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Mapping animal performance in a behavioral task to underlying cognitive mechanisms
and strategies is rarely straightforward, since a task may be solvable in more than
one manner. Here, we show that bumblebees perform well on a concept-based visual
discrimination task but spontaneously switch from a concept-based solution to a
simpler heuristic with extended training, all while continually increasing performance.
Bumblebees were trained in an arena to find rewards on displays with shapes of different
sizes where they could not use low-level visual cues. One group of bees was rewarded at
displays with larger shapes and another group at displays with smaller shapes. Analysis
of total choices shows bees increased their performance over 30 bouts to above chance.
However, analyses of first and sequential choices suggest that after approximately
20 bouts, bumblebees changed to a win-stay/lose-switch strategy. Comparing bees’
behavior to a probabilistic model based on a win-stay/lose-switch strategy further
supports the idea that bees changed strategies with extensive training. Analyses of
unrewarded tests indicate that bumblebees learned and retained the concept of relative
size even after they had already switched to a win-stay, lost-shift strategy. We propose
that the reason for this strategy switching may be due to cognitive flexibility and efficiency.

Keywords: abstract concepts, adaptive decision-making, animal cognition, behavioral analyses, cognitive
flexibility, cognitive offloading, the law of least effort

INTRODUCTION

Cognitive flexibility reflects an individual’s ability to adaptively alter their behavioral strategy
following a changing environment (Wasserman and Zentall, 2006). A fundamental challenge for
animal cognition researchers is to decipher which strategies an animal uses in solving any particular
task (Shettleworth, 2001; Chittka et al., 2012). Indeed, there are often multiple ways for an animal
to solve a behavioral task.

Bees have been shown capable of learning various abstract relationships, for example rules about
target size (e.g., ‘‘pick the larger (or smaller) of two object sizes’’), amongst myriad impressive
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cognitive abilities (Perry and Barron, 2013; Chittka, 2017;
Skorupski et al., 2018). However, in some of these cases, it
may be that bees use a variety of different strategies to solve
the tasks they are confronted with Cope et al. (2018) and
Skorupski et al. (2018). One recent study showed that bees
can solve a spatial concept learning task using a simple visual
discrimination strategy through sequential scanning of stimuli
rather than needing to compare stimuli based on an abstract
rule, though some individuals may well follow such a rule
(Guiraud et al., 2018). In numerical cognition tasks, honeybees
may also use alternative cues that correlate with a number,
but are not in themselves numerical (Vasas and Chittka, 2019;
MaBouDi et al., 2020). Bees’ behavior in solving a delayed
matching-to-sample task is replicated by a model without any
neural representations of the abstract concepts of sameness or
difference (Cope et al., 2018). Even the same individuals may
have recourse to different solutions to the same task, depending
on the extent of training. For example, with an increased
number of training trials with a single pair of patterns, individual
honeybees have been shown to have a greater generalized
response to novel stimuli, i.e., the representation necessary to
discriminate subsequent visual patterns changes with extended
training (Stach and Giurfa, 2005). All of these findings highlight
the need for considering alternative strategies used by animals
in cognitive tasks. This does not just concern the traditional
dichotomy of ‘‘simple’’ vs. ‘‘complex’’ solutions to such tasks.
Different individuals may use different solutions that are equal
in complexity, depending on their particular path to figuring out
a solution.

Previous works have shown that honeybees can solve a task
that appears to necessitate learning the concept of relative size
and apply the rule to novel sizes within or outside the size range
they were trained (Avarguès-Weber et al., 2014; Howard et al.,
2017). As with the examples above, bees may use more than
one strategy to solve the same task, depending on the training
protocol and context. Here, we test bumblebees to determine
the strategies by which they cope with a relational rule learning
task (‘‘larger-than’’/‘‘smaller-than’’) and examine their behavior
over time to reveal the cognitive strategies used throughout
the training.

MATERIALS AND METHODS

Animals and Experimental Setup
Bumblebees (Bombus terrestris audax) from commercially
available colonies (Agralan Limited, UK), were housed
in a wooden nest-box connected to a flight arena
(100 cm × 75 cm × 30 cm). Bees were allowed access to a flight
arena through an acrylic corridor (25 cm × 3.5 cm × 3.5 cm).
Three plastic sliding doors located along the corridor allowed
controlled access to the arena. The arena was covered with a
UV-transparent clear acrylic sheet. The stimuli were presented
to bees on the gray-colored back wall of the arena. Colonies were
provided with ∼7 g irradiated commercial pollen (Koppert B.V.,
The Netherlands) every 2 days. Bees from three colonies were
used in this study.

Pretraining Phase
All bumblebee workers were recruited from a gravity feeder
containing 30% (w/w) sucrose solution placed in the center of
the arena. Outside of experiments, the colony was provided with
a 30% (w/w) sucrose solution from a small gravity feeder placed
inside the nest-box during the evenings. Successful foragers
on the arena gravity feeder were individually marked with
number tags, superglued to their thorax, for identification during
the subsequent experiment (Opalithplättchen, Warnholz and
Bienenvoigt, Ellerau, Germany). Each day of experimentation,
marked bees were pre-trained to find 50% (w/w) sucrose solution
from microcentrifuge tubes (5 mm diameter) at the center of
each of six white discs (7 cm diameter) on the gray-colored back
wall of the arena, horizontally 14 cm from each other vertically
9.3 cm (positioned as in Figure 1). These discs were made of
paper and covered with a transparent laminate to enable cleaning
with 70% ethanol in water (v/v). All stimuli were printed with a
high-resolution printer.

Training Phase
Each day, after several number-tagged bees had learned to find
reward from the tubes located in the center of the display
discs, one bee was randomly selected for the training phase, and
assigned at random to one of two groups to be trained either
to the ‘‘larger-than’’ or ‘‘smaller-than’’ relational rule learning
task. During the training phase, an individual bee was trained
on six discs (three of one size and three of a different size, but
the same type and color) on the back wall of the arena with
the same spacing as in pretraining, each displaying one of two
differently sized shapes (Figures 1A,C). During each training
bout, bees were able to freely land on any stimulus and left the
arena when they had fed to satiation. A bout was considered
a bee’s visit to the arena, landing on different stimuli until she
filled her crop and subsequently returned to her nest. Inter-trial
intervals were usually between 5 min and 10 min. Only bees
that completed the entire training phase and tests in 1 day were
included in the results. As a result, four bees were excluded from
the analysis process. During 30 training bouts, one group of bees
(n = 10) learned that the larger of the two shapes contained 30 µl
50% sucrose solution, and the smaller contained 30 µl saturated
quinine hemisulfate solution (larger-than rule). Another group of
bees (n = 8) learned the reverse contingency (smaller-than rule).

Between training bouts, each disc was rotated pseudo-
randomly so that the position of a shape varied across the six
discs in relation to the central microcentrifuge tube containing
sucrose solution (Figure 1C). The location, shape, and color
of stimuli sets were changed between bouts. The shapes used
in training varied in size (small, medium, large), type (circle,
rectangle, cross), and color (black, green, purple; Figure 1A).
Only one type and color of the stimulus was presented to
a bee in each bout and only two of the three sizes were
presented during one bout. The dimensions of the shapes were
as follows: small circle: Ø = 1.07 cm; medium circle: Ø = 1.97 cm;
large circle: Ø = 2.87 cm; small rectangle: 0.93 cm × 1.18 cm;
medium rectangle: 1.79 cm × 2.92 cm; large rectangle: 2.3 cm ×
3.94 cm; small cross: width of bars = 0.46 cm, length of
bars = 1.3 cm; medium cross: width of bars = 0.6 cm, length
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FIGURE 1 | Training and testing protocol. (A) Stimuli options used during training. (B) Stimuli options used for each of the three different unrewarded tests.
(C) Training and test protocol. Bees were trained for 30 bouts (visits to the arena before returning to the hive). All stimuli in panel (A) were used randomly across
bouts during training. Only two of the possible three sizes of shapes were presented during a single bout. Only one of the possible three colors and one of the
possible three shapes were presented each bout. One group of bees (n = 10) was trained to find a 50% sucrose solution at the center of the stimulus containing the
larger of the three shapes and bitter quinine solution at the smaller of the three shapes. Another group (n = 8) were trained on the opposite contingency. Once
training was complete, bees were subjected to three unrewarded tests (with one or two reminder/training bouts between each test to keep bees motivated). All tests
used small and large-sized shapes. The learning test used one randomly chosen type and color used during training. The novel shape test used one randomly
chosen color used during training but always a star shape that had not been used during training. The novel color test used one randomly chosen shape used during
training but always colored yellow, which had not been used during training.

of bars = 2.15 cm; large cross: width of bars = 0.96 cm,
length of bars = 2.87 cm. Note that there was large variability
between physical features of stimuli (Supplementary Figure S1).
For example, the total area of the medium rectangular was
larger than the total area of the large cross (see Supplementary
Figure S1A). This variability ensured the bees were not able to
solve the task by associating an absolute size of stimuli with
certain reinforcements. Several stimuli were paired with both
positive and negative reinforcements during the training phase.
For instance, medium size stimuli were paired with the positive
reinforcement in some training bouts while these were paired
with negative reinforcement in the rest of the training bouts. All
of these variations described ensured that low-level visual cues
could not be used to solve the task. Stimuli were cleaned between
each training bout with 70% ethanol in water (v/v) to ensure odor
cues were not used to solve the task. After the daily experiment,
all used microcentrifuge tubes were washed with soap-water,

then cleaned with 70% ethanol solution. Finally, they were rinsed
with water and air-dried at room temperature during the night.

Testing Phase
Following the training phase, each bee was tested in the same
setup as in training in three different scenarios, but with stimuli
in the tests providing 30 µl of sterilized water (Figures 1B,C).
Tests lasted 120 s, at which point the bee was gently removed
from the arena by using a cup and placed into the corridor until
stimuli were changed for the refreshment bouts. Each test was
separated by two refreshment training bouts between tests to
maintain the bee’s motivation.

The sequence of the three tests was counterbalanced across
bees. The learning test evaluated performance by testing bees on
one of the same sets of stimuli used during training, pseudo-
randomly chosen (i.e., a random number generator was used to
generate a random sequence of tests for each bee). The learning
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test used only the small- and larger-sized training shapes. The
other two tests used either a novel shape and size (star) or a
novel color (yellow), with the other properties pseudo-randomly
chosen. The dimensions of the 5-pointed stars were as follows:
small star: length of the side of point = 0.5 cm; large star:
length of the side of point = 1.23 cm (see Supplementary
Figure S1). As in training, stimuli were cleaned between each
bout during the testing phase with 70% ethanol in water
(v/v) to ensure odor cues were not used. Trained bees were
removed from the nest once the training and test phases
were finished.

Statistical Analysis and Probabilistic Model
of the Learning Curve
To evaluate bees’ performance over bouts, the percentage of
correct choices (choices were defined as when a bee touched a
microcentrifuge tube with her antennae or when she landed on a
microcentrifuge tube) was calculated from either all choices or
from only the first or second choices within each block of six
bouts during training (total of five blocks). Using a generalized
linear mixed model (GLMM) for binary probability (correct
or incorrect), the effect of different factors such as colony,
group of training and interaction between the trial block and
group of bees in the bees’ performance were calculated. The
bee identity was included in the model as a random factor.
GLMMs were performed in MATLAB (MathWorks, Natick,
MA, USA).

To determine whether bees used relative size information,
rather than any other visual cues, the choices of bees during
the unrewarded tests were evaluated by a Wilcoxon signed-rank
test. Further, a Kruskal–Wallis test was used to statistically
evaluate and compare whether the bees’ performance or
choice numbers in different blocks of bouts are from the
same distribution.

To test if bees might use a win-stay/lose-switch strategy
during training, we calculated the conditional probabilities of
each bee’s second choice (c2) given their first choice (c1) at
each block of 10 bouts. A conditional probability, ‘‘Probability
of B, given A (P{B|A}),’’ is a probability of an event (B)
occurring given that another event (A) has already occurred. The
conditional probability of a lose-switch strategy, i.e., a correct
second choice after an incorrect first choice, is calculated by
P{c2 = 1|c1 = 0} = P{c2 = 1, c1 = 0}/P{c1 = 0} where P{c2 = 1, c1 = 0}
is the joint probability of a correct second choice and an incorrect
first choice and P{c1 = 0} is the probability of the first incorrect
choice. The conditional probability P{c2 = 1|c1 = 0} at more than
chance level indicates that a bee switched to another presented
size when they found the first choice was incorrect. In the same
way, we can calculate the conditional probability of a win-stay
strategy, using P{c2 = 1|c1 = 1} = P{c2 = 1, c1 = 1}/P{c1 = 1}, i.e., the
bee’s second choice is the same size as the first choice when their
first choice was correct.

Model of Prediction of Learning Curve
Based on a Bee’s First Two Choices
We propose a Markov stochastic model (Gagniuc, 2017) to
describe the learning curve of bees’ choices (total choices at each

bout) based on the information of two first choices of bees. The
performance of the model at each bout is assumed as

Perf = P{c1 = p}
N∑

k = 2

k∏
i = 2

P{ci + 1 = q|ci = p}

P{c1} is the probability of the first choice at each bout and
P{c(i+1)|ci} is the conditional probability of (i +1) − th choices
given the of i − th choices (i ≥ 1) for when each choice in
the sequential choices is correct or incorrect. p or q = 1 if the
choices are correct, otherwise p or q = 0. We assume that the
conditional probabilities of two sequential choices from the third
choices are equal to the conditional probability of the second
choice given the first choice expressed by bees at each bout of
training. The sequence of possible events in which the probability
of each event depends only on the state achieved in the previous
event will be stopped (N) when the simulated bees collect all
three positive reinforcements along with two, one or no incorrect
choices within each bout according to the average number of
choices at each bout.

RESULTS

Bees’ Overall Performance Increased Over
the 30 Training Bouts
A multivariate statistical model, GLMM, applied to the
performance of bees demonstrates a significant increase in the
proportion of correct choices made over the 180 choices of the
training phase (Figure 2A, p = 0.018) irrespective of the shape,
color or position of patterns within the stimuli. No significant
differences were found between the learning curves of the two
different contingency groups (i.e., ‘‘larger-than’’ rule vs. ‘‘smaller-
than’’ rule; p = 0.87). The output of the GLMM confirms that
there was no significant difference between the different colonies
of bees during the training phase (p = 0.37). These results
show that bees became better at solving either contingency over
training bouts.

Bees Used a Win-Stay/Lose-Switch
Strategy After Extensive Training
The typical analysis used to determine whether an animal has
solved a particular task is to calculate the animal’s performance
based on the number of correct and incorrect choices throughout
the training phase. At first inspection, bees’ behavior during
training suggests they learned to solve the concept-based task
(Figure 2A). However, a finer examination of their choices
suggests the involvement of another strategy in the later stages
of training. If bees had only used the concept of relative size
throughout training, their first choices should reflect this by
increasing in accuracy throughout the 30 bouts. Although bees’
average overall accuracy gradually increased to 70% (significantly
above chance level) over the 30 training bouts (Figure 2B;
Wilcoxon signed-rank test: z = 3.72, n = 18, p = 1.96e-4), their
first-choice accuracy rose to 72% (significantly above chance
level: Wilcoxon signed-rank test: z = 3.55, n = 18, p = 3.71e-4)
over the first 20 bouts and then decreased to chance level (54%)
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FIGURE 2 | Bees use a win-stay/lose-switch strategy after extensive
training. (A) There was a significant increase in the number of correct choices
over the 180 conditioned choices (p = 0.018). (B) Bees’ performance over
three blocks of 10 training bouts during the relative size discrimination task.
Performance increased gradually over bouts when considering the total
number of choices in each bout (black dashed line; p = 1.96e-4). Bees’ first
choice performance increased significantly from the first to the second block
of training bouts to 72.22% (p = 3.71e-4) but then dropped to chance level
from the second to the third block of training bouts (blue dash-dotted line;
p = 0.79). The second choice performance was near chance for the first two
blocks of training bouts (p > 0.49) but then increased significantly during the
third block of training bouts (green dotted line; p = 4.28e-4). These results
indicate that bees changed to a win-stay/lose-switch strategy after extensive
training. Vertical lines = standard error of the mean. Red dashed line = chance
level performance (50%). (C,D) The average conditional probabilities of a
bee’s second choice within each bout being correct given the outcome of the
bee’s first choice of the bout (either correct or incorrect). Both conditional
probabilities increased to above chance during the second and third blocks of
bouts (p = 2.27e-4 for win-stay and p = 8.40e-4 for lose-switch). (E) Our
win-stay/lose-switch model’s performance matches our bees’ performance
on the task during the last block of 10 bouts during training (p = 0.15), again
suggesting that after extensive training bees changed to a
win-stay/lose-switch strategy (Vertical lines = standard error of the mean).
Red dashed line = chance level. ∗p < 0.05 and n.s., p > 0.05.

over the next 10 bouts (Wilcoxon signed-rank test: n = 18,
z = 1.25, n = 18, p = 0.21; Figure 2B) and decreased significantly
across last two blocks of bouts (Wilcoxon signed-rank test:
z = 2.83, n = 18, p = 4.59e-3). Second-choice accuracy was not

different from chance level during the first two-thirds of the
training phase (Wilcoxon signed-rank test: z = −0.67, n = 18,
p = 0.49), but increased in the final third of the training phase to
73.33%, significantly above chance level (Figure 2B; Wilcoxon
signed-rank test: z = 3.52, n = 18, p = 4.28e-4). These results
suggest that bees changed to a win-stay/lose-switch strategy after
around 20 bouts of training, i.e., if they find a reward at a stimulus
they choose the same type of stimulus next, or if no reward
is found at a stimulus they choose a different type of stimulus
next (see Supplementary Figure S2 for the individual differences
between bees).

To help evaluate the possibility that bees switched strategies
partway through training, we calculated the conditional
probabilities (see ‘‘Materials and Methods’’ section) for: (1) a
correct second choice after a correct first choice (win-stay); and
(2) a correct second choice after an incorrect first choice (lose-
switch). Both of these two conditional probabilities increased
over bouts (Figures 2C,D; Kruskal–Wallis test, chi-sq > 12.94,
df = 53, p < 1.55e-3), most notably rising to significantly above
chance level in the last third of training (Wilcoxon signed-rank
test: z = 3.68, n = 18, p = 2.27e-4, chance level = 0.4 for
win-stay and z = 3.33, n = 18, p = 8.40e-4, chance level = 0.6 for
lose-switch), again suggesting that bees had changed to a win-
stay/lose-switch strategy. Note that the chance levels of the
conditional probability of correct second choice in a win-stay
and lose-switch strategy were 0.4 and 0.6, respectively, because
after first choosing correctly, only two of the five remaining
stimuli were correct, and after a first incorrect choice, three of
the remaining five stimuli were correct.

It may have been that after a first choice, bees simply chose the
stimulus nearest to that first choice. To determine whether a bee’s
stimulus choice was based on physical closeness to their previous
choice, we also evaluated the spatial pattern of their landings.
Bees were more likely to choose stimuli further away than
those closest to their previous choice (Supplementary Figure
S3; Wilcoxon signed-rank test: z > 3.72, n = 18, p < 1.95e-4).
Later in training, bees’ second choices were further away from
their first choice compared to earlier in training (Supplementary
Figure S3; Kruskal–Wallis test, chi-sq = 7.84, df = 53, p = 0.01).
These results indicate that bees did not make their second choice
by visiting an adjacent stimulus, but rather searched for specific
types of stimuli, following either a relational rule or win-stay/lost-
switch strategy.

Modeling a Win-Stay/Lose-Switch Strategy
To further examine whether bees switched strategies during
training, we utilized a probabilistic model based on a win-
stay/lose-switch strategy. Within our model, we used bees’
overall and conditional performance (Figures 2B,E) and initial
first and second choices to predict bees’ subsequent choices in
each bout (see ‘‘Materials and Methods’’ section). Figure 2E
shows that our model predicts the bees’ performance in the last
10 bouts (i.e., no difference between the model’s performance
and bee’s performance; Wilcoxon signed-rank test: z = −1.41,
n = 18, p = 0.15). In contrast, our model’s predicted performance
was significantly poorer than the performance of bees in the
first 20 bouts (Wilcoxon signed-rank test: z > 2.32, n = 18,
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p < 0.01 for both first two blocks). The ability of our model to
predict the behavior of our bees in the later stages of training but
not the initial stages supports the hypothesis that bees changed
to a win-stay/lose-switch strategy within the last 10 bouts
of training.

Bees Retained the Concept of Relative
Size After Having Switched Strategies
So far, our analyses and model results suggest that bees used a
win-stay/lose-switch strategy only after extensive training. Bees
seemed to have used a different strategy during the initial blocks
of training bouts. Their increased performance to above chance
level, suggests they were discriminating against the stimuli based
on size. To ensure that the bees’ initial strategy had been a relative
size rule, we measured bees’ performance directly after training
in unrewarded tests. Because the tests were unrewarded, bees
could not solve the task based on a win-stay/lose-switch strategy.
Bees’ performance on the learning test was above chance level
(Wilcoxon signed-rank test: z = 3.73, n = 18, p = 1.87e-4), as
was their performance on the novel shape transfer test (Wilcoxon
signed-rank test: z = 3.51, n = 18, p = 4.46e-4), and on the
novel color transfer test (z = 3.03, n = 18, p = 2.41e-3 for novel
color; Figure 3A). Note that the variability in different shape
sizes and resulting overlap between sizes across shapes prevented
bees from associating a general size with reward (Supplementary
Figure S1). These results suggest that the bees had at some point
during training learned to solve the task based on the concept of
relative size.

Because animals vary in their learning and performance,
we posited that if bees had learned and retained a relative
size rule, how well they performed in training before changing
strategies should reflect how well they perform (i.e., remember
the relational rule) during the learning test. In line with this, there
was a positive correlation between the average of first choice
accuracy in the second third of the training phase (before strategy
change) and bees’ performance in the learning test (Figure 3B;
Spearman correlation: rho = 0.58, n = 18, p = 0.01). Although
bees seemed to have changed strategies after extensive training,
the results of the unrewarded tests show that bees had learned
the relative size rule during training, retained the rule even after
having changed strategies late in training, and therefore resorted
to the relative size rule strategy during the tests.

Note that the performance of bees in the learning test was
significantly poorer than the last bout of the training phase
(Figure 3C;Wilcoxon signed-rank test: z = 3.31, n = 18, p = 9.30e-
4). This suggests that bees began the learning test using a win-
stay/lose-switch strategy. This makes sense because they had
just been using a win-stay/lost-switch strategy during training
and did not know that the test was unrewarded. Further, bees’
performances on the second half of choices during each of
the tests was better than their performance on the first half
(Figure 3D; Wilcoxon signed-rank test: z = 1.82, n = 18,
p = 0.03 for Learning test; z = 0.57, n = 18, p = 0.28 for Novel
shape; z = 1.05, n = 18, p = 0.14 for Novel color), indicating that
bees had reverted to the retained relative size strategy.

Why would bees change strategies if they were already
performing above chance level?We hypothesized that bees might

FIGURE 3 | Bees learn and retain a relative size rule. (A) The performance of
bees during each of the three unrewarded tests shows that they learned and
retained the concept of relative size (p < 2.41e-3). (B) The scatter plot
displays the correlation between the performance of bees in the learning test
and their first choice performance before changing strategies, during the
second block of 10 bouts (rho = 0.58, p = 0.01). The red solid line = line of
best fit. (C,D) The significant drop in performance from the last bout of
training to the learning test (p = 9.30e-4; D) and the difference in performance
between the second and first half of choices during each of the tests
(p = 0.03 for learning test; p = 0.28 for novel shape transfer test; p = 0.14 for
novel color transfer test) suggest that bees had begun the tests with the
win-stay/lose-switch strategy. Bars = mean. Vertical lines = standard error of
the mean. Red dashed line = chance level (50%). ∗p < 0.05 and n.s.,
p > 0.05.

change strategies if the new strategy was more efficient, i.e., it
took them less effort to locate all three rewarding discs (discs
were not refilled during training). In support of this, the number
of total choices by bees decreased from an average of 7.1 choices
per bout at the beginning of training to an average of 5.1 choices
per bout at the end of training (Figure 4; Kruskal–Wallis test,
chi-sq = 22.70, df = 53, p = 1.17e-5), indicating that bees’
efficiency increased during training across a change in strategy.

DISCUSSION

We demonstrate and corroborate previous findings (Avarguès-
Weber et al., 2014; Howard et al., 2017) that bees can learn a
relative size rule, but in our study, they opted to use a simpler
strategy after extensive training. Because there can often be
more than one way of processing the same stimuli to solve a
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FIGURE 4 | The average of the number of choices on stimuli (correct and
incorrect) over three blocks of 10 training bouts. Over training-bouts, bees
made fewer choices to visit all three available rewarding stimuli (p = 1.17e-5),
indicating that bees continually increased efficiency on solving the task during
training. Vertical lines = standard error of the mean. ∗p < 0.05.

cognitive task, it is useful to examine individual strategies and
over extended periods to explore if multiple strategies might
be at play. In our paradigm, we prevented bees from using
low-level visual cues. Initial increases in performance suggested
that bees learned the task and later performance on unrewarded
tests verified that bees had learned and retained a relational
rule, as was previously demonstrated in honeybees (Avarguès-
Weber et al., 2014; Howard et al., 2017). However, statistical
analyses showed that after extensive training, bees began to use
a win-stay/lose-switch strategy based on whether or not they
were rewarded on each stimulus. Bees’ performance calculated
by their first choices or by multiple sequential choices revealed a
strategy of decisionmaking that had been hiddenwithin the gross
calculation by total choices. Averaging all choices in a training
bout or test is common within bee cognition and within other
animal research communities. We suggest that interpretations of
any animal cognition study involving multiple choices include
analyses of first and sequential choices to investigate potential
alternative strategies.

Theoretical and empirical work maintains that animals tend
to follow the ‘‘law of least effort’’ (Hull, 1943; de Froment et al.,
2014), whereby subjects choose strategies that minimize the costs
in obtaining desirable outcomes (Hull, 1943; Mobbs et al., 2018).
In comparative cognition research, animals may use strategies
different to those we intend a specific paradigm to test and still
perform well on the behavior we are measuring (Shettleworth,
2001; Pfungst, 2010; Chittka et al., 2012; Guiraud et al., 2018;
Vasas and Chittka, 2019). Most studies on the ‘‘law of least effort’’

have focused on the idea that animals opt to minimize physical
work, but this idea extends to the cognitive effort as well (Elner
andHughes, 1978; Kool et al., 2010; LeDoux, 2012). The ability to
change decision-making strategies with the changing demands of
the environment is essential to adaptive behavior, and therefore
survival. Lloyd and Dayan (2018) proposed that constant
monitoring of information to promptly assess and predetermine
decision-making strategies would be too costly for animals to
maintain. Similarly, commitment for extended periods to one
strategy without the ability to adjust could be deleterious (Lloyd
and Dayan, 2018). These authors suggested, with support from
computational models, that temporal commitment to certain
strategies with intermittent interruption to assess costs and
switch strategies would be more advantageous for real-world
scenarios. Bumblebees in our study seem to follow a similar
overall approach, as they first learn an abstract concept (relative
size) and stick with this rule for approximately 20 bouts, at which
point they change to a new strategy (see Supplementary Figure
S2 for the individual difference between bees). A decrease in the
number of choices taken to find all rewarding stimuli (Figure 4)
indicate that bees may have changed strategies to become more
efficient. Further studies are needed to check the role of efficiency
in strategy selection in animals. These further studies should
involve videotaping the behavior of bees during the training
and test phases so that one can make some direct inferences
about time invested, mechanisms of inspecting stimuli, and the
efficiency of decisions.

In this light, our results support the idea that animals can
adaptively weigh the costs of cognitive effort across decision-
making approaches and choose the less cognitively demanding
strategy (Risko and Gilbert, 2016). This interpretation requires
that the win-stay/lose-switch strategy was simpler than the
relative size rule. Indeed, the win-stay/lose-switch heuristic is
cognitively less demanding than any relational rule, simply
because it is based only on the outcome of the previous choice,
and therefore could be solved using working memory alone
(Nowak and Sigmund, 1993). Accordingly, bees could have
stored the visual template of the first stimulus in working
memory and, if the first choice was correct, subsequently
chosen a stimulus that had more overlap with the stored
template, or if the first choice was incorrect, subsequently
chosen a stimulus with less overlap (template hypothesis;
Dittmar et al., 2010). The win-stay/lose-shift strategy has been
broadly observed and explored in bees foraging strategies and
flower constancy amongst variable rewarding species of flowers
(Greggers and Menzel, 1993; Chittka et al., 1997; Menzel, 2001;
Raine and Chittka, 2007; Real, 2012). This type of sequential
matching/non-matching to sample strategy is solvable with a
simple computational model based on the known neural circuitry
of the bee brain, without requiring any higher-order abstract
concept (Cope et al., 2018). Learning and applying an abstract
concept like relative size requires a substantial abstraction
process to different stimuli that must work independently of
the physical characteristics of stimuli (Zentall et al., 2008). In
mammals, it is assumed that higher cognitive functions processed
in the prefrontal cortex or analogous structures are essential for
rule learning (Wallis et al., 2001; Miller et al., 2003). In insects, it
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has been proposed that rule learning occurs in the mushroom
bodies, high-level sensory integration centers (Chittka and
Niven, 2009; Menzel, 2012). In contrast to rule-learning, bees can
use a simple associative mechanism to remember the previously
visited stimulus to make decisions about a subsequent stimulus.
Therefore, the effort required in a win-stay/lose-switch type
mechanism is likely to be lower than an abstract rule because
bees can learn to recognize and associate a stimulus with reward
without using their mushroom bodies (Devaud et al., 2015;
MaBouDi et al., 2017). For example, honeybees with inactivated
mushroom bodies can perform some odor learning tasks as
well as control bees (Devaud et al., 2015; Carcaud et al., 2016).
Further, a realistic computational model of olfactory information
processing in the bee brain shows that two parallel odor pathways
with different functions provide the flexibility necessary for
comparing multiple olfactory stimuli during associative and
non-associative discrimination tasks (MaBouDi et al., 2017).

Although our results indicate that bees switched to a win-
stay/lose-switch heuristic, it is unclear why bees would learn the
relative size concept first if the win-stay/lose-switch strategy is
cognitively simpler. We speculate that this strategy may have
been initially favored simply to reduce the load on long-term
memory and to speed up the decision-making process to avoid
the quinine-containing discs. During pretraining, bees only
received a reward from white disks. When training began, all
of the discs suddenly contained colored shapes and the bees
found not only the reward but also aversive quinine. Because of
this abrupt and dramatic change, bees’ priority may have been
to learn to avoid the quinine containing discs. To accomplish
this quickly, they could have extracted a set of elementary visual
features to avoid in the first bout of training. During the next
bouts, instead of switching to a new strategy relying on working
memory, they stuck with identifying and avoiding the template
for the quinine containing discs. Over the next trials, they
learned to generalize and group visual features across stimuli in
a manner consistent with the concept of relative size (Zentall
et al., 2008; Avarguès-Weber and Giurfa, 2013). Because constant
monitoring of how well they were doing would be too costly
(Lloyd and Dayan, 2018), it might have taken them some time
to assess their performance and try out a new strategy. Further
analysis of bees’ behavior during the training and test phases
are required to uncover the true mechanisms underlying bees’
strategy selections.

As a result of bees learning a relative size rule early in training,
we would have expected to see an improvement on second choice
performance from the first 10 bouts to the second 10 bouts in the
training phase similar to the bees’ improvement on first choices
(Figure 2B). However, bees’ performance on second choices was
not significantly different from a chance level within 20 bouts
of training. We are unable to say from our data why this was
the case, but speculate that motivation and attention may play
a role—once bees found the reward, they might have been less
likely to fly back within the arena to view stimuli head on to
properly view and assess stimuli, and rather flew directly to a
nearby disc to check for food, which statistically would be more
likely to be unrewarding (because of the remaining five discs
only two would be rewarding). This type of motivational-based

exploration may also account for why bees eventually changed
to a win-stay/lose-switch strategy. Supplementary Figure S2
shows a large variability between individuals in second choice
performance, and therefore individual differences in motivation
and attention may have played a part in why second choice
performance was lower than expected (Muller et al., 2010; Carere
and Locurto, 2011). However, many of the bees did show an
improvement in their second choices from the first 10 bouts to
the second ten bouts. Analyses of sequential choices in future
studies of animal cognition will help resolve these questions.
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