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Knowledge of brain mechanisms underlying self-regulation can provide valuable insights
into how people regulate their thoughts, behaviors, and emotional states, and what
happens when such regulation fails. Self-regulation is supported by coordinated
interactions of brain systems. Hence, behavioral dysregulation, and its expression as
impulsivity, can be usefully characterized using functional connectivity methodologies
applied to resting brain networks. The current study tested whether individual differences
in trait impulsivity are reflected in the functional architecture within and between resting-
state brain networks. Thirty healthy individuals completed a self-report measure of
trait impulsivity and underwent resting-state functional magnetic resonance imaging.
Using Probabilistic Independent Components Analysis in FSL MELODIC, we identified
across participants 10 networks of regions (resting-state networks) with temporally
correlated time courses. We then explored how individual expression of these spatial
networks covaried with trait impulsivity. Across participants, we observed that greater
self-reported impulsivity was associated with decreased connectivity of the right lateral
occipital cortex (peak mm 46/-70/16, FWE 1-p = 0.981) with the somatomotor
network. No supratheshold differences were observed in between-network connectivity.
Our findings implicate the somatomotor network, and its interaction with sensory
cortices, in the control of (self-reported) impulsivity. The observed “decoupling” may
compromise effective integration of early perceptual information (from visual and
somatosensory cortices) with behavioral control programs, potentially resulting in
negative consequences.

Keywords: trait impulsivity, resting state, functional connectivity, Barratt Impulsiveness Scale, somatomotor
network

INTRODUCTION

Self-control allows people to make plans for the future, choose the best option from several
alternatives, control impulses, inhibit unwanted thoughts, and regulate behaviors and emotions
(Kelley et al., 2015). Past studies typically employed task-related functional magnetic resonance
imaging (fMRI) to understand the neural substrates of transient fluctuations in self-control
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in different circumstances or in distinct populations. Although
this approach is well-suited to capture momentary changes in
brain activity in response to specific (internal or external) stimuli,
it is arguably insufficient to capture more tonic aspects of self-
control (Kelley et al., 2015). A global whole-brain network
approach can provide more comprehensive insight into neural
substrates supporting individual differences in the capacity for
self-control over longer timescales. Moreover, measurement of
functional connectivity (FC) across “resting-state” (RS) networks
has proven value as a tool for characterizing mechanisms
underlying neurocognitive processes and psychiatric disorders,
while overcoming technical and inferential limitations of task-
related fMRI (De Luca et al., 2006; van den Heuvel and Hulshoff
Pol, 2010; Cole et al., 2014; Dipasquale et al., 2015).

Specific studies using FC at rest have tested for differences in
the interaction between brain regions that account for impulsivity
and, more generally, the executive function and dysfunction,
in children (Inuggi et al., 2014) and in young adults (Davis
et al., 2013; Reineberg et al., 2015). In typically developing
children (8–12 years old) parental ratings of trait impulsivity
are related to lower RS brain connectivity within the default
mode network (DMN), specifically between posterior cingulate
cortex and right angular gyrus (Inuggi et al., 2014). The DMN is
considered a “task-negative” network, where activity is strongest
when an individual is not engaged in an external task (e.g., at
rest). Correspondingly, DMN activity is typically anti-correlated
to other “task-related” resting-state networks (RSN) (Uddin
et al., 2009). In highly impulsive children, the canonical anti-
phasic relation between the DMN and action-related networks
is much reduced, indicating that trait impulsivity is linked
to a reduced functional segregation of task-negative and task-
positive networks (i.e., the natural degree of anti-correlation
between these networks is reduced). By extension, impulsivity
may putatively arise in the context of functional interference
between brain systems directing internal and external attention
(Inuggi et al., 2014).

In adults, self-report questionnaires are used to assess trait
impulsivity, measuring one’s tendencies to show premature,
unplanned and short-sighted actions and decisions in daily
life (Herman et al., 2018). Applying graph-theory approaches
to functional brain architecture at rest in adults revealed an
association between trait impulsivity and increased segregation
between cortical and sub-cortical regions (i.e., increased
“modularity”) (Davis et al., 2013). This is coherent with
findings in young adults for whom core aspects of executive
function (quantified using three behavioral tasks) were positively
associated with connectivity between the frontal pole and
an “attentional” RSN, and also between the cerebellum and
a right frontoparietal RSN. This suggests that individuals
with better executive functioning manifest more expanded
yet more integrated RSN relative to individuals with worse
executive functioning (Reineberg et al., 2015). However, there
are also contrasting findings: Individuals with increased motor
impulsivity (i.e., poorer inhibitory capacity on the go/no-go
task) and higher trait impulsivity (Barratt Impulsiveness Scale),
reportedly show greater RS FC between the basal ganglia
and thalamus, motor cortex, temporal lobe and prefrontal

cortex (Korponay et al., 2017). This suggests that increased
connectivity between motor-brain regions may predispose to
disinhibited actions.

The comparison between these earlier studies to disentangle
the observed differences, however, is hindered by the different
approaches to functional connectivity (e.g., focus on a single,
pre-defined RSN, or the use of seed-based methods, instead of
a whole-brain model-free approach) and diverse measures of
disinhibited behaviors used (various behavioral tasks or trait
measures). Their focus on general executive functioning instead
of trait impulsivity or a specific behavioral impulsivity task is
also a limitation. The present study set out to cover these gaps
by testing for predicted associations between trait impulsivity
and the strength of FC within as well as between resting-
state networks.

An understanding of the brain mechanisms underlying self-
regulation can provide valuable insights into how people regulate
and control their thoughts, behaviors, and emotional states and
can illuminate what happens on those occasions when this
regulation fails (Kelley et al., 2015). The present study tested
whether individual differences in trait impulsivity are reflected
in within-and between-resting-state network architecture using
a FC approach. Based on previous findings, we predicted that
internal architecture of the default mode (Inuggi et al., 2014),
frontoparietal, and attentional networks (Reineberg et al., 2015)
would be linked to the expression impulsivity across individuals
and that between-network connectivity pattern of task-negative
(DMN) and task-positive networks (Inuggi et al., 2014) might
also be modulated by the magnitude of trait impulsivity.

MATERIALS AND METHODS

Participants
Thirty volunteers (nine males) were recruited from staff
and students of the University of Sussex. Participants were
required to be between 18 and 40 years old and right-handed.
Exclusion criteria included history of any psychological or
neurological disorders, head injury, current treatment for any
psychological or physical condition (including use of inhalers;
excluding the contraceptive pill), pregnancy or breastfeeding,
clinically significant impairment of vision, use of psychoactive
substances 48 h before testing, and any MRI contradictions
(claustrophobia, having any metal implants, teeth braces or
bridges, or cardiac pacemakers).

All participants provided written informed consent. The study
was conducted according to the Declaration of Helsinki. All
procedures were approved by the Brighton and Sussex Medical
School Research Governance and Ethics Committee.

Questionnaires
Participants completed the Barratt Impulsiveness Scale (BIS;
Patton et al., 1995), a 30-item questionnaire with three distinct
impulsivity facets: attentional (eight items; a lack of focus on the
ongoing task), motor (11 items; acting without thinking), and
non-planning impulsivity (11 items; orientation to the present
rather than to the future).
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MRI Experiment Design
In the MRI scanner, first, a structural scan was obtained followed
by a 7-min resting-state scan (165 volumes) during which
participants were instructed to rest with their eyes open focusing
on a fixation cross in the center of the screen with the instruction
to try not to think of anything and not to fall asleep. All
participants were tested between 2 pm and 6 pm to control for
possible time of day effects on an attentional level.

MRI Acquisition
MRI was performed on a 1.5-Tesla MAGNETOM Avanto
scanner (Siemens AG, Munich, Germany) with upgraded
gradients and a 32-channel headcoil. Structural volumes
were obtained using a high-resolution three-dimensional
magnetization prepared rapid acquisition gradient echo
sequence. Functional data sets used T2∗-weighted echo planar
imaging sensitive to blood oxygenation–level-dependent signal
(repetition time = 2.52 s, echo time = 43 ms, flip angle = 90◦,
34 slices, 3-mm slice thickness, field of view = 192 mm,
voxel size = 3 × 3 × 3 mm). Slices were angled −30◦ in the
anteroposterior axis to reduce the signal loss in orbitofrontal
regions (Deichmann et al., 2003; Weiskopf et al., 2006).

fMRI Data Pre-processing
Imaging analysis was performed using FEAT (FMRI Expert
Analysis Tool) version 6.00, a part of FMRIB Software Library
(FSLv6.0, Jenkinson et al., 2012). Pre-processing steps included
(1) skull stripping of structural images with Brain Extraction
Tool (BET), (2) removal of the first four functional volumes to
allow for signal equilibration, (3) head movement correction by
volume-realignment to the middle volume using MCFLIRT, (4)
global 4D mean intensity normalization, (5) spatial smoothing
(6mm full-width half-maximum), and (6) noise signals removal,
(7) temporal high-pass filtering (100 s cut-off).

FMRI datasets were co-registered to the participant’s
structural image using affine boundary-based registration
as implemented in FSL FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002) and subsequently transformed them to
MNI152 standard space with 2 mm isotropic resolution using
non-linear registration through FSL FNIRT (Andersson et al.,
2010). Noise signals were identified individually and removed
using ICA-AROMA toolbox (Pruim et al., 2015). ICA-AROMA
incorporates probabilistic Independent Component Analysis
(ICA) on the partly pre-processed single-subject fMRI data
(following spatial smoothing and normalization but before
high-pass filtering), identifies independent components (ICs)
representing motion artifacts and removes them from the fMRI
time-series using linear regression.

Since there was a broad age range within our population (18–
37 years) and a larger number of females than males participated
in the study, in all reported analyses, gender and mean-centered
age were added as covariates of no interest.

Independent Components Analysis
The RS data analysis pipeline is summarized in Figure 1. To
decompose the RS data into various independent spatiotemporal
components, Probabilistic Independent Components Analysis

(PICA) was performed on the pre-processed functional scans
using Melodic version 3.14 (Beckmann and Smith, 2004).
A dimensionality estimation using the Laplace approximation to
the Bayesian evidence of the model order (Beckmann and Smith,
2004) produced 11 spatiotemporal components. Following an
approach described in Reineberg et al. (2015), we statistically
compared the spatial map of each independent component (IC)
to a set of seven reference RS networks from a previous large-
scale RS analysis (Yeo et al., 2011). We used FSL’s “fslcc” tool to
calculate Pearson’s r for each pairwise relationship and kept only
those ICs that yielded a significant spatial correlation (Pearson’s
r > 0.3) with one of the reference networks. This procedure
identified and helped label 10 target ICs (see Table 1 for details).
Upon visual inspection, the remaining 1 IC was considered noise
and was not subjected to further analysis.

Dual regression
For the between-subject analysis, we carried out dual regression,
a technique that back-reconstructs each un-thresholded group-
level component map at the individual subject level, generating
participant-specific spatial maps and time courses (Beckmann
et al., 2009; Filippini et al., 2009). The dual regression consists
of (1) a spatial regression of the group-average set of ICs
that produces a set of participant-specific time series, one
per group-level component, and (2) a temporal regression of
those participant specific time series, resulting in a set of
participant-specific spatial maps, one per group-level component
(see Figure 1). Participant-specific components are whole brain
images. For some individuals, the given IC might be very similar
to the group level IC while others might show variations of
the group level IC (i.e., have an expanded/constrained network
or high/low connectivity of a particular region). Statistical
analyses (discussed below) are performed on these whole brain
participant-specific ICs to determine areas that covary with trait
impulsivity measure, that is BIS total score.

Within-network connectivity
To quantify the within-network variation in functional
connectivity (FC), depending on BIS total score and participant-
specific ICs, we carried out voxel-wise regression to assess
statistically significant differences in FC in relation to trait
impulsivity score. The analysis was conducted using Randomize,
FSL’s non-parametric permutation testing tool (Winkler et al.,
2014), with 5000 permutations and threshold-free cluster
enhancement (TFCE) with an alpha level of 0.05 to correct
for multiple comparisons. The permutation testing procedure
was run for each set of participant-specific ICs (one for each
group-level ICs of interest); thus, the resulting statistical images
reveal how variation in RS FC (functional connectivity estimates)
predict differences in trait impulsivity (see Figure 1). For
example, the permutation testing procedure could reveal that
individuals with expanded one of the ICs (i.e., expanded to areas
outside the areas included in the group-level IC) report greater
impulsivity. Following studies using similar procedures (Uddin
et al., 2013; Nomi and Uddin, 2015; Reineberg et al., 2015; de
Bézenac et al., 2017; Herman et al., 2019), further correction for
multiple component testing was not applied.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 111

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00111 June 22, 2020 Time: 18:18 # 4

Herman et al. Connectivity of Trait Impulsivity

FIGURE 1 | Illustration of the steps followed during resting-state functional fMRI data analysis. For more details of this analysis steps see Methods section. rs-fMRI,
Resting state functional magnetic resonance imaging; PICA, Probabilistic Independent Component Analysis; IC, Independent Component; BIS, Barratt
Impulsiveness Scale.
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TABLE 1 | Identified Independent Components (IC Number) and their characteristics.

IC number Matching template
network

Correlation with the
template (Pearson’s

r)

Regions Lateralization Number of voxels

1 Visual 0.745 Bilateral 1,138,587

2 Default mode network 0.746 Bilateral 761,539

3 Dorsal Attention/Visual 0.579/0.359 Bilateral 1,003,173

4 Default mode network 0.469 Bilateral 266,631

5 Default mode network 0.548 Bilateral 670,689

6 Ventral attention 0.454 Bilateral 181,331

7 Somatomotor 0.746 Bilateral 898,845

8 Frontoparietal 0.329 Left 944,938

9 Frontoparietal 0.513 Right 689,400

10 Ventral attention 0.301 Bilateral 211,073

Images are presented in the radiological convention (left side of the brain is presented on the right side of the image). DMN, Default Mode Network.

Between-network connectivity
FSLNets. To examine the relationship between trait impulsivity
and between-network FC, we employed the FSLNets package1

implemented in Matlab v2015b (The MathWorks, 2015). This
analysis involved correlation of the participants’ time courses

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets

from the dual regression analysis and subjected them to between-
network comparisons to determine how they are correlated with
each other (Smith et al., 2013). We then calculated full and
partial correlations between all pairs of ICs. Partial correlations
are computed as correlations between two ICs while controlling
for the effect of all other ICs and are thought to reflect more
direct connections (Smith et al., 2011). Finally, BIS total score was
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FIGURE 2 | Somatomotor resting-state network (IC 7), depicted in warm colors, was identified as the only network showing the significant differences across the
BIS total score spectrum. The area that showed reduced resting state functional connectivity within this network was a region in the lateral occipital cortex (in blue;
X = 46, Y = −70, Z = 16). The visualization of the relationship is shown in the scatterplot in the bottom right corner. Images are presented in the radiological
convention. A-anterior, I-inferior, L-left, P-posterior, R-right, S-superior. IC, Independent Component.

used as a regressor in the regression analysis in FSL randomize
with 5000 permutations to assess differences in between-network
connectivity across BIS spectrum. Results were FWE corrected
for multiple comparisons.

RESULTS

Participants
No participant was removed because of extensive motion in the
scanner. The final sample (N = 30, 9 males) was aged between 18
and 37 years old (M = 23.40, SD = 5.01). The average BIS Total
score was 65.30 ± 11.39.

Within-Network Connectivity
Greater self-reported impulsivity (BIS score) was associated
with lower functional connectivity of the right lateral occipital
cortex with IC7, a network that correlated significantly with
Somatomotor template network (peak mm 46/-70/16, FWE 1-
p = 0.981) (Figure 2).

Between-Network Connectivity
Network analysis using FSLNets revealed a modular structure
of functional networks, which could be segregated into clusters:
Cluster 1 comprised of Visual, Somatomotor as well as Ventral
and Dorsal Attention Networks (Figure 3, blue cluster),
while Cluster 2 comprised of Frontoparietal and Default-Mode
Networks (Figure 3, red cluster).

Using BIS as a predictor, no significant between-network
differences in connectivity were found.

DISCUSSION

This study investigated whether aspects of intrinsic functional
architecture and between-network connectivity pattern is
associated with individual differences in trait impulsivity in a
normative (university) population. We showed that individual
differences in trait impulsivity, assessed with BIS Total Score,
are associated with altered aspects of the functional architecture
of the Somatomotor RS network. Specifically, higher trait
impulsivity was linked to decreased coupling between the lateral
occipital cortex and the Somatomotor Network. Surprisingly,
we did not find any significant differences in the network
functional architecture of default mode or frontoparietal
networks associated with impulsivity, as has been reported
previously (Inuggi et al., 2014; Reineberg et al., 2015). However,
it is important to note that such previous research used different
measures of impulsivity. Therefore, those inconsistent findings
might merely reflect a heterogeneous nature of impulsivity
and its underlying neural mechanisms (Caswell et al., 2015;
Herman et al., 2018).

The finding of disrupted FC within the Somatomotor RS
network in relation to trait impulsivity level corroborates
previous studies. The graph theory approach, has been used
to test the relationship between impulsivity (as reflected in
BIS score) and the functional segregation (i.e., modularity)
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FIGURE 3 | FSLNets results of between network correlations (N = 30). Each independent component (IC) is denoted by one column and a corresponding raw. The
colored matrix displays the correlations of the time series between networks pairs. Dark red squares indicate highly positive correlations, light green indicates a
near-0 correlation, and dark blue represents highly negative correlation as denoted on the scale at the bottom of the figure. Full correlations between networks pairs
are shown below the diagonal line (in gray) with partial correlations shown above the diagonal line (for detailed description of full and partial correlation please see
main text). Groups of highly correlated ICs were clustered together according to a hierarchical clustering algorithm (visualized at the top of the matrix as a clustering
tree). Please note that the color cut-off for hierarchical tree is arbitrary – just for visualization purposes. Numbers indicate specific independent components as
described in Table 1. The ICs have been reordered, according to a hierarchical clustering algorithm. Small images at the top of each column summarize each IC’s
spatial map, with the right side of the images representing the left side of the brain. As described in the main text, the between-network connectivity was not
modulated by trait impulsivity score.

of whole-brain resting state architecture (Davis et al., 2013).
Overall, this reveals a shift in the functional connectivity
between visual, sensorimotor, cortical, and subcortical structures
across the impulsivity range; specifically pointing to increased
functional modularity between cortical and sub-cortical regions
as a function of impulsivity score.

The lateral occipital cortex supports both visual perception
and multisensory integration (Grill-Spector et al., 2001;
Beauchamp, 2005). Interestingly, it is recognized that visual
cortices contribute to impulsivity (Davis et al., 2013) and
disorders commonly associated with impulsivity, including as
Attention Deficit-Hyperactivity Disorder (ADHD; Castellanos
and Proal, 2013). The sensorimotor network consists of both
motor cortices, known to play a critical role in response
inhibition (Li et al., 2006; Duque et al., 2012; Rae et al., 2014),
and somatosensory areas, which are vital for sensory integration.
These regions show altered activity in inhibitory control in
diseased states such as post-traumatic stress disorder (Falconer
et al., 2008; van Rooij et al., 2014) or under pharmacological
interventions with LSD (Schmidt et al., 2017). Here, the
“decoupling” may itself reflect a deficit in effective integration of

perceptual information (visual and somatosensory cortices) with
somatomotor outputs (motor cortex) associated with behavioral
control, ultimately resulting in negative consequences, from poor
planning for the future to excessive substance use (Dickman,
1990; Herman and Duka, 2019).

Limitations
Some limitations merit comment. Our study was conducted
on a moderately sized sample of students and employees of
the university. The average BIS total score in our sample is
65.30 ± 11.39; which is consistent with other reports in the
literature of university sample [e.g., 65.67 ± 9.92 in males and
64.58 ± 10.36 in females according to Caswell et al. (2015)
and 63.82 ± 10.17 according to Patton et al. (1995)] and
normative community populations [59.18 ± 9.54 according
to Reise et al. (2013) or 62.3 ± 10.3 according to Stanford
et al. (2009)]. However, our sample consists of relatively high-
functioning young adults, who may have developed many
mechanisms to cope with elevated impulsivity levels in daily
life, which might have an effect on aspects of functional
connectivity. It is also important to mention that the majority
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of the sample consisted of females, some of which were using
hormonal contraception, which can affect functional connectivity
(Hausmann, 2005). Therefore, future research should replicate
our findings in larger-scale studies with general population,
including a range of individuals with various backgrounds and
educational levels. Finally, we did not find any suprathreshold
differences in between-network connectivity that could be related
to elevated impulsivity levels. Possibly, this is because our
sample consisted of highly functioning young adults, all from
the university population, and differences in between-network
connectivity may only reveal themselves in pathologically
impulsive individuals.

CONCLUSION

In the brain, aspects of the functional architecture of the
Somatomotor Network were associated with individual
differences in trait impulsivity (BIS Total score). Specifically,
more impulsive individuals showed decreased connectivity
between the lateral occipital cortex and the Somatomotor
Network. Since perception informs action and vice versa (Creem-
Regehr and Kunz, 2010), proper integration of sensory inputs is
crucial for adaptive behavioral responses. Therefore, the observed
decreased connectivity between the visual and somatosensory
cortices and motor cortex, may reflect itself in less effective
integration of perceptual information and behavioral control
and, thus, in negative consequences. However, in this normative
sample, the between-network architecture was not related to
trait impulsivity level. This evidence supports the use of RS FC-
approaches to identify biomarkers for impulse-control problems.
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