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Current neuroethological experiments require sophisticated technologies to precisely
quantify the behavior of animals. In many studies, solutions for video recording and
subsequent tracking of animal behavior form a major bottleneck. Three-dimensional
(3D) tracking systems have been available for a few years but are usually very expensive
and rarely include very high-speed cameras; access to these systems for research
is limited. Additionally, establishing custom-built software is often time consuming –
especially for researchers without high-performance programming and computer vision
expertise. Here, we present an open-source software framework that allows researchers
to utilize low-cost high-speed cameras in their research for a fraction of the cost of
commercial systems. This software handles the recording of synchronized high-speed
video from multiple cameras, the offline 3D reconstruction of that video, and a viewer for
the triangulated data, all functions previously also available as separate applications. It
supports researchers with a performance-optimized suite of functions that encompass
the entirety of data collection and decreases processing time for high-speed 3D position
tracking on a variety of animals, including snakes. Motion capture in snakes can be
particularly demanding since a strike can be as short as 50 ms, literally twice as fast as
the blink of an eye. This is too fast for faithful recording by most commercial tracking
systems and therefore represents a challenging test to our software for quantification of
animal behavior. Therefore, we conducted a case study investigating snake strike speed
to showcase the use and integration of the software in an existing experimental setup.

Keywords: motion capture, high-speed, opensource, tracking, snake, strike

INTRODUCTION

High-speed video recording is a common tool to visualize and subsequently quantify fast behavioral
performances such as in snakes (Kardong and Bels, 1998; Young, 2010; Herrel et al., 2011; Penning
et al., 2016; Ryerson and Tan, 2017), other fast moving animals (Patek et al., 2004; Tobalske
et al., 2007; Seid et al., 2008), or insect flight (e.g. Altshuler et al., 2005; Boeddeker et al., 2010;
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Geurten et al., 2010; Straw et al., 2011). However, in most snake
studies only one camera or a maximum of two are used to
capture such rapid motion, with the one exception of a recent
study where multiple cameras with only moderate temporal
resolution, were used to investigate locomotor maneuvers (Gart
et al., 2019). Software such as DLTdv (Hedrick, 2008), Tracker
(Open Source Physics)1, ImageJ (Rasband, 1997-2018), or Didge
(Alistair Cullum, Creighton University) have usually been used
to process the captured images. These open source solutions
are suitable tools to use when capturing with a single camera
and with a known distance to the recorded object(s), with an
exception for DLTdv as it performs triangulation when combined
with calibration information provided by a different software.
Single camera capture, however, creates some limitations. Using
a mirror allows a single camera to perceive multiple views of
the snake such as done by Kardong and Bels (1998), but any
time a single camera is used to capture three-dimensional (3D)
information, the camera must be placed in a setup that is
stereotypically well-defined in a way that the distances such as
between camera sensors or from the camera sensor to the object
are known. The inflexibility of these well-defined setups can be
troublesome for the use in multiple experiments, requires extra
expertise, and entails extra costs for building and storage.

Motion capture technology using multiple infrared cameras
has been available for experimental studies already for decades.
While one of the principal fields of employment for these systems
was and still is the capture of human motion, this technology
has been used in more recent years for the tracking of animal
locomotion (Dahmen and Zeil, 1984; Fry et al., 2000; Straw et al.,
2011; Tian et al., 2011; Theunissen and Dürr, 2013; Robie et al.,
2017; Theunissen et al., 2017). Systems such as Vicon, Optitrack,
Motion Analysis, Qualisys, or XSense are largely comparable and
use infrared reflective spherical surface markers on the subject of
interest that are tracked by multiple spatially fixed cameras and
allow triangulating the positions of various body parts in virtual
3D space. In contrast, active marker-based tracking systems
such as Dari Motion, Myomotion, NDI, or marker-less systems,
commonly use depth information and a wire-frame, or similar,
model of the tracked object mostly for applications involving
humans. These model-based systems are expensive with costs
that range from $10,000 to $100,000, though some open source
algorithms are available for human pose estimation in video
recordings (e.g. OpenPose, Cao et al., 2018, DeepPose, Toshev
and Szegedy, 2014, ArtTrack, Insafutdinov et al., 2017, and
DeeperCut, Insafutdinov et al., 2016). While commercial systems
work well with low reconstruction error and ease of use, this
technology is rather insufficient for high-speed motion capture,
mostly because of the typically low maximal camera frame rates
of 100–250 Hz. Accordingly, details of ultrafast movements such
as strikes of rattlesnakes, which from initiation to target contact
are completed within ∼0.05 s (Kardong and Bels, 1998; Penning
et al., 2016) require a camera with a capture frame rate well
beyond 200 Hz. At such a frame rate, and using a state-of-the-
art tracking procedure, optical recordings of a rattlesnake strike
would comprise a mere 10 frames of triangulated trajectory.

1http://www.compadre.org/OSP/

Accordingly, many details about the kinematic profile would be
unavailable and thus invisible apart from the fact that raw images
are usually not stored. Though often done to save disk space
as well as to minimize bandwidth saturation, it prevents any
re-analysis of the triangulated motion trajectory.

Here, we present a multi-camera system that allows high-
speed motion capture of ultrafast animal movements such as
snake strikes using low-priced cameras with high frame rates of
750 Hz and sufficient spatial resolution. The developed software
provides a suite of functions that encompass the entirety of
data collection, processing, and storage of motion capture with
a special focus on processing speeds for high-speed camera
capture. Another advantage of using a single software for the
data recording and processing pipeline is that the amount
of ambiguity and pitfalls that inexperienced motion capture
practitioners could encounter is decreased. The amount of data
that is generated by high-speed cameras grows quite rapidly
with the number of cameras, their speed, and their resolution.
Handling this large amount of data often causes problems and
can be vastly time consuming when large data sets are processed
without performance optimization. This software processes the
data to the full extent of the available computer system resources;
a feature not available in other tracking software such as
DLTdv Hedrick (2008), but which greatly diminishes the time
required for processing. Although this system was developed
in order to capture snake strike motion dynamics, it can easily
be employed for motion studies of other animals than snakes.
SnakeStrike is an open source framework written to allow users
to harness the power from other open source libraries for
image manipulation, camera interaction, and computer vision
(Bradski, 2000; Schroeder et al., 2006; Guennebaud and Jacob,
2010; Rusu and Cousins, 2011; Moulon et al., 2013). Thus,
besides assisting in the resource-intense and time-critical initial
collection of images at high frame rates with multiple cameras,
SnakeStrike performs subsequent offline image processing for
triangulation and data visualization. Color thresholding is used
for marker identification, allowing simultaneous tracking of
multiple animals or body parts when markers with different
colors are used. If infrared cameras are used, then infrared
markers can subsequently also be used. Marker types need not
be spherical or 3D in form. Something as simple as a piece of
colored tape can be used, and no wire-frame, or similar model,
is required. A major advantage of SnakeStrike is the storage of
all original images as reference. This permits repeated off-line
data re-interpretation in case new automatic tracking methods
or sequential modeling methods become available. Because of
the open source code and the modular structure of SnakeStrike,
other annotation and pose estimation tools such as DeepLabCut
(Mathis et al., 2018) or LEAP (Pereira et al., 2019) can be
incorporated into the processing pipeline.

MATERIALS AND METHODS

In this section we describe the requirements to use the system
and how we fulfilled those requirements, how to use the software
from a user’s perspective, as well as provide a high-level overview
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of how the images are processed such that 3D triangulated points
of the markers become available. The order of the sections follows
the order the user will generally interact with the interface.
This order is reinforced by the software to create a consistent
pipeline for the user. Where appropriate we include suggestions
for solutions to problems that can arise during use. Furthermore,
we describe the experimental setup used for each of our two
experimental settings.

Hardware Requirements
For effective recording of high-speed videos for 3D tracking, it is
important to use cameras that are fast enough to capture every
detail of the motion of interest and can function together. The
only absolute requirements to run the SnakeStrike software are
a 64-bit computer running 64-bit Linux. To ensure faithful data
transfer to the computer, enough bandwidth on a single bus
or multiple busses for the communication protocol is required
to save data without dropping individual frames. Therefore, it
should be thoroughly calculated which camera communication
protocol (e.g. USB3, Ethernet, etc.) is most beneficial given the
respective requirements. The only requirements are that the
camera adheres to the GenICam standard and has an application
programming interface (API). Since very large amounts of data
need to be transferred and stored, a computer equipped with
sufficient sized RAM and hard drives that have enough storage
space to store the recorded raw images is required. However, the
precise camera and computer configuration generally depends
on the speed of the motion of interest and total recording time
necessary to capture every detail. An example data set of only 1
second of recording time from a setup equipped with 5 USB 3.0
cameras with a resolution of 640 × 480 pixels and using lossless
data compression requires∼700 MB of disk space, while∼3.2 GB
of RAM is the minimal requirement for the images from the data
capture, assuming that the images are returned from the camera
in RGB8 format. If the format is changed to something like Bayer
BG8, then the amount of required RAM decreases by a third.
Sufficient RAM for running the software should also be included
in the calculation. Since AC powered lights flicker when recorded
with high-speed cameras, lights for the experimental setup need
to have a flicker frequency that is higher than the camera speed or
are non-flickering. Note that not all LED lights are non-flickering.

To satisfy secondary requirements of our experiments, we
used a computer with multiple CPU cores, 64 GB RAM, and
several Terabytes of available hard disk storage. Furthermore,
we used multiple USB 3.0 cameras. Consequently, a PCI card
that expanded the available USB 3.0 ports and ensured that
each new port had its own controller was utilized. A separate
controller for each port guaranteed that the port would not share
bandwidth with other USB 3.0 ports. When running a high-
speed camera, it is very easy to saturate these buses with a single
camera, let alone multiple. For triggering the cameras, a software
trigger is usually available, although this does not guarantee
synchronized images when using a USB connection. If a hardware
trigger is required while using USB cameras, an external hardware
trigger must be added.

We chose Basler Ace acA1300-200uc cameras (Basler AG,
Ahrensburg, Germany), which have a maximum image size of

1280 × 1024 pixels. At full spatial resolution, the maximum
speed is 203 Hz, however, if the resolution is decreased to 640
× 480 pixels, a frame rate of 750 Hz can be achieved. With
camera speeds this high, light flickering of the illumination
can be a major issue. Accordingly, surgical lights were used
when recording snake strikes in the 3D X-ray setup. However,
AQ Aquaflora 54-watt fluorescent bulbs (D-D The Aquarium
Solution Ltd., Ilford, United Kingdom) are cost-efficient and
have successfully been applied in initial tests. When available,
non-flickering LED-technology can be used as an alternative.
The used cameras were connected to the computer by USB
3.0. To exclude potentially dropped images due to saturation
of the bus, a Startech PEXUSB3S44V card (StarTech.com,
London, ON, Canada) was used. For correct triangulation during
our experiments, USB camera synchronization was essential.
Accordingly, a Labjack U3 (Lakewood, CO, United States)
AD/DA converter with custom-built housing to trigger the
cameras via three available digital ports was used. A maximum
of three cameras can be triggered per port, without critical
attenuation of the TTL signal. As long as the camera speed
is less than 25,000 fps, i.e. one frame per 40 µs, the 20 µs
delay between each of the pulses is short enough to ensure a
quasi-simultaneous image recording from all triggered cameras.
Thus, recorded images are saved as the same frame. If only
one trigger is available, another solution to allow all cameras
to be triggered is to use a buffer amplifier; this prevents the
signal from being affected by load currents and ensures a truly
synchronous trigger.

User Interface
SnakeStrike is currently only available for 64-bit Linux.
The C++ source code and installation instructions are
available at “https://github.com/gwjensen/SnakeStrike”, while
the main user and code documentation can be found at
“https://gwjensen.github.io/SnakeStrike/”. Since compiling C++
source code with many dependencies is not an easy task, a docker
image with the required dependencies as well as SnakeStrike
pre-installed is available on DockerHub at gwjensen/snake_strike
with the requisite source for building the Docker image manually
located at “https://github.com/gwjensen/SnakeStrikeDocker”.
Information regarding plugins or specific functions is available
at “https://gwjensen.github.io/SnakeStrike/”.

The main method of interacting with SnakeStrike is through
a basic graphical user interface (GUI). The interface manages
folder structure and encapsulates the many steps behind the
actions of calibration, capture, and triangulation tasks. The
functionality of the interface is divided into three separate tabs
in the top left corner of the window (Figure 1A). First, the user
creates a new project/experiment, where a project/experiment
comprises a single data collection. This ensures consistent
data annotation output and reduces workload for the user by
automatically organizing created files. After the project is created,
new options become available guiding the user along the GUI. For
instance, if the cameras are not connected, the user is unable to
use any recording options until establishing the connections and
pressing “Refresh Camera Connection.” The “Collect Data” tab as
well as the side toolbar provides the user with a live preview from
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FIGURE 1 | User Interface of the SnakeStrike software and view of the experimental setup used for Study 1. (A) Main screen of the software depicting simultaneous
previews from four connected cameras. (B) Calibration dialog window after a successful calibration attempt. (C) DIN A1-sized calibration image adopted from Li
et al. (2013), affixed to a 1 cm thick cardboard for calibration. (D) Example of the dialog window used to triangulate the markers encountered in the images.
(E) Overview of the experimental setup used for study 1, depicting the arrangement of three low-cost Basler cameras and a Franka Emika Panda robotic arm.
(F) Close-up of the robotic arm with green markers affixed to a piece of fiberboard.

the cameras, to initially position the cameras and perform the fine
tuning of the focus.

Camera parameters, such as frame size, frame rate, and
exposure length need to be set by the software provided by

the camera manufacturer and has to be saved in an external
configuration file that adheres to the GenICam programming
standard. This standard is a generic programming interface that
is supported by all compliant cameras and guarantees that a
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configuration file is transferable between cameras produced by
different manufacturers. To set the camera parameters within
SnakeStrike, the configuration file must be loaded using the
“Load Camera Config” button. Further information, i.e. whether
the camera is USB 3.0 or Ethernet-connected, are automatically
abstracted. After the configuration of the cameras, the calibration
can be started by pressing the “Calibrate Cameras” button that
opens the calibration dialogue (Figure 1B). Using the technique
described by Li et al. (2013), the intrinsic calibrations, i.e.
finding the optical center, focal length, and lens distortion of
the individual camera, as well as the extrinsic calibrations, i.e.
how the cameras are positioned relative to each other in 3D
space, are performed.

Undistortion and Calibration
The size of the image used for calibration depends on the angles
between the cameras and the viewing space covered by the
cameras. A large viewing angle and/or a large viewing space
requires a calibration image that is sufficiently large to be viewed
by more than one camera at a time. Optimal calibration objects
allow finding correspondences at multiple levels of resolution.
The calibration object must be affixed to a movable planar surface
such that the image remains flat, but still can be moved through
the cameras’ field of view (Figure 1C). It is not necessary for the
calibration image to be fully viewable by each camera or that
all cameras see the calibration image at the same time. More
important for a successful extrinsic calibration is that the cameras
can be linked across images that are shared. For example, in a
setup with three cameras (A, B, C), where A and B can see the
calibration image in a few image captures, and B and C can
see the calibration image in a few captures, it is unnecessary
for A and C to also share image captures when capturing the
calibration image.

Calibration images should be recorded at low frame rates
(e.g. 4 Hz in the current study). This reduces the amount of
multiple copies of identical images that would be recorded if the
movement of the calibration object is too slow with respect to
the camera frame rate. Identical images lead to instabilities in the
calibration calculation and unnecessarily increase computation
time. Generally, it is recommended to use a slow capture frame
rate, and make sure that the calibration object is presented
with multiple different orientations relative to the cameras.
For a detailed and mathematical explanation of the calibration
procedure (see Hartley and Sturm, 1997; Kanatani et al., 2016).

To undistort the images from individual cameras, and to
calculate the relative camera positions, we used the technique
described by Li et al. (2013). One camera sensor will always
be used to define the origin of world space. After collection of
the images, the user can choose to see the text output of the
calibration and can set the lower boundary for the number of
matches. The SURF-like (Bay et al., 2006) difference of Gaussian
filter (Li et al., 2013) detectors must find a pair of images that can
be paired for further calibration. If the calibration returns with no
errors, then a root-mean square error (RMS) of camera positions
in space relative to each other is provided (Figure 1B). As the
positioning is an optimization and not a closed-formula solution,
the error depends on different parameters, such as camera

resolution, quality of focusing, number of recorded images, and
number of Gaussian filter matches. After calibration, a mask of
the experimental setup can be saved (although not required)
along with the project information, to improve post-processing
such as thresholding.

Marker Detection and Tracking
After configuration and calibration of the cameras, the “Record”
button in the “Collect Data” tab becomes available and the
recording can be started. Once a recording has been completed,
offline data processing can be started by pressing the “Process”
tab. Pressing “Triangulate Points” brings up the dialog window
for thresholding the markers from each camera’s image and
triangulating those points into world coordinates (Figure 1D).
Our marker detection method is analogous to how commercial
tracking systems work in that a specific color range, as supplied
by the user, is thresholded to detect the markers in an image.
This thresholding combined with the grouping of pixels close
to each other and then returning the center of that group
is how a colored marker on the object/animal is transformed
into a marker position. Typically, commercial systems rely
on the markers being IR reflective and of a spherical shape
to allow the use of ellipse fitting algorithms. Our approach
does not have these restrictions. To decrease computational
complexity in our software, the initial correspondence of
marker position in relation to the different cameras and the
colored marker in 3D space are provided by the user. All
subsequent correspondences are performed automatically as
described below. For thresholding, a range of colors according
to the HSV scale can be chosen. To help remove noise, which can
pose a severe problem when using this rudimentary approach, a
small configurable filter is available. The preview dialog allows
the user to fine tune the values for a particular capture session
before proceeding to the triangulation. Images being used for
triangulation will automatically be undistorted according to the
camera distortion coefficients that were calculated separately for
each particular camera during calibration.

Markers are not required to be 3D in shape when capturing
data, i.e. the IR reflective spheres used by commercial systems,
however, when capturing data, it must be ensured that at
least two cameras see the tracked points. While two cameras
are the minimal requirement for 3D triangulation, the quality
of triangulation is considerably improved using three cameras
(Stewenius et al., 2005). The benefit of using non-3D markers,
like tape or paint, on animals that are difficult to handle such
as snakes, is that such 2D markers are more likely to remain
attached to the animal. This benefit is offset by the need for more
cameras if markers are obscured from one or more cameras.
The optimal marker size depends on the camera resolution and
size of the object to be tracked. Markers and lighting need to
be adjusted to each other. Markers must appear bright enough
to allow a dissociation from other low light background colors.
On the other hand, markers must not be too bright, because of
a potential confoundment with reflections or glare from other
surfaces in the experimental environment. We thus recommend
choosing colors that have a very high value and saturation in the
HSV color space. This facilitates segmenting with both small and
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large amounts of light. Using a less vibrant color for a marker
is possible, but requires that the color is non-glossy; otherwise,
reflections on the marker surface can optically change the shape
of the marker and thus impair the function of the thresholding
algorithm. This could lead to larger errors such as the mid-point
of the marker shifting, or even optically splitting the marker into
two. In this case, noise smoothing operators in the thresholding
dialog are required to rejoin the marker. Accordingly, the larger
the markers, the larger the potential error that can occur during
triangulation, due to the number of pixels that the marker
covers and the problem of finding a representative pixel for
this group. When several pixels enter or leave the group, the
representative center pixel will most likely change as well. This
splitting can also occur because of changes in illumination of
the marker, i.e. slight shadow on the marker. This is a source of
error related to the lighting of the setup that cannot be fixed by
non-flickering lights.

In a perfect situation, where the cameras in a setup have
perfect intrinsic and extrinsic calibration matrices, i.e. the
parameters of the camera and its position to every other camera is
perfectly known, the triangulation of corresponding pixels across
cameras is straightforward. A ray extends from each camera
sensor through the corresponding pixel in question. In a perfect
setup, these projection rays would intersect in 3D space. In
reality, however, there are many sources of noise that prevent
an intersection of these lines. These sources include noise in
the calibration of the camera, noise in how the camera sensor
converts light information, noise caused by the viewing of a 3D
object from different positions that might not view the object in
the same way, etc. When the lines don’t intersect, as is usually the
case, a method for finding the 3D point of intersection is required.
This means that a new pixel in each image needs to be found such
that all the projection lines through those pixels intersect in 3D
space. There are many metrics that can be used for determining
where this new pixel in each image is located.

To help correct for noise inherent in marker location
triangulation we used a technique described by Kanatani
et al. (2008) as “optimal correction,” but using the specific
implementation from Kanatani et al. (2016), that translocates
the marker’s center pixel in the image space a minimal amount
such that all projection lines from the cameras intersect again
in 3D space. This is known as minimizing the reprojection
error (geometric error), i.e. the error in pixel space of the
data point and its reprojection. In other words, this method
finds a pixel as close to the original pixel in the pixel space
for each camera such that the projection lines through those
pixels will intersect. Once the lines intersect again, the algorithm
of Direct Linear Transformation (DLT) (Sutherland, 1974),
which solves using the singular value decomposition (SVD),
can be used to calculate the 3D point represented by the
corresponding marker locations in each image. If DLT is
used without the geometric correction afforded by “optimal
correction,” or by another correction algorithm, then the SVD
in the equation has multiple possible answers. The algorithm
chooses the solution that minimizes the sum of least squares
distance, not in the pixel space, but in 3D space from the
projection lines of the data points to the point in 3D space

that satisfies the intersection constraint. Minimizing the error
in the pixel space is generally agreed to be an inferior solution
compared to minimizing the error in the geometric space,
i.e. the reprojection error (Hartley and Zisserman, 2003) (See
Supplementary Videos S1, S2).

When using three or fewer cameras, the globally optimal
translocation of data points according to geometric correction
can be provided by the polynomial algorithms of Hartley and
Sturm (1997) for two cameras, which was later extended by
Stewenius et al. (2005) to three cameras. However, as the number
of cameras grows, the size of the polynomial function to solve
becomes unwieldy. As described by Hartley and Kahl (2007),
Stewenius and Nister, in an unpublished work, calculated the
degree of the polynomial that would need to be solved for
views 2–7. They found 6, 47, 148, 336, 638, and 1081 to
be the respective order of the polynomial for calculating the
global optimal solution. This shows how quickly the number
of local optima of the cost function increases. For more
than three cameras, the search for a global optimal solution
is commonly done with optimization of a cost function or
gradient descent algorithms. These solutions for more than
three cameras, however, as mentioned by Hartley and Zisserman
(2003) can be quite computationally expensive as well as
difficult to program. Quite often these methods also rely on
assumptions regarding the source of the noise, e.g. Gaussian
distributed. We used the iterative method of Kanatani et al.
(2008) to minimize the geometric error without minimizing
a cost function or relying on any assumptions regarding the
source of the noise. Furthermore, as was shown in Kanatani
et al. (2008), since this method starts as an approximation of
the solution, it typically requires only a couple of iterations to
converge and, in the case of three or less cameras, to provide
the same solution as the closed form polynomial equations in
less time. In our experience with five cameras the algorithm
performs quickly and produces high quality results even with
the additional noise that is contributed by the movement of
marker center positions. These errors are discussed further
in Study 1 below.

Matching multiple points across multiple cameras is not a
trivial problem, as Munkres (1957) demonstrated. If we have M
cameras, finding the corresponding point from one camera in
the set of all other points in each of the other M-1 cameras is a
computationally intensive task. This problem can be solved for
two sets in O(N3), i.e. the time required to solve the problem
scales cubically with the number of inputs, assuming that there
are no further constraints to the matching. For more than two
sets and when there are additional constraints, such as that the
assignment over time stays consistent, these problems are still
an active area of research. A general solution to the problem
of triangulation of occluded points during tracking has also
proved elusive. Only basic methods for the tracking of points are
available in our implementation at the moment. Currently, for a
triangulation attempt, the user has to select the visible markers
in images from a single time step manually using an intuitive
GUI. The selection does not need to be pixel precise as the closest
visible marker will automatically be selected. This initial marking
helps to decrease the computational complexity of assigning
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matching points across camera views to a more manageable
problem. These starting positions are then used as the initial
starting positions for points in a Kalman filter (Kalman, 1960).
Using this initial configuration, the Hungarian algorithm, also
known as the Munkres-Kuhn algorithm (Munkres, 1957; Kuhn,
1959; Bourgeois and Lassalle, 1971), along with the Kalman filter,
which receives its step update information from the matching of
the Hungarian algorithm, are used to keep the point assignments
consistent through time. These algorithms are only used to
support the correct assignment of correspondence, while the
pixel positions of the marker come from the thresholding and
not from the steps of the filter. A high-level diagram of this
processing pipeline is shown in Figure 2. The user has the option
to force the algorithm to skip timesteps where not all markers for
each camera are visible. When the setup consists of more than
two cameras, the user can fall back to a set of fewer cameras
that have no occlusion for that timestep. An algorithm library
for correspondence is used to match corresponding points from
images taken at different angles. In the default case this library
is the Kalman filter and Hungarian algorithm combination
mentioned above. However, since this library is dynamically
loaded, the user has the option to write a correspondence
plugin for keeping the identity of thresholded points unique
through time, making it unnecessary to rely on the basic method
described above.

Our framework provides an API where these new algorithms
can be supplied to the framework without re-compiling the
codebase. This interface is basic in the sense that it provides
the points for each timestep, and expects the points to return
in ordered lists for each timestep. This creates an interface that
puts a minimal amount of constraints on the algorithms that
are used to process the point tracking data. More information
regarding the API for these algorithms can be found on
“https://gwjensen.github.io/SnakeStrike/”. This is where software
such as DeepLabCut (Mathis et al., 2018) or LEAP (Pereira et al.,
2019) can be integrated into SnakeStrike. This also allows data to
be processed by many different algorithms, if necessary. It further
offers the possibility for the user to maximize the constraints such

as how to handle obscured points, what to do when point labels
are swapped, etc.

Viewing Tracking Data
After triangulation, the data can be viewed by the built-in
3D point cloud viewer. This generates an animation of the
movement through time, and also allows stepping through each
individual timestep. A line connects the points in the order as
indicated by the user for disambiguation. This line is useful
for relating triangulated points to the body of the animal, but
does not directly reflect pose information of the animal. For
example, in the case of a snake, the line won’t follow the
contours of the snake unless the markers are spaced with minimal
distance to each other. The points are also of different colors
to prevent ambiguity when viewing the motion of the points
through time (Figures 3A2,B2,C2). The triangulation performed
by SnakeStrike does not perform any direct filtering or smoothing
on the triangulated points over time. It only provides a simple
forward-backward filter as part of the GUI window to allow the
user to see how filtering or smoothing could improve the data.

Procedures for Study 1: Measurement of
Accuracy
The accuracy of SnakeStrike was determined under particular
control conditions, that, however, differed with respect to the
experimental setting used in study 2 for the strike movements of
snakes (e.g. cameras, lighting conditions, etc.). The accuracy of
the system was determined with a robotic arm that reproducibly
moved an artificial object to calculate the error level for the
calibration technique and illustrated the effect of different
recording conditions. The setup consisted of a robotic arm
(Model: “Franka Emika Panda,” Franka Emika GmbH, Munich,
Germany) used to move a flat plane with affixed markers in a
specific spatial configuration (Figures 1E,F and Table 1). Robotic
arm motion allowed for precise movements with identical
trajectories, while parameters such as speed were altered under
defined conditions. With this approach two types of camera
lenses, two different marker dimensions, and two different

FIGURE 2 | Diagram depicting the flow of data during the processing of images which results in a 3D triangulated point of the markers being tracked. The variable S
is the set of markers as they exist in the real world with St=0 being the first time step in the image capture series. The information for initial point correspondence is
entered by the user, via the labeling GUI. The variable Vt,j is the image pixel position of the markers for time step t and camera j. Variables with a hat such as V̂t,j or Ŝt

represent calculated guesses as to the true values Vt,j and St, respectively. The arrow with the marking “KFP” is a Kalman filter prediction, and the boxes “Thresh,”
“HA,” “OC,” and “Tri” indicate the color thresholding algorithm, the Hungarian algorithm, the optimal correction algorithm, and the triangulation algorithm,
respectively.
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FIGURE 3 | Experimental setting for capturing and analyzing snake strikes in study 2. (A–C) Raw images of a strike of an amazon tree boa (Corallus hortulanus) at
three different time steps: at a stationary position (A1), and approximately in the middle of the strike (B1,C1). The large black circle behind the snake is the horizontal
X-ray emitter, while the vertical X-ray emitter above the snake is out of view. Corresponding triangulation is plotted as output by the SnakeStrike software for the
corresponding images (A2–C2). The coordinate system has been rotated such that triangulated points and images have the same viewpoint. Each marker (1–5) on
the snake is depicted by a different color label in the triangulated data, starting with the red (1) point and ending with the yellow point (5) in (A2–C2); a red line
connects all points in the triangulation. This line corresponds to the marker positions on the snake from rostral to caudal and is not based on pose estimation. The
direction of the line is defined by the user during triangulation. The data shown in plots (B,C) are 86 images (114.7 ms) apart.

movement speeds were tested. The definition of the exact
distances between the points allowed calculating the error in 3D
triangulation between all points. The affixation of the points to a
plane allowed calculating the error of the points from the plane
that fits all points with the least error.

The basic experimental setting was as follows: placement of
three cameras, oriented around the robotic arm (Figure 1F).

Bright neon green markers (small: 10 mm × 10 mm; large:
22 mm × 22 mm) were attached at specific locations on a flat
piece of medium-density fiberboard to ensure that the markers
were aligned in the same spatial plane; the chosen marker color
was unique and did not occur on objects anywhere else in the
cameras’ field of view. For the Fujinon DV3.4x3.8SA-1 (Fujifilm,
Tokyo, Japan) lens, the distance between cameras and marker
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TABLE 1 | Distance between markers on the calibration object used for Study 1.

1 2 3 4 5

Small mark number

1 0 72.0 80.5 101.8 72.0

2 0 36.0 72.0 101.8

3 0 36.0 80.5

4 0 72.0

5 0

Big mark number

1 0 84.0 93.9 118.8 84.0

2 0 42.0 84.0 118.8

3 0 42.0 93.9

4 0 84.0

5 0

Measurements are all in mm.

plane was about 110 cm (Figure 1E). For the Ricoh FL-CC0614A-
2M (Ricoh, Tokyo, Japan) lens, the distance was increased to
∼175 cm, because of the longer focal length of the lens. As the
cameras had to be moved, calibration differences as well as lens
differences were tested. Each capture session was completed with
the cameras set to an image size of 640 × 480 pixels at a frame
rate of 750 Hz. For each capture, 6000 images were recorded. For
triangulation, the thresholding viewer tools of SnakeStrike were
used and set to a color range with the most correct detection of
the markers and minimum false-positive detections.

Procedures for Study 2: Strike Movement
of the Amazon Tree Boa (Corallus
hortulanus)
The tracking framework was applied for the first time ever on
living animals in combination with biplanar X-ray to capture
fast snake strikes. The field of view of the X-ray tubes was
too small to encompass the entire strike of the snakes while
still providing adequate resolution. Therefore, an additional data
capturing method was required to compare local information
obtained from the biplanar X-ray motion capture with global
snake movement information. This multi-modal data and the
analysis of the resulting data fusion is not a component of the
tracking system, and thus out of scope. Nevertheless, we were
able to assess the usage of the system with live animals and to
demonstrate that this stand-alone 3D motion tracking system can
easily be integrated in existing experimental set-ups to record
multi-modal data sets.

The experiment included four amazon tree boas (Corallus
hortulanus) with a snout-vent-length (SVL) of 100–120 cm.
Snakes of either sex and a body mass of 23–69 g were
obtained from the in-house animal breeding facility at the
Chair of Zoology at the Technical University of Munich. Snakes
were kept at a temperature of 22–30◦C on a 12 h:12 h
light:dark cycle. Permission for the experiments was granted
by the respective governmental institution for animal welfare
(Thüringer Landesamt für Verbraucherschutz; code: 15-003/16).
For the experiments, five cameras running at 750 Hz at a spatial
resolution of 640× 480 pixels were used resulting in 7500 images

per camera per capture sequence. This required ∼11GB RAM
(We used the Bayer BG8 image format) and ∼7 GB disk space to
record and store one capture, excluding any memory or storage
space to run SnakeStrike. The orientation of the snake in space
when anchored to a branch represented a difficult condition to
reliably capture images as snakes can coil back onto themselves,
thus potentially occluding markers. Additionally, the placement
of markers on the snake, though spaced out along the body
of the snake, can end up next to each other when the snake
forms its characteristic S-shaped curves. Therefore, multiple
cameras were necessary such that at least two cameras saw the
markers at any timepoint.

Avery No. 3320 multipurpose labels (Avery Dennison
Corporation, Glendale, CA, United States) were used as markers
as they can be stained with any suitable color, and have a good
adhesion, without irritating the skin. The labels were painted
in a light blue color as it would be the only incidence of that
color in the experimental setting. There were blue markers on the
body and an additional red marker on the head because the head
becomes obscured by the opening of the mouth as described by
Cundall and Deufel (1999) and the X-ray tubes did not allow for
setting up cameras directly above the snake (Figures 3A1,B1,C1).
To reduce errors and to avoid correspondence switching of
the markers, the body and head markers had different colors.
Accordingly, the two marker colors were triangulated separately
and then required post-processing to fuse the data manually
using a simple script.

RESULTS

Study 1: Measurement of Accuracy
The accuracy of the tracking system was determined by using a
robotic arm for the generation of a movement of the flat plane
through the visual field of the cameras (Figures 1E,F). Based
on the variations of the experimental protocol, it was possible
to determine the errors related to the different configurations.
To provide an intuitive understanding of the performance
abilities of the system, we also converted errors from absolute
3D world space measurements to approximate pixel space
equivalencies. Figure 4A (Supplementary Figure S1A) and
Figure 4B (Supplementary Figure S1B) illustrate the errors
resulting from running the same movement at two different
speeds, two different lenses, and two different marker sizes. The
faster robotic arm speed covered the same motion trajectory as
the slower speed, but also covered a slightly different motion
at the end due to the faster movement. This was expected
as it produces the same trajectory as the movement at the
slower speed, but over a shorter amount of time. Details of
the results with different marker size, lenses, and movement
speed were plotted in the various rows and columns in Figure 4
and Supplementary Figure S1. A major outcome of these
experiments was the observation that neither the change of lenses
nor the speed of the movement has a substantial effect on the
accuracy of the reconstruction. The latter finding was also not too
surprising given that the movement speed was far slower than the
camera frame rate (750 Hz) for these experiments.
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FIGURE 4 | Study 1: Error in marker location while the fiberboard with attached markers was moved through space by the Franka Emika Panda robotic arm.
Parameters: two marker sizes and two relative speeds of movement of the markers. Data is shown for one camera lens (Fujinon DV3.4x3.8SA-1) only. In
Supplementary Figure S1 additional data recorded with a second camera lens (Ricoh FL-CC0614A-2M) are presented. (A) Each boxplot refers to an interpoint
distance error between two points of known distance in the calibration object (Table 1); the numbers on the x-axis represent the points and are separated by a
hyphen. (B) Marker distance from the best-fitting plane for all markers.

The largest visibly observed differences were found for the
size of the markers, with an increase of ∼2–3 mm (∼2 pixels)
in the average error per point when using larger markers. This
was likely due to the fact that the larger the marker, the more the
center of the marker potentially shifts. This shifting can be caused
by parameters such as changes in illumination, color intensity,
or visibility. It is noteworthy, however, that the planar error did
not change between the two marker sizes. In order to better
understand the effect that aspects such as viewing angle, lighting,
or color intensity changes have on the accuracy, stationary images
were collected. Figures 5A,B show the respective distance errors
between points and the distance from the closest fitting plane,
respectively. During all captures, 6000 images were acquired at
a frame rate of 750 Hz. In this case, small markers were used and
each plot represented the position of the fiberboard relative to the
main camera. The positions were as follows: “facing downwards,”
“facing perpendicular,” “slanted right,” “slanted left,” “slanted
up,” and “slanted up with a sharper angle.” It is noticeable that
the error ranges for “slant right,” “facing downwards,” and for

“slanted up with a sharper angle” were considerably larger than
for the other capture angles. Variances for both of these positions
ranged mostly from 4 to 6 mm (∼3–4.5 pixels), while other
positions tended to have less than 4 mm (∼3 pixels) of variance.
The markers perpendicular to the camera as well as the “slant left”
capture error ranges were considerably smaller than reported for
moving markers. Markers at other angles relative to the camera
had error variances comparable to those during motion captures.

To better explain the source of these errors in the
triangulation, the original pictures were reanalyzed to potentially
discern differences between the positions that showed a smaller
error variance and those that showed a larger variance. The first
noticeable difference was that the angle of the marker board
relative to the camera was larger in the “slanted right” compared
to the “slanted left” capture configuration. A similarly sharp angle
was also present relative to one of the cameras in the “slanted up
with a sharper angle” capture condition. Thus, the sharper the
angle of the camera optical axis relative to the marker, the smaller
the marker from the view of the camera. The resultant smaller
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FIGURE 5 | Study 1: Error in marker location with a stationary fiberboard across 6000 time steps. (A) Stationary markers viewed from different angles by the center
camera. Each boxplot refers to an interpoint distance error between two points of known distance in the calibration object (Table 1). The numbers on the x-axis
represent the points and are separated by a hyphen. (B) Distance of markers from the best-fitting plane for all markers (left). Movement of triangulated points in 3D
from their mean while markers were stationary (right). (C,D) Same data as shown in (A,B) but post-processed with a Kalman filter. For plots of the remaining data
post-processed with a Kalman filter (see Supplementary Figure S2).

viewable marker size combined with color intensity differences
due to the angle relative to the camera caused the center point of
the marker to move with either the flickering of the light source or

the change in illumination caused by the angle. Part of the error
was likely due to the fact that the triangulated points provided
by SnakeStrike have not been filtered or smoothed through time.
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To demonstrate the effect that a filter would have on the error
variance, the data from Figure 5 were processed by a simple
Kalman filter (Kalman, 1960). As illustrated in Figures 5C,D and
Supplementary Figure S2, it was clear that the use of such a filter
drastically reduces the error variance for both the interpoint error
as well as the planar error, indicating the necessity to apply such
a simple and easy to implement post-processing to obtain even
more reliable motion tracking.

Analysis of the data collected from this experimental paradigm
showed that even though a high frequency fluorescent bulb was
used as the main light source, a minor oscillatory flicker occurred
in the image sequence. This introduced a noticeable effect on
the accuracy of marker positions as the flicker significantly
changed the color characteristics of the markers with respect to
saturation and hue. To precisely quantify the error, introduced
by the flickering light, a second test of the accuracy object was
performed in a new setup where the object remained stationary
in a position that was perpendicular to the center of three
cameras. In this second experimental setting, data was recorded
using a completely separate location with a bright light source
consisting of four AQ Aquaflora 54-watt fluorescent bulbs that
did not produce any light flickering, and the spacing of the
cameras was similar to the original setting. The respective data
are presented in Supplementary Figures S3B,C, S4B,C and give
a clear approximation of the error that the flickering of the light
has introduced in the originally collected data (Supplementary
Figures S3A, S4A), i.e. an average spatial error difference
of maximally 1 mm (∼1 pixel) with considerably increased
variances, 2–3 mm (∼2 pixels) for the flickering data error. As
the errors for both the flickering and the non-flickering light
condition show the same trends, there is still a systematic error
in the triangulation of the system. Given that the data obtained
in the flickering and non-flickering light condition used different
camera calibrations, it is more likely that the residual error
derived from inaccuracies in the calibration object, or an error
in the triangulation and rudimentary thresholding algorithms,
though it is nevertheless still small in magnitude.

Study 2: Strikes of the Amazon Tree Boa
(Corallus hortulanus)
In the framework of the experimental setting, 20 snake strikes
were recorded, out of which 15 were used to provide tracking
data that could be fully processed by SnakeStrike (Figure 6).
The meta-information regarding successful strikes is presented
in Table 2. Captures 19 and 20 derived from a smaller snake
and thus were not included. Captures 14 and 16 used a rather
strong heat element as infrared target to elicit the strike instead
of the IR emitter that was used for the other strikes. This strong
heat element produced visible light that affected the ability of
SnakeStrike to properly track the markers. Capture 11 did not
yield a consistent set of images, likely because of partially missing
data from one of the 5 cameras and therefore was excluded from
further analysis. Details regarding the velocity of each strike over
time is presented in Figure 6. The dots indicate the calculation of
the velocity for each timestep using 3D triangulation information.
The value for each individual dot was calculated as the change

in distance between two subsequent timesteps, where a timestep
was denoted by a captured image. There are two lines for each
capture plot with one showing the best fit for the trial data
and the other indicating the average best fit for all trials of a
particular snake. Data points that did not allow an analysis were
removed from the plot (red bars) based on a velocity threshold
of 2.5 ms−1. This omission of data typically occurred when the
identity of points was swapped for a few timesteps, or when
the thresholding process found a different reflection or source
of color than the marker in question and assigned a new – but
often only temporary – point as marker for that timestep. An
example for the velocity change of a snake strike is plotted at the
lower right of Figure 6 as the best fitting curve for all snake strike
trials in comparison to the best fitting curve for all trials of each
individual snake.

DISCUSSION

As indicated previously for machine vision in social interaction
studies (Robie et al., 2017), when individual animals are
visually indistinguishable, the task of tracking in the presence
of occlusions or partial overlap is an unresolved problem. For
snake motion tracking, a similar problem exists as positions
on the body surface of the snake are nearly identical, such as
when the snake skin consists of a repetitive pattern. This makes
markerless tracking methods, such as DeepLabCut (Mathis et al.,
2018), much harder to employ successfully on patterned snakes.
Markerless annotation programs such as DeepLabCut further
require a set of manually labeled images to train the software.
In the case of DeepLabCut, this training can require a couple
of hundred images per camera, though in practice a smaller
number can be sufficient, and if the camera is moved, it might
require re-labeling of a set of new images from that camera.
Furthermore, DeepLabCut does not provide 3D triangulations
of annotated points. On the other hand, non-patterned skin can
also be problematic as large sections of the snake surface look
very similar and indistinguishable causing specific positions to
be difficult to discern with sufficient spatial resolution. With the
snake moving and changing body shape in a very short period
of time, the labels assigned to these markers will be swapped in
most cases, unless the system is able to uniquely identify and
track a particular marker over time. This is implemented in many
systems by using multiple markers as a single marker and putting
them into a unique configuration scheme that is identifiable by
the system (Theunissen et al., 2017), thus filling up even more
skin space with markers. Unfortunately, the maintenance of the
spatial configuration can be also very problematic since some
animals (e.g. insects or small birds) are too small to carry an
extra payload or are able to remove these markers very easily
(e.g. snakes or squids). For example, a snake easily twists itself
and effortlessly removes even the smallest markers. This is the
major reason why studies such as that by Theunissen et al.
(2017) used rigid structures attached to the body and head of
the animal as markers. This method allows motion capturing of
the whole animal as body and head can be tracked even when
there is occlusion of some markers. In a large system with many
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FIGURE 6 | Study 2: Snake strike velocity over time (A) 3D positions in study 2 of each snake’s head for each trial are plotted to illustrate the velocity changes during
the strike. In some trials, e.g. Y4 markers were obscured from the view of at least one camera resulting in a loss of correspondence as a new and usually temporary
point was assigned to be the marker location. These time steps were removed using a velocity threshold of 2.5 ms-1 (red vertical bars). (B) Group aggregate velocity
statistics for all snakes individually and as mean across all snakes tested in this study.

cameras the triangulation is robust to marker loss through the
view of many cameras. Unfortunately, this method is not suitable
when attempting to capture the kinematics of the animal or the
kinematics of particular appendages.

SnakeStrike is a framework that allows researchers in animal
tracking to use one piece of software from experiment start
to finish and in combination with high-speed cameras to save
time in the processing of 3D triangulation data for animals
that can be difficult to track. Our preliminary data set on
boid snakes showed that this framework is suitable to track
even fast movements such as snake strikes and provides first
information about the instantaneous speed during the complete
strike of a boid snake. Although this data set primarily serves to
demonstrate potential applications of this framework, it already
showed that instantaneous strike speed has a similar magnitude,
when compared across different individuals. In addition, our data
on boid snakes shows similar strike profiles and trajectories as
described for strikes of viperid snakes (Kardong and Bels, 1998;
Herrel et al., 2011), suggesting the presence of a common motor
program for executing strike behavior. Similar experiments with

an increased number of markers placed on the snake body, would
also allow for a further, more detailed analysis of the contribution
of typical loop formations in strike progression.

The data presented in Study 2 shows that the new framework
presented here allows for collection of data even from vastly agile
animals without the necessity of purchasing costly commercial
systems or having to combine multiple other software solutions.
Despite room for further improvement, the system provides
scientists with new options and another alternative to existing
systems such as DLTdv (Hedrick, 2008) to record novel data
sets. Some drawbacks of the system derive from the necessity
to simultaneously save the images from multiple high-speed
cameras, which requires a large amount of memory for the initial
capture, high CPU load for processing, and a large amount of
hard drive space for long term storage. This requires a large
upfront cost for a computer, although the computer can also
be used for other tasks, and still costs only a fraction of a
commercial system. However, the storage of the raw data, allows
recalculations and reanalysis at any time (see below). Since
changes of light intensity, shadowing, and occlusion of markers
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TABLE 2 | Strike meta-data as calculated from initial forward movement of strike
until start of head retraction.

Trial Snake Duration (s) Distance
(m)

Speed
(ms−1)

Max Velocity
(ms−1)

1 Y4 0.0866458717 0.0958 1.1055 1.6393

2 Y4 0.1359673678 0.1731 1.2732 1.8036

3 Y4 0.1506305153 0.2136 1.4182 1.9968

4 Y4 0.0786477912 0.0829 1.0542 1.8137

5 Y2 0.1146391533 0.1461 1.2743 1.6408

6 Y2 0.1066410728 0.2192 2.0556 2.3136

7 Y2 0.1306353142 0.1472 1.1270 2.1715

8 Y2 0.1426324349 0.1567 1.0984 1.6513

9 Y2 0.1652936629 0.1419 0.8583 1.2661

10 Y2 0.1986189981 0.1573 0.7920 1.3873

12 B5 0.1959529713 0.1901 0.9700 1.4633

13 B5 0.1746247567 0.1695 0.9705 1.3763

15 B5 0.1093070996 0.0968 0.8854 1.4035

17 B5 0.1479644885 0.1462 0.9878 1.3030

18 B5 0.155962569 0.1468 0.9411 1.3333

All Mean 0.1396109378 0.1522 1.1208 1.6376

can occur within a given recording session, thresholding color
from the images can be complicated and time consuming. The
impact of this issue can be reduced, though not completely
eliminated, by pre-tests of the color(s) to be thresholded in the
actual setting, as well as by strict adherence to a consistent
experimental environment and regime.

The benefits of this framework considerably compensate for
the few disadvantages, also because in many experiments, the
latter can be at least partially circumvented. The reduced upfront
costs compared to commercial motion tracking systems allows
greater ability to incorporate motion tracking at high speed in
animal studies. As shown in Study 1, the error in the system
is small with regard to normally occurring sources of errors
such as flickering lights, color thresholding problems, or marker
identity swapping. For animals in which affixing large 3D markers
is impossible because the animal might remove the markers or
they do not remain affixed, this is a particular improvement.
In studies of animal behavior, the goal usually is to obtain the
largest amount of usable data as possible. Being able to store
and reassess all originally captured images, rather than having
to only rely on calculated 3D points is a very big advantage,
since various additional analyses can be performed offline. This
indicates that the acquired information can be used not only for
the initial, principal aim of a project, but also allows answering
novel questions without the necessity to perform a second
experiment. Since all 3D points are decoupled from the images,
the generation of the points in terms of decrease in error can be
improved by new methods in the future. The data generated from
older studies can therefore be re-interpreted or interpreted in
greater detail, when, for example, new algorithms for coping with
occlusion of tracking markers has been developed. Triangulation
of data collected today would suffer from this aspect of the
current state of the art in algorithms. However, if this problem
is improved, these data can be easily re-interpreted with new
algorithms and possible new insight can be obtained, without

having to re-run tedious and often difficult and time-consuming
experiments. SnakeStrike brings the functionality of several open
source projects together in a way that is highly beneficial to
researchers who have no access to expensive motion capture
systems. Researchers who work with non-standard and especially
fast-moving animals now have an affordable option to exploit
novel experimental ideas. In addition, those interested in testing
new algorithms for object correspondence over time can generate
real-world data sets very quickly and easily, or test ideas on
previously collected data.
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markers was moved through space by the Franka Emika Panda robotic arm.
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Parameters: two marker sizes and two relative speeds of movement of the
markers. Data is shown for one camera lens (Ricoh FL-CC0614A-2M) (A) Each
boxplot refers to an interpoint distance error between two points of known
distance (Table 1) in the calibration object; the numbers on the x-axis represent
the points and are separated by a hyphen. (B) Marker distance from the
best-fitting plane for all markers.

FIGURE S2 | Same data as shown in Figures 5A,B, but post-processed with a
Kalman filter to illustrate the improvement by filtering or smoothing of the
triangulated data for the analysis. (A) Each boxplot refers to an interpoint
distance error between two points of known distance in the calibration object
(Table 1). The numbers on the x-axis represent the points and are separated by a
hyphen. (B) Distance of markers from best-fitting plane for all markers (left).
Movement of triangulated points in 3D from their mean while markers were
stationary (right).

FIGURE S3 | Study 1: Effect of light-flickering on inter-marker distance error
variance. The markers were stationary and perpendicular to the cameras’ position.
Each boxplot refers to an interpoint distance error between two points of known
distance in the calibration object (Table 1). The numbers on the x-axis represent
the points and are separated by a hyphen. (A) Example of a trial where flickering
was present in the light source. (B) Example of a trial in a different setting where
light-flickering was absent. (C) Example of a trial in the same setup as in (B), but
with a different camera calibration.

FIGURE S4 | Study 1: Same data as in Supplementary Figure S3, but with the
error displayed as the distance of the marker from the best-fitting plane for all of
markers. (A) Example of a trial where flickering was present in the light source. (B)
Example of a trial in a different setup where light-flickering was absent. (C)
Example of a trial in the same setup as in (B), but with a different
camera calibration.
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