a final 3 ± 0.2 V AC shock (intensity measured
between electrodes and the center of the dark compartment)
when manually activated. Zebrafish were trained and tested
individually in the inhibitory avoidance apparatus. We gently
placed animals on the white side of the task tank while the
partition between compartments was closed. After 1 min of
habituation with the new environment, we raised the partition
to allow fish to cross to the dark side of the tank through a
1 cm high opening.

For the training session, when animals entered the dark
side with their entire body, we closed the sliding partition and
administered a pulsed electric shock for 5 s. We then removed
fish from the apparatus and placed them in a temporary housing
tank. Animals were tested 24 h after training. The test session
repeated the training protocol, except that we did not apply
the shock, and immediately after animals crossed to the dark
compartment, we removed them from the apparatus. During
testing, the maximum time animals could spend in the white
compartment was 180 s (ceiling time). If that happened, we
gently removed animals and recorded their result as 180 s.
The latency to completely enter the dark compartment was
measured in both sessions. Test latencies were used as an index
of memory retention.

Whole-Body Cortisol Determination
Immediately after treatment, we euthanized animals by
hypothermic shock, weighed each fish, and macerated it.
Zebrafish trunks were minced and placed into a test tube with
2 ml phosphate-buffered saline (PBS), pH 7.4. We transferred
the content to another test tube and added ethyl ether. The
tube was vortexed, frozen in liquid nitrogen and the unfrozen
portion (ethyl ether containing cortisol) was decanted. The
ethyl ether was transferred to a new tube and completely
evaporated, yielding a lipid extract containing cortisol. We
measured whole-body cortisol in duplicate samples of extracted
tissue and determined the concentration by enzyme-linked
immunosorbent assay kit (ELISA; EIAgen CORTISOL test, Bio
Chem Immuno Systems) from tissue extracts resuspended in
PBS (Sink et al., 2007; Idalencio et al., 2015; Oliveira et al., 2017).

RNA Isolation and Real-Time Quantitative
Polymerase Chain Reaction (RT-qPCR)
We euthanized zebrafish by hypothermal shock; we removed
brains and evaluated glucocorticoid receptor (gr) and
corticotropin-releasing factor (crf ) gene expression using
RT-qPCR. Total RNA was isolated from zebrafish brain
with TRIzolr Reagent (Life Technologies) following the
manufacturer’s instructions. RNA integrity was assessed by
visual inspection on a standard 1% agarose gel. After treatment
with deoxyribonuclease I (Sigma-Aldrich) to eliminate genomic
DNA contamination (following the manufacturer’s instructions),
we measured RNA purity (260 nm/280 nm absorbance ratio

∼2.0) and concentration with a Nanodropr. We synthesized
complementary DNA (cDNA) using the ImProm-IITM Reverse
Transcription System (Promega) from 1 µg of total RNA,
following the manufacturer’s instructions. We performed
RT-qPCR using SYBRr green I (Invitrogen) on a 7500
Real-time PCR System (Applied Biosystems). The PCR cycling
conditions were: an initial polymerase activation step for 5 min
at 95◦C, followed by 40 cycles of 15 s at 95◦C for denaturation,
35 s at 60◦C for annealing, and 15 s at 72◦C for elongation. At
the end of the cycling protocol, a melting-curve analysis was
included, and fluorescence was measured from 60 to 99◦C to
confirm the specificity of primers and the absence of primer-
dimers. In all cases, there was a single peak. All real-time assays
were carried out in quadruplicate and, in all cases, a reverse
transcriptase negative control was included to replace templates
for DNAse/RNAse-free distilled water in each PCR. actb1, ef1α,
and rpl13α served as reference genes for normalization. The
primer sequences are: crf forward 5′-CAA TTA CGC ACA GAT
TCT CCT CG-3′ and reverse 5′-GAA GTA CTC CTC CCC
CAA GC-5′ (Khezri et al., 2017); gr forward 5′-ACT CCA TGC
ACG ACT TGG TG-3′ and reverse 5′-GCA TTT CGG GAA
ACT CCA CG-3′ (Manuel et al., 2014); actb1 forward 5′-CGA
GCT GTC TTC CCA TCC A-3′ and reverse 5′-TCA CCA ACG
TAG CTG TCT TTC TG-3′ (Tang et al., 2007); ef1a forward
5′-CTG GAG GCC AGC TCA AAC AT-3′ and reverse 5′-ATC
AAG AAG AGT AGT ACC GCT AGC ATT AC-3′ (Tang et al.,
2007); and rpl131 forward 5′-TCT GGA GGA CTG TAA GAG
GTA TGC-3′ and reverse 5′-AGA CGC ACA ATC TTG AGA
GCA G-3′ (Tang et al., 2007). We calculated the efficiency per
sample using LinRegPCR 2017.0 software1. We analyzed the
stability and the optimal number of reference genes according
to the pairwise variation (V) by GeNorm 3.5 Software2. We
determined relative messenger RNA (mRNA) expression using
the 2−∆∆Cq method (Bustin et al., 2013).

Statistical Analysis
Data are expressed as mean ± standard error of the mean
(SEM). For all comparisons, we defined the level of significance
as p < 0.05. The sample size is in agreement with previously
published studies using zebrafish as a model animal (Cachat
et al., 2010; Sison and Gerlai, 2011; Ponzoni et al., 2016;
Nabinger et al., 2018; Rosa et al., 2018). Novel tank test results
were analyzed by one-way analysis of variance (ANOVA),
followed by Tukey’s post hoc test. Inhibitory avoidance uses
a cut-off at 180 s (ceiling time) and we used nonparametric
tests. Training and test latencies within each group were
compared by the Wilcoxon matched-pairs test. Latencies of
multiple groups were compared using Kruskal–Wallis and
comparisons between training and test sessions were done
with Mann–Whitney U tests. For analyses of crf and gr gene
expression, we used ANOVA and Dunn’s multiple-comparison
test. We employed GraphPad Prism 8 (La Jolla, CA, USA)
software for statistical analyses.

1http://LinRegPCR.nl
2https://genorm.cmgg.be/
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TABLE 1 | Pyriproxyfen quantification in water using liquid chromatography
coupled to tandem mass spectrometry (LC-MS/MS).

Compound Concentration (mg/L) Standard deviation

Pyriproxyfen (CAS-95737-68-1) 0.125 0.0070
0.675 0.0070
1.75 0.0565

The data are expressed as mean ± standard deviation (SD; n = 3).

RESULTS

We used LC-MS/MS to quantify pyriproxyfen in the treated
water and detected 0.125, 0.675, and 1.75 mg/l treatments,
respectively (Table 1).

Pyriproxyfen at all concentrations (0.125, 0.675, or 1.75 mg/l)
did not alter locomotor and anxiety parameters after 96 h
exposure when compared to control or DMSO groups. There
were no significant changes in distance (F(4,83) = 1.902,
p = 0.1178; Figure 1A), mean speed (F(4,83) = 0.9983,
p = 0.4133; Figure 1B), latency to first enter the upper zone
(F(4,83) = 2.538, p > 0.05; Figure 2A), time spent in the upper
zone (F(4,83) = 0.9834, p = 0.4212; Figure 2B), or line crossings
(F(4,78) = 1.264, p = 0.2910; Figure 2C).

Concerning social behavior, pyriproxyfen at 0.125, 0.675, or
1.75 mg/l did not alter aggressive behavior (F(4,69) = 0.6852,
p = 0.6046; Figure 3A) or social interaction (F(4,68) = 0.4489,
p = 0.7728; Figure 3B) after 96 h exposure when compared to
control or DMSO groups.

The inhibitory avoidance test showed that animals in the
control and DMSO groups presented an increase in latency to
move to the dark side of the aquarium (U = 0, p < 0.0001 and
U = 0, p < 0.0001, respectively). However, we observed
aversive memory deficits in fish exposed to pyriproxyfen at
concentrations of 0.125 mg/l (U = 102.5, p = 0.6852), 0.675 mg/l
(U = 83.00, p = 0.2053), and 1.75 mg/l (U = 100.5, p = 0.6210).
There were no differences in the latencies in the training and test
sessions (Figure 4). Moreover, there were no differences between
training and test latencies. Hence, these data demonstrated
that memory retention in fish exposed to pyriproxyfen
was impaired.

Inhibitory avoidance task performance on the training and
long-term memory test session 96 h after pyriproxyfen exposure
(n = 15). Data are presented as mean ± standard error of the mean
(SEM). We found no differences between training performance
among all exposed groups as evaluated by the Kruskal–Wallis
test. The asterisks indicate the difference between training and
test sessions for each group, compared using the Wilcoxon
matched-pair test (****p < 0.0001).

There was a decrease of cortisol levels at all tested
pyriproxyfen concentrations (0.125, 0.675, and 1.75 mg/l) when
compared to the control group. By contrast, cortisol was only
reduced in relation to vehicle at 0.675 and 1.75 mg/l pyriproxyfen
concentrations (F(4,17) = 8.737, p = 0.0005; Figure 5).

We evaluated the effects of 0.125 and 1.75 mg/l pyriproxyfen
exposure on crf (F(3,41) = 2.366, p = 0.0849; Figure 6A) and
gr (F(3,41) = 1.982, p = 0.1317; Figure 6B) gene expression.

FIGURE 1 | Effects of 96-h pyriproxyfen exposure on locomotor parameters: (A) distance and (B) mean speed (n = 15–21). Data are expressed as the
mean ± standard error of the mean (SEM). We analyzed data with a one-way analysis of variance (ANOVA), followed by Tukey’s post hoc test.

FIGURE 2 | Effects of 96-h pyriproxyfen exposure on (A) latency to the upper zone, (B) time in the upper zone, (C) and line crossings in adult zebrafish (n = 16–20).
Data are expressed as the mean ± SEM. We analyzed the data with a one-way ANOVA, followed by Tukey’s post hoc test.
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FIGURE 3 | Effects of 96-h pyriproxyfen exposure on (A) aggression (n = 14–15); and (B) social interaction parameters (n = 13–15). Data are expressed as the
mean ± SEM. We analyzed the data with a one-way ANOVA, followed by Tukey’s post hoc test.

FIGURE 4 | Inhibitory avoidance task performance on the training and
long-term memory test session 96 h after pyriproxyfen exposure (n = 15).
Data are presented as mean ± SEM. We found no differences between
training performance among all exposed groups as evaluated by the
Kruskal–Wallis test. The asterisk indicates the difference between training and
test sessions for each group, compared using the Wilcoxon matched-pair
test (****p < 0.0001).

Pyriproxyfen did not significantly alter crf or gr mRNA
transcript levels compared to the control or DMSO groups.

DISCUSSION

In this study, we found that adult zebrafish exposed to
pyriproxyfen, a widely used insecticide, showed reduced levels
of cortisol and impaired aversive memory. First, we quantified
pyriproxyfen in the water through LC-MS/MS to certify that
the animals were exposed to the compound throughout the
entire period, and thus the effects would result from the
96-h exposure.

Studies conducted to evaluate the action of different
toxic agents—for example, tebuconazole, dichlorvos, and
glyphosate—have shown that the locomotor behavior of exposed
adult zebrafish is significantly altered (Altenhofen et al., 2017a,
2019; Bridi et al., 2017). In contrast to those studies, we found
that locomotor parameters, such as distance and mean speed,

FIGURE 5 | Whole-body cortisol response of zebrafish exposed to
pyriproxyfen for 96 h (n = 3–6). Data are expressed as mean ± SEM and
analyzed by one-way ANOVA, followed by Tukey’s multiple comparisons test.
The symbols *p < 0.05 and **p < 0.005 indicate differences in relation to the
control whereas #p < 0.05 presents difference when compared to the
vehicle group.

were not altered by pyriproxyfen exposure. Moreover, the
common variations associated with anxiety, such as time spent
in and latency to enter the upper zone, as well as entries in
the upper zone (measured through line crossing), were not
altered by pyriproxyfen exposure. These data indicate that the
cognitive deficits presented by animals exposed to pyriproxyfen
are not related to changes in locomotor or anxiety parameters.
Moreover, the deficits observed cannot be attributed to the
diluent (DMSO) because there was no difference between
the control and DMSO groups in the experiments. Several
studies have demonstrated that DMSO is characterized as a safe
diluent, with no toxic effects in zebrafish, when used in low
concentrations (Hallare et al., 2006; Nery et al., 2014). Also,
zebrafish exposed to pyriproxyfen showed no changes in social
behaviors, such as aggression and social interaction, both of
which are used to analyze disorders of the central nervous system
in translational studies (Gerlai, 2014).

To the best of our knowledge, this study is the first to
report the effects of pyriproxyfen on memory parameters and
cortisol levels in adult zebrafish. The inhibitory avoidance task
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FIGURE 6 | Effects of 96-h pyriproxyfen exposure on (A) crf and (B) gr gene expression (n = 9–12). Data are expressed as mean ± SEM and analyzed by one-way
ANOVA, followed by Dunn’s post hoc test (p > 0.05).

evaluates aversive memory; during the training session, the
animals should learn that crossing to the dark compartment
is associated with a shock. This context is related to the fact
that a zebrafish prefers dark environments in its adult life; this
behavior aims to protect it from possible predators. So, when
the animal is placed in the white compartment, it is expected
that when opening the sliding guillotine-type partition it will
move quickly to the dark compartment, for its own protection.
During the training session, the animals receive a shock; hence,
it is expected that 24 h later, throughout the test, this latency of
passage to the dark side will increase. If the animal presents some
memory deficit, this latency is not increased, and these data show
that the animal is unable to retain the memory related to the
shock (Blank et al., 2009). Our data showed that pyriproxyfen
induced a deficit in the retention of aversive memory at all
tested doses.

The learning experience of an aversive memory (as the
inhibitory avoidance task in which we observed memory
impairment) initiates the release of stress hormones such as
cortisol. This increase in cortisol levels is central in modulating
memory consolidation (for a review see McGaugh, 2000) as
this hormone can act throughout the brain by binding to
glucocorticoid receptors and improving memory performance in
rodents and humans (Goosens, 2012). In humans, administration
of 11-beta-hydroxylase (an inhibitor of cortisol synthesis)
presented cortisol reduction and memory impairment (Rimmele
et al., 2015). Manuel et al. (2014) showed that zebrafish with
the highest levels of cortisol performed better in memory tests
24 h after training. In our experiments, zebrafish exposed to all
concentrations of pyriproxyfen showed both aversive memory
impairment and lower cortisol levels. Whole-body cortisol levels
were measured in different animals from those submitted to
the inhibitory avoidance task. Therefore, correlating memory
performance and cortisol levels was not possible and this is
one limitation of this study. However, cortisol levels and the
training session of inhibitory avoidance task were measured

in animals submitted to the same conditions and immediately
after pyriproxyfen treatment. Therefore, it is expected that
cortisol levels are similar in animals submitted for both analyses.
Due to the pivotal effect of cortisol in memory consolidation,
lower cortisol levels may be impairing the performance in
the task. Although it is already well established that cortisol
influences memory, it is not possible to assume there is a
direct causal relationship between our findings in aversive
memory impairment and lower cortisol levels. Further studies
are required to investigate the mechanisms involved in the
memory deficit induced by pyriproxyfen, especially its influence
on the cholinergic system since acetylcholine has a pivotal role in
memory and behavior.

Cortisol is important for maintaining homeostasis and an
imbalance in the HPI axis can trigger changes in several
physiological parameters (Späth-Schwalbe et al., 1991; Bennion
et al., 2015; De Quervain et al., 2017). In the context of aversive
stimuli, the neurons of the PVH (or the NPO in fish) initiate
CRF secretion, which leads to the secretion of glucocorticoid
(e.g., cortisol) and its subsequent effect on the HPI axis (Goosens,
2012). Although, we demonstrated that cortisol was significantly
reduced in animals exposed to pyriproxyfen, we did not observe
changes in the expression of gr and crf. Consistent with our
data, a study showed that zebrafish submitted to stressful tasks
for 7 and 14 days, with memory deficits and changes in cortisol
levels, did not demonstrate changes in crf expression (Manuel
et al., 2014). It is important to note that for the short- or
long-term memory process to function properly, it is crucial that
cortisol easily access the brain and bind to mineralocorticoid
(MR) and glucocorticoid (GR) receptors. However, low cortisol
levels may not be related to decreased expression of these
receptors, as previous studies and our data indicate.

In summary, our study demonstrated that pyriproxyfen
exposure impaired inhibitory avoidance memory and altered
cortisol levels in zebrafish. Such changes may significantly affect
the survival of fish in natural habitats, which may, in turn,
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unbalance the whole ecosystem and affect a broad spectrum
of aquatic organisms. Further research with this compound is
needed to characterize the interaction sites between pyriproxyfen
and the endocrine and central nervous systems. The present
study underlines that zebrafish have the potential to be used in
translational studies linked with learning and memory in animals
submitted to chemical compounds exposure.
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