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Introduction: The amygdala is known to play a role in mediating emotion and possibly
addiction. We used probabilistic tractography (PT) to evaluate whether structural
connectivity of the amygdala to the brain reward network is associated with impulsive
choice and tobacco smoking.

Methods: Diffusion and structural MRI scans were obtained from 197 healthy subjects
(45 with a history of tobacco smoking) randomly sampled from the Human Connectome
database. PT was performed to assess amygdala connectivity with several brain
regions. Seed masks were generated, and statistical maps of amygdala connectivity
were derived. Connectivity results were correlated with a subject performance both
on a delayed discounting task and whether they met specified criteria for difficulty
quitting smoking.

Results: Amygdala connectivity was spatially segregated, with the strongest connectivity
to the hippocampus, orbitofrontal cortex (OFC), and brainstem. Connectivity with the
hippocampus was associated with preference for larger delayed rewards, whereas
connectivity with the OFC, rostral anterior cingulate cortex (rACC), and insula were
associated with preference for smaller immediate rewards. Greater nicotine dependence
with difficulty quitting was associated with less hippocampal and greater brainstem
connectivity. Scores on the Fagerstrom Test for Nicotine Dependence (FTND) correlated
with rACC connectivity.

Discussion: These findings highlight the importance of the amygdala-hippocampal-ACC
network in the valuation of future rewards and substance dependence. These results
will help to identify potential targets for neuromodulatory therapies for addiction and
related disorders.
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INTRODUCTION

The amygdala is a complex and heterogeneous structure with
multiple sub-nuclei that exhibit differential connectivity with
other brain regions (Swanson and Petrovich, 1998; Saygin et al.,
2017) through which it mediates a wide range of behavioral
responses to emotionally relevant information (Mormann et al.,
2017). Although the amygdala was traditionally thought to
mediate fear and aversive behavior, more recent evidence has
demonstrated its role in appetitive behaviors, including reward
learning, goal-directed behavior, and addiction (Wassum and
Izquierdo, 2015). In rats, electrical stimulation of the basolateral
nucleus of the amygdala (BLA) reinstates cocaine-seeking
behavior, and inactivation of the central nucleus reduces the
effect of punishment on cocaine self-administration (Xue et al.,
2012). Amygdala volume also has been related to substance abuse
as smaller right amygdala volumes have been associated with
externalizing behaviors and cigarette smoking in adolescents
(Cheetham et al., 2018).

The amygdala is a central node within a reward-related
network, with connectivity to other key limbic cortical and
subcortical structures that underlie reward-seeking behavior
and addictive behavior. When exposed to smoking stimuli,
tobacco smokers have repeatedly shown increased blood flow
to a functional network involving the amygdala, nucleus
accumbens (NAc), orbitofrontal cortex (OFC), hippocampus,
and insula (Wilson et al., 2004; Franklin et al., 2007; Dagher
et al., 2009). Imaging studies have also revealed an association
between cocaine cravings and increased dopamine release in
the amygdala, NAc, OFC, and anterior cingulate cortex (ACC;
Koob and Volkow, 2016). Furthermore, amygdala connectivity
modulates reward valuation where disconnection between
the amygdala and ACC biases choices in favor of a low
effort, small reward over a large reward at greater effort
(Floresco and Ghods-Sharifi, 2007; Wassum and Izquierdo,
2015). Similarly, the functional disconnection between the
amygdala and insula abolishes the ability to observe outcome
devaluation during an instrumental conditioning task (Parkes
and Balleine, 2013). Along these lines, relapse in drug
addiction has been partially attributed to changes within
the amygdala-hippocampus-NAc circuit. In animal models of
cocaine dependence, electrical stimulation of the amygdala
or the hippocampus elicits long-lasting dopamine release
in the NAc which may underlie relapses in drug-seeking
behavior (Blaha et al., 1997; Floresco et al., 1998; Hayes
et al., 2003; Li et al., 2018). In addition to connectivity
with midbrain dopaminergic neurons, amygdala connectivity to
other monoaminergic nuclei within the brainstem contribute
to pathological behavior. For example, the pharmacological
blockade of the ventral noradrenergic bundle, which connects
the amygdala to noradrenergic nuclei within the brainstem,
leads to significant attenuation of heroin seeking behavior
(Shaham et al., 2000; Leri et al., 2002). Connectivity of
the amygdala with these structures likely influences addictive
and reward-related behaviors through combined influences on
reinforcement learning, reward valuation, and the subjective
emotional experience associated with reward consumption.

A common feature in addiction is the preference for
immediate reward even when the overall value of that reward
is relatively low. This phenomenon has been formally modeled
as temporal discounting in which subjects show a preference
for receiving smaller immediate rewards over larger rewards
in the future (McClure et al., 2004). Interpreted as a measure
of impulsive choice, it has been linked with substance abuse,
addiction, and relapse as well as a variety of neuropsychiatric
disorders (Ahn et al., 2011; Elton et al., 2017; Owens et al.,
2017). Tobacco smoking in particular has been associated with
temporal discounting (Roewer et al., 2015; Ghahremani et al.,
2018). Therefore, understanding the neural correlates of this
behavior may yield a better understanding of the neural basis
for maladaptive decision-making in individuals with various
addictions, including nicotine dependence.

Previous work has shown associations between temporal
discounting and several interconnected limbic structures,
including the amygdala, NAc, hippocampus, OFC, parietal
cortex, and ACC (Bertossi et al., 2016; Klein-Flugge et al.,
2016; Frost and McNaughton, 2017; Chen et al., 2018). Here,
we analyzed a large imaging and behavioral dataset to test for
potential correlations between the structural connectivity of the
amygdala to multiple reward-related brain regions and impulsive
choice and nicotine dependence. Through this approach, we aim
to evaluate the role of amygdala circuits in addictive behavior
and to provide potential connectivity-based targets for future
neuromodulatory therapies for nicotine dependence and other
forms of addiction.

Specifically, we focus on the use of probabilistic tractography
(PT) as a measure of the structural connectivity of the
amygdala to other reward areas. While invasive tract tracing
studies can be routinely used to study brain connectivity
in animal models of addiction, their use is precluded in
studies involving living human subjects. Therefore, MRI-based
tractography has been used to study structural connectivity
in human subjects. Increasingly, PT has been applied toward
elucidating the structural organization and connectivity of
the amygdala in vivo (Bach et al., 2011; Saygin et al.,
2011), and to test for correlation of amygdala structural
organization and connectivity with behavior (Greening and
Mitchell, 2015; Li et al., 2018). As such, PT offers a noninvasive
method of exploring how specific amygdala connections
may influence addiction-related behavior and may be a
promising clinical tool to evaluate potential imaging biomarkers
of addiction.

MATERIALS AND METHODS

Subjects
Data were obtained from the publicly available WU-Minn HCP
1,200 Subjects data release repository1 (Van Essen et al., 2013).
The scanning protocol was approved by the Human Research
Protection Office (HRPO), Washington University (IRB# 201
204 036). No human subject experimental procedures were
undertaken at the authors’ home institution. The participants

1https://www.humanconnectome.org/
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TABLE 1 | Demographics of study population.

N 197 (%)
Age

22–25 41 (20.8)
26–30 91 (46.2)
31–35 64 (32.5)
36+ 1 (0.5)

Sex
F 103 (52.3)
M 94 (47.7)

included in the HCP 1,200 Subjects data release provided written
informed consent as approved by the Washington University
IRB. From this repository, 200 total non-twin subjects were
randomly selected. The analysis was limited to 200 subjects based
on available computational resources and the costs of performing
the analysis. Of these, 45 reported a history of smoking tobacco.
Of the 200 total subjects, three subjects were excluded due to
incomplete diffusionMRI data and without a priori knowledge of
their smoking history. The remaining 197 subjects were included
in our analyses (Table 1).

MRI Acquisition
The data were acquired in a modified Siemens 3T Skyra
scanner with a customized protocol (Sotiropoulos et al., 2013).
The T1-weighted MRI has an isotropic spatial resolution of
0.7 mm, and the dMRI data have an isotropic spatial resolution
of 1.25 mm. The multi-shell dMRI data were collected over
270 gradient directions distributed over three b-values (1,000,
2,000, 3,000 s/mm2). For each subject, the multi-shell dMRI data
were collected with both L/R and R/L phase encodings using the
same gradient table, which were then merged into a single copy
of multi-shell dMRI data after the correction of distortions with
the HCP Preprocessing Pipeline (Glasser et al., 2013).

Probabilistic Tractography
PT was performed using FSL’s FMRIB Diffusion Toolbox
(probtrackx) with modified Euler streaming (Woolrich et al.,
2009; Jenkinson et al., 2012). Seed and target masks were
generated using the Harvard-Oxford subcortical atlas (Desikan
et al., 2006). Bilateral amygdala seed mask regions of interest
(ROIs) were created. Target masks included the dorsolateral
prefrontal cortex (DLPFC), hippocampus, insula, NAc, OFC,
rostral anterior cingulate cortex (rACC), and brainstem. The
brainstem was defined as the medulla, pons, and midbrain
excluding the cerebellum as depicted by the mask in Figure 1G.
All tractography was performed between each (right and left)
amygdala and the ipsilateral target masks except that the entire
brainstem (left and right side) was used as a target for each
amygdala. Each target mask was also a termination mask such
that tractography was terminated once a streamline entered the
target. Ipsilateral white matter masks were used as waypoints.
The ventricles and cerebellum were used as exclusion masks. We
used the ‘‘one way condition,’’ curvature 0.2, 2,000 samples, step
length = 0.5, fibthresh = 0.01, distthresh = 1 and sampvox = 0.0.
This resulted in 14 seed_to_target output files representing
a voxelwise map of the number of seed samples from each

amygdala to target. To calculate the connection probability
between each amygdala voxel to each of the seven targets,
we ran the FSL proj_thresh subroutine with a threshold of
1,250 on each probtrackx output. For each voxel in the seed
mask with a value above the threshold, proj_thresh calculates
the number of samples reaching each of the target masks as
a proportion of the total number of samples reaching any of
the target masks. This yielded a separate map of each amygdala
for each target with each voxel having a value between 0 and
1 representing the connection probability of that voxel to the
given target. This method normalizes connectivity within each
subject, controls for expected cohort-wide variation in amygdala
volume, and enables comparisons across subjects. Thus, there
were 14 maps for each subject (7 targets × 2 hemispheres).
To produce an overall probability of connectivity from each
amygdala to target, probabilities were averaged across all voxels
in each map. Next, we created a population connectivity
map across all 197 subjects. Each of the previously created
proj_thresh maps was registered to MNI 1 mm standard space,
thresholded at a level of 0.1 and binarized. These maps were
then added across all 197 subjects such that each voxel value
now represented the number of subjects with connectivity to
the target. FSL commands were performed using Amazon Web
Services (AWS)2 EC2 instances running in parallel. Each AWS
EC2 instance was an r4.large clone of an Amazon Machine
Image (AMI) running Ubuntu 14.04 with FSL software version
5.0.10. This allowed us to run tractography on all 197 subjects
simultaneously in parallel. FSL bedpostx directories for each
subject and the probtrackx output files were stored on an
Amazon S3 bucket.

Behavioral Assessments
As part of the screening process, all subjects were given
a comprehensive assessment of psychiatric and substance
use history over the phone including the Semi-Structured
Assessment for the Genetics of Alcoholism (SSAGA), which
is a well-validated diagnostic instrument used in numerous
previous large-scale studies, assessing a range of diagnostic
categories including tobacco dependence (Kozlowski et al.,
1994; Barch et al., 2013). In particular, participants were
scored as either low (1 point) or high (5 points) depending
on whether they met DSM criteria for tobacco dependence
with difficulty quitting (‘‘DSM tobacco dependence—difficulty
quitting’’). Other measures of tobacco dependence included
the Fagerstrom Test for Nicotine Dependence (FTND). All
tests were performed by WU-MINN HCP researchers (Barch
et al., 2013). None of the test data was collected by any of
the authors.

Temporal Discounting Task
The impulsive choice was measured using a paradigm originally
developed by Kirby (2009). The task identifies ‘‘indifference
points’’ at which a person is equally likely to choose a smaller
reward (e.g., $100 now) sooner rather than a larger reward
($200 in 1 year). Based on the work of Green and Myerson,

2http://aws.amazon.com
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FIGURE 1 | Representative examples of cortical (A–C,E) and subcortical (F–H) masks of the target brain areas and the amygdala (D, center) from a single subject.
Masks were derived from Freesurfer automated segmentation included in the HCP dataset and were used to perform probabilistic tractography (PT) from the
amygdala to each target. (A) Orbitofrontal cortex (OFC). (B) Rostral anterior cingulate cortex (rACC). (C) Dorsolateral prefrontal cortex (DLPFC). (D) Amygdala. (E)
Insular cortex. (F) Nucleus accumbens (NAc). (G) Brainstem. (H) Hippocampus.

an adjusting-amount approach was used in which the delay is
fixed but reward amounts are adjusted on a trial-by-trial basis
based on the subject’s choices (Estle et al., 2006). The area
under the discounting curve (AUC_200) was used as an index
of discounting (Myerson et al., 2001). All data collection was
performed by the WU-MINN consortium (Barch et al., 2013).

Statistical Analysis
All statistical analysis was carried out using the R software
package3. One factor analysis of variance (ANOVA) was used
for amygdala connectivity to target regions with Tukey HSD
used for multiple comparisons correction. For analysis of the
association of connectivity with impulsivity, Pearson product-
moment coefficients were calculated. For testing the association
between connectivity to target and difficulty quitting tobacco
smoking, a two factor ANOVA model was utilized with Tukey
HSD used for multiple comparisons for the interaction effect.

3http://www.R-project.org/

RESULTS

Using DTI data from 197 subjects, we performed PT from
the amygdala to the following seven pre-determined target
structures: whole brainstem, DLPFC, hippocampus, insula, NAc,
OFC, and the rACC (Figures 1, 2). The relative probability
of connectivity was averaged over all amygdala voxels and
this value then averaged across all subjects (Figure 3). The
amygdala displayed the highest probability of connectivity with
the hippocampus relative to other targets (one-way ANOVA
with Tukey HSD, n = 2,758, p < 0.001 for all significant
comparisons, Tables 2, 3).

Next, we tested whether connectivity of the amygdala to these
target structures was spatially segregated or diffuse across all
amygdala voxels. Individual connectivity maps were normalized
to MNI standard space, thresholded, binarized, and summed
across all subjects to determine a population connectivity map
for each amygdala voxel to each target (Figure 4). We found
that connectivity with the insula, NAc, DLPFC, and rACC was
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FIGURE 2 | Example of PT from the amygdala to the OFC (left) and the hippocampus (right) from a single representative subject. Highlighted areas represent the
number of streamlines passing through each voxel. The number of streamlines reaching each target mask was added and divided by the total number of streamlines
reaching any of the seven target masks to calculate the probability of connectivity between the amygdala and each target.

FIGURE 3 | Probability of connectivity from the amygdala to each target region. Note that the highest probability of connectivity is to the hippocampus (33%). Thus,
33% of all tracks from the amygdala to the above targets terminated in the hippocampus. DLPFC, dorsolateral prefrontal cortex; HIPPO, hippocampus; NAc,
nucleus accumbens; OFC, orbitofrontal cortex; ROST_ACC, rostral anterior cingulate cortex; one-way ANOVA, *p < 0.001.

relatively segregated with a preference toward the dorsolateral
amygdala. Meanwhile, connectivity with the brainstem and

hippocampus was relatively diffuse with a localization trend
toward the central, relatively medial amygdala.
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TABLE 2 | ANOVA for connectivity by target.

DF Sum Sq. Mean Sq. F-value Pr ( >F)

Target 6 28.21 4.702 1,267 <2e-16∗∗

Residuals 2,751 10.21 0.004
∗∗p < 0.001

TABLE 3 | Tukey HSD Multiple Comparisons for mean connectivity between the amygdala and each target structure.

Target comparison Estimate Std. Error t-value Pr ( >|t|)

DLPFC—BRAINSTEM −0.095179 0.004341 −21.927 <0.001 ∗∗

HIPPO—BRAINSTEM 0.183838 0.004341 42.352 <0.001 ∗∗

INSULA—BRAINSTEM −0.016964 0.004341 −3.908 = 0.00179 ∗

NAc—BRAINSTEM −0.088717 0.004341 −20.439 <0.001 ∗∗

OFC—BRAINSTEM 0.088728 0.004341 20.441 <0.001 ∗∗

rACC—BRAINSTEM −0.113867 0.004341 −26.233 <0.001 ∗∗

HIPPO—DLPFC 0.279018 0.004341 64.28 <0.001 ∗∗

INSULA—DLPFC 0.078215 0.004341 18.019 <0.001 ∗∗

NAc—DLPFC 0.006462 0.004341 1.489 = 0.75172
OFC—DLPFC 0.183907 0.004341 42.368 <0.001 ∗∗

rACC—DLPFC −0.018688 0.004341 −4.305 <0.001 ∗∗

INSULA—HIPPO −0.200802 0.004341 −46.261 <0.001 ∗∗

NAc—HIPPO −0.272556 0.004341 −62.791 <0.001 ∗∗

OFC—HIPPO −0.095111 0.004341 −21.911 <0.001 ∗∗

rACC—HIPPO −0.297705 0.004341 −68.585 <0.001 ∗∗

NAc—INSULA −0.071753 0.004341 −16.53 <0.001 ∗∗

OFC—INSULA 0.105692 0.004341 24.349 <0.001 ∗∗

rACC—INSULA −0.096903 0.004341 −22.324 <0.001 ∗∗

OFC—NAc 0.177445 0.004341 40.88 <0.001 ∗∗

rACC—NAc −0.02515 0.004341 −5.794 <0.001 ∗∗

rACC—OFC −0.202595 0.004341 −46.674 <0.001 ∗∗

∗∗p < 0.001, *p < 0.05

FIGURE 4 | Population maps of amygdala connectivity to each target structure. The scale indicated the number of subjects that showed connectivity from each
amygdala voxel to each target structure. For example, while the amygdala was homogeneously connected to the OFC and hippocampus, there was greater
segregation of connectivity to the insula, rostral ACC, and nucleus accumbens. DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; Rostral ACC, rostral
anterior cingulate cortex.
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FIGURE 5 | Pearson product-moment correlation of connectivity to the
target structure and the area under the delay discounting curve [area under
the curve (AUC)]. Connectivity between each target and the amygdala was
calculated. Subsequently, the correlation coefficient between amygdala-target
connectivity and the AUC of the temporal discounting behavior curve was
determined. Note that AUC is inversely related to impulsive choice in that a
high AUC indicates less discounting while lower AUC values indicate higher
discounting or more impulsive choice. Yellow bars indicate structures with
significant correlations with impulsive choice behavior. There was a significant
correlation between the hippocampus (r = 0.13) and the AUC (i.e., decreased
discounting). On the other hand, there was a significant negative correlation
between connectivity with the OFC (r = −0.13), insula (r = −0.11), and rACC
(r = −0.11) with the AUC (i.e., increased discounting; *p < 0.05, **p < 0.001).

We then evaluated the correlation between amygdala
connectivity to each target structure and temporal discounting,
using the area under the curve (AUC) for responses as an index
of discounting reward value as a function of delay. Connectivity
to the hippocampus was inversely correlated with temporal
discounting whereas connectivity to the OFC, rACC, and insula
were positively associated with greater preference for smaller,
more immediate rewards (Pearson product-moment correlation,
n = 197, hippocampus r = 0.13, p < 0.01; OFC r = −0.13,
p < 0.01; insula r = −0.11, p < 0.05; rACC r = −0.11,
p < 0.05, Figure 5, Table 4). There was no significant correlation

TABLE 4 | Pearson product-moment correlation for amygdala connectivity and
area under the curve (AUC) for the delay discounting task.

Target Estimate (r) p-value

DLPFC −0.022 0.657
rACC −0.106 0.036*
NAc 0.036 0.482
OFC −0.130 0.010**
INSULA −0.107 0.034∗

HIPPO 0.130 0.010**
BRAINSTEM 0.074 0.141
**p ≤ 0.01, *p ≤ 0.05

between the AUC and connectivity with the brainstem, DLPFC,
or NAc.

Addiction to nicotine, and substance abuse in general, has
been previously associated with impulsivity (Moody et al., 2016;
Hofmeyr et al., 2017). We sought to better characterize the
role of the amygdala’s structural connectivity to other brain
reward areas in mediating nicotine addiction. To this end, we
utilized behavioral measures of difficulty quitting and the FTND
scores as measures of severity of nicotine dependence. We found
a significant interaction effect between connectivity to reward
targets and tobacco dependence with difficulty quitting and
FTND scores. Comparisons revealed that connectivity of the
amygdala to the hippocampus was associated with low difficulty
quitting and connectivity with the brainstem was associated with
high difficulty quitting. There was also a trend of high difficulty
quitting associated with connectivity to the OFC and rACC but
this was not statistically significant [Two-factor ANOVA (Target,
Level of Difficulty Quitting), n = 45, p< 0.001, Table 5, Figure 6].
Similarly, amygdala connectivity with the rACC was significantly
correlated with higher FTND scores, indicative of dependence
(Table 6).

DISCUSSION

In this study, we utilize PT to compare the relative structural
connectivity of the amygdala to other brain areas involved in
reward processing to determine the correlation between this
connectivity and behaviors associated with reward processing.
The results show that an amygdala-hippocampal-OFC-ACC
network plays a role in the valuation of future rewards and
nicotine dependence. This is one of the highest-powered studies
to utilize PT to correlate the structural connectivity of the

TABLE 5 | Tukey pairwise comparisons for an interaction effect between target and difficulty quitting smoking for both levels of the “Difficulty Quitting” factor (low vs.
high).

Target Df 1 Df 2 F-Ratio p-value

BRAINSTEM 1 630 7.355 0.0069*
DLPFC 1 630 0.098 0.7549
HIPPO 1 630 23.879 <0.0001**
INSULA 1 630 0.097 0.7554
NAc 1 630 0.347 0.5563
OFC 1 630 1.362 0.2436
rACC 1 630 0.658 0.4177
**p < 0.001, *p < 0.01

Response Variable: Connectivity to Target.
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FIGURE 6 | Connectivity of the amygdala with each target and difficulty
quitting. The connectivity of the amygdala with each target was calculated.
Subsequently, an analysis of variance (ANOVA) was calculated with
connectivity as the dependent measure and target structure and difficulty
quitting (low = red vs. high = blue) along with their interaction effect using
Tukey HSD post hoc analysis. Yellow bars indicate statistically significant
findings. Connectivity of the amygdala with the hippocampus was associated
with less difficulty quitting while connectivity with the brainstem was
associated with greater difficulty quitting (Two factor ANOVA, n = 45,
*p < 0.01).

amygdala with impulsive choice and substance abuse. This
technique has been used before to segment the amygdala into
subnuclear components corresponding to its in vivo organization
(Bach et al., 2011; Abivardi and Bach, 2017; Saygin et al.,
2017). Our results focused on the connectivity of the amygdala
to brain areas implicated in reward and decision-making,
including the DLPFC, hippocampus, insular cortex, NAc, OFC,
and rACC. We also included the brainstem in our analysis
because of evidence that the amygdala modulates the activity
of midbrain dopaminergic neurons, and receives input from
brainstem nuclei, such as the locus coeruleus and nucleus
of the solitary tract in mediating behavioral and autonomic
responses to emotional stimuli (Veening et al., 1984; Petrov
et al., 1993; Rodríguez-Ortega et al., 2017). Of the pre-selected
brain targets, the amygdala had the highest probability of
connectivity with the hippocampus and OFC, followed by the
brainstem and insula, and lowest connectivity to the DLPFC,
NAc, and rACC (Figure 3). While functional connectivity
between the amygdala and all of these regions has been confirmed
in prior studies, the present study is the largest to date to
delineate structural connectivity to these areas and correlate
connectivity with impulsive choice and measures of nicotine
addiction. Furthermore, it is the first to show an association
of amygdala structural connectivity with both impulsive choice
and nicotine dependence. The higher probability of connectivity
with the hippocampus, OFC, and brainstem are particularly
interesting given that these regions have been previously
implicated in smoking behavior. For example, fMRI data shows
that hippocampal activation is associated with subjects assigning
a higher value to future rewards (Clewett et al., 2014). A
separate study identified an association between functional

TABLE 6 | Pearson product-moment correlation for amygdala-rACC connectivity
and the fagerstrom test for nicotine dependence.

Target Score Correlation coefficient p-value

rACC FTND 0.20 0.048*
*p < 0.05

connectivity of the hippocampus and the ACC and a reduction
in delay discounting when subjects invoked episodic future
imagination (Hu et al., 2016). This association between the
amygdala and memory for drug reward was corroborated by
our findings of an inverse correlation between delay discounting
and amygdala structural connectivity with the hippocampus
(Figure 5). However, we found that connectivity with the ACC
was related to preference for smaller sooner rewards. Our results
support the involvement of an amygdala-hippocampal-ACC
network in the valuation of future rewards. Others have proposed
that the specific role of the amygdala in reward may not lie in
Pavlovian or instrumental conditioned responding but rather
in reward learning in the context of changing incentive values
(Wassum and Izquierdo, 2015). Thus, connectivity with the
ACC and hippocampus may support the structural mechanism
underlying this phenomenon.

Performance on the delay discounting task has been
interpreted as a measure of impulsivity and a possible model
for substance abuse and relapse (Richards et al., 1999). For
example, it has been shown that less temporal discounting is
associated with a higher intention to quit smoking (Athamneh
et al., 2017). In this article, we show that connectivity between
the amygdala and hippocampus is associated with both decreased
delay discounting as well as less difficulty quitting (Figures 5, 6).
These findings support the concept that connectivity with
the hippocampus enhances smoking cessation behavior by
increasing the value of future rewards. On the other hand,
connectivity with the brainstem was associated with more
difficulty quitting. The brainstem is known to play a role in
the neuropharmacology of nicotine and is a direct target of
outputs from the central nucleus of the amygdala (Veening
et al., 1984). For example, nicotine may modulate brainstem
nuclei such as the ventral tegmental area, locus coeruleus, dorsal
motor nucleus of the vagus, and the nucleus of the solitary
tract through its activity at nicotinic receptors (Dehkordi et al.,
2015). Noradrenergic signaling from the locus coeruleus to the
extended amygdala is also associated with relapse to substance
abuse, including smoking (Smith and Aston-Jones, 2008). Thus,
structural connectivity between the amygdala and brainstemmay
mediate relapse to nicotine use.

In contrast to connectivity with the hippocampus,
connectivity with the OFC, rACC, and insula was associated
with preference for more immediate rewards (Figure 5). Based
on non-human primate anatomical studies, the OFC is known to
be directly connected to the amygdala (Cavada et al., 2000). The
relative roles of these two structures in reward are dissociable.
In rodent studies, lesions of the BLA increase preference for
smaller immediate rewards, while OFC lesions paradoxically
increase preference for more delayed rewards (Churchwell et al.,
2009). It is known that the OFC updates the incentive value of
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outcomes such as the effect of time on the devaluation of future
rewards (Wallis and Miller, 2003). Thus, increasing time delays
result in a devaluation of the corresponding reward, with the
updated value represented by the OFC (Ainslie, 1975). Here, we
show that greater OFC connectivity with the amygdala is linked
to a preference for more immediate rather than larger delayed
rewards. This was also reflected in our finding that increased
OFC connectivity was associated with more difficulty quitting
smoking, although this effect did not reach statistical significance
(Figure 6). We found a similar trend with connectivity to the
insula and rACC with higher connectivity associated with lower
AUCs reflecting a preference for more immediate choices. Also,
connectivity with the rACC was associated with higher FTND
scores of nicotine dependence (Table 6). Resting state fMRI has
shown that functional connectivity between the insula and ACC
and a monetary reward network is associated with increased
discounting (Li et al., 2013). However, their analysis did not
include the amygdala which may limit comparability with
our data. Taken together, our structural connectivity findings
support a dissociable role of the hippocampus compared to the
insula/OFC/rACC in the amygdala reward network.

To further validate connectivity results and potentially
inform targeting strategies for future neuromodulatory
therapies, we report topographical organization patterns of
amygdala connectivity (Figure 4). The amygdala is comprised
of several subnuclei which have been grouped according to
cytoarchitecture, neuroanatomical connectivity, and putative
function. The central nucleus (CeA) and the BLA are two
subnuclei that have been particularly implicated in the control
of emotional processes (Cardinal et al., 2002). The BLA is
constituted by the lateral (LN), basal (BN), and accessory basal
nuclei (ABN) with extensive projections to the neocortex and
NAc (Cardinal et al., 2002). Meanwhile, the CeA is generally
thought to regulate behavioral and autonomic responses via
strong anatomical connectivity with the brainstem (Cardinal
et al., 2002). Our tractography results are broadly consistent
with this organizational framework, where the NAc, DLPFC,
insula, and rACC most strongly connected to lateral portions of
the amygdala, while brainstem connectivity appeared relatively
medial (Figure 4).

Our findings may help to inform strategies and identify
potential targets of neuromodulatory therapy. Our group
previously reported an association between stimulation of the
BN and hedonic emotions (e.g., happiness and euphoria) in
PTSD patients (Avecillas-Chasin et al., 2020). This effect may
be important to note with regards to future neuromodulatory
therapies for addiction, especially given previous studies
describing the increase in NAc dopamine release and relapse
in drug-seeking behavior with non-specific BLA stimulation
(Blaha et al., 1997; Floresco et al., 1998; Hayes et al., 2003;
Li et al., 2018). Taken together with the topographical and
behavioral results related to amygdala connectivity, it may be
preferable to target stimulation toward the LN portion of the
BLA, to inhibit pathological connectivity with the insula and
rACC (which were found to be associated with more impulsive
decision making). Alternatively, if stimulation protocols could
be designed to enhance functional connectivity, there may be

benefits in targeting loci within the hippocampus to enhance
beneficial communication between the hippocampus and the
amygdala. Several other nodes within the tested network were
found to correlate with pathological behavior and merit further
investigation as potential targets of neuromodulation. For
example, greater connectivity between the amygdala and the
brainstem correlates with both impulsive decisions and greater
difficulty quitting smoking. We previously discussed several
possible brainstem nuclei which may underlie this behavioral
effect. Future, studies should be directed toward identifying these
nuclei and testing feasibility of targeting for neuromodulation.

The current study has several limitations. Discounting
behavior and addiction are complex phenomena with multiple
neurophysiological, environmental, and genetic influences. Here,
we attempt to correlate complex behaviors with discrete
structural imaging findings. We were limited to the HCP
database which only includes limited measures of smoking
dependence with the majority of subjects did not respond
to this questionnaire resulting in a highly powered temporal
discounting analysis, but a relatively lower powered nicotine
dependence analysis. Also, the temporal discounting monetary
task may have limited generalizability to substance abuse and
dependence (Lopez et al., 2015), and subjects did not undergo
other independent explicit impulsivity assessments such as
the Barrett Impulsivity Scale 11 (BIS-11). Other prior studies
have shown associations between tobacco dependence and
temporal discounting (Roewer et al., 2015; Ghahremani et al.,
2018). Given that our analysis was correlational, we cannot
definitively make conclusions regarding causality between these
correlated behavioral measures and connectivity. Finally, we are
skeptical of ascribing functional significance and directionality
to structural connectivity as measured by PT. Thus, while, we
describe an amygdala reward network with a tendency to view
connectivity as efferent projections from a central amygdala hub
to our target regions, it is equally valid to view the amygdala
as the target of axonal projections from these areas. Future
work must integrate functional neuroimaging and invasive
neurophysiological recordings to corroborate these structural
connectivity findings.
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