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Maladaptive emotional memories contribute to the persistence of many mental health
disorders, and therefore the prospect of disrupting these memories to produce long-term
reductions in relapse is of great clinical appeal. Reducing the impact of maladaptive
emotional memories on behaviour could be achieved by two retrieval-dependent
manipulations that engage separate mnemonic processes: “reconsolidation disruption”
and “extinction enhancement.” Extinction occurs during a prolonged re-exposure
session in the absence of the expected emotional outcome and is widely accepted
as reflecting the formation of a new, inhibitory memory that prevents behavioural
expression of the original trace. Reconsolidation, by contrast, involves the destabilisation
of the original memory, allowing for subsequent updating and restabilisation in
specific brain regions, unless the re-stabilization process is prevented through specific
pharmacological or behavioural interventions. Both destabilisation of the original memory
and memory extinction require that re-exposure induces prediction error—a mismatch
between what is expected and what actually occurs—but the parameters that allow
reconsolidation and extinction to occur, and control the transition between them, have
not been well-characterised. Here, we review what is known about the induction
of memory destabilisation and extinction, and the transition period that separates
these mnemonic processes, drawing on preclinical and clinical examples. A deeper
understanding of the processes that determine the alternative routes to memory
persistence or inhibition is critical for designing new and more reliable clinical treatments
targeting maladaptive emotional memories.

Keywords: associative memory, reconsolidation, extinction, limbo, prediction error, memory persistence

INTRODUCTION

To survive and reproduce, animals need to learn about the motivational significance of
environmental cues; predicting the presence of a predator or a potential mate based on
learned or conditioned stimuli (CSs) in the environment allows animals to prepare a
behavioural response rather than simply reacting to an unpredicted threat or reward, acting
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as an unconditioned stimulus (US). The capacity to form
pavlovian associations between CSs and USs, therefore, confers
a clear survival advantage. However, under certain conditions,
this adaptive learning system can produce memories that are
overly strong and dominant over behavior. These persistent,
maladaptive memories are thought to underlie some of the
most prevalent psychiatric conditions including post-traumatic
stress disorder, specific phobia, substance dependence, and
binge eating disorder. It is hypothesised (Everitt et al,
2001; Hyman and Malenka, 2001; Milton and Everitt, 2010;
Torregrossa et al., 2011) that such disorders are established and
maintained through aberrant learning processes that hijack the
neural mechanisms necessary for the persistence of emotional
memories. Maladaptive memories are pathologically persistent
and greatly increase the risk of relapse even after successful
treatment (Parsons and Ressler, 2013). Therefore, disruption
or suppression of maladaptive memories may potentially offer
an innovative form of treatment to overcome both fear and
substance abuse disorders (Singewald et al., 2015; Everitt et al.,
2018; Monfils and Holmes, 2018).

Reducing the impact of maladaptive memories on behavior
could be achieved by targeting one of two memory retrieval-
dependent processes that engage different mnemonic processes:
disrupting memory reconsolidation or enhancing extinction.
Both of these processes depend upon re-exposure to the
pavlovian CSs or “trigger stimuli,” and on inducing a
“mismatch” between what is expected and what occurs (more
formally referred to as “prediction error”). Furthermore,
although induced by re-exposure, the relationship between
memory retrieval, memory reconsolidation, and extinction is
non-linear and governed by “boundary conditions” that depend
upon both the age and the strength of the original memory
(Suzuki et al., 2004; Alberini et al., 2006). In a laboratory setting, it
is possible to control memory age and strength and consequently
boundary conditions, but this is not possible in the clinical
situation. We argue that currently, one of the greatest challenges
in translating preclinical memory modification research to
the clinical situation is knowing when each of the different
mnemonic processes has been engaged. Here, we review
what is known of the molecular mechanisms underlying the
destabilisation of consolidated memories in reconsolidation, and
how these partially overlap with those engaged when a new
extinction memory is formed. Although maladaptive memories
can be pavlovian or instrumental, here our focus is on pavlovian
memories as these have been most extensively studied across the
appetitive and aversive domains.

RE-EXPOSURE TO PAVLOVIAN CSs
INDUCES DIFFERENT MNEMONIC
PROCESSES DEPENDING ON THE
EXTENT OF RE-EXPOSURE

Following the acquisition of a pavlovian memory, re-exposure
to the CS alone can induce one of four memory processes:
retrieval, reconsolidation, “limbo” or extinction (Figure 1;
Eisenberg et al., 2003; Pedreira and Maldonado, 2003; Merlo

et al.,, 2014, 2018). A brief presentation of the CS transiently
returns the associative memory to a labile state, sensitive
to disruption, followed by a re-stabilization process (Nader
et al., 2000). By contrast, prolonged CS re-exposure produces
inhibition of the conditioned response (CR) through extinction.
It is hypothesised that behavioural inhibition results from the
formation of a new “CS-noUS” associative memory that prevents
expression of the original CS-US memory without erasing it
(Bouton, 2004).

Both reconsolidation disruption and extinction enhancement
are potentially valuable treatment strategies able to reduce the
impact of cue-dependent maladaptive memories on behavior
(Figure 2). Research on extinction profoundly influenced
the development of prolonged exposure therapy for anxiety
disorders and continues to inform refinements to this therapeutic
approach (Craske et al., 2014). However, it is worth noting that
prolonged exposure is not effective for all patients, with relapse
and re-emergence of the maladaptive memory being a relatively
common occurrence (Holmes et al., 2014).

Reconsolidation-based interventions are being actively
investigated as an alternative therapeutic approach for patients
who are not responsive to prolonged exposure therapy. A
considerable number of studies have investigated the effects
of pharmacological interventions aimed at disrupting memory
reconsolidation, mostly in animal analogs of mental health
disorders, though some small-scale patient studies have also
been conducted. Reconsolidation consists of the two dissociable
processes of memory destabilisation and restabilisation (Figure 3;
Ben Mamou et al., 2006; Milton et al., 2013; Ferrer Monti et al.,
2016). “Destabilisation” refers to the hypothetical process
initiated by memory retrieval in presence of prediction error,
by which the original CS-US memory becomes once again
modifiable and regains sensitivity to amnestic treatments.
To return to a stable state, the destabilised CS-US memory
undergoes a re-stabilization process supported by, among other
mechanisms, de novo gene expression, and protein synthesis.
Much of the literature to date has focused on the re-stabilization
process and identifying drugs that block this process to provide
potential amnestic agents for use in humans. A large number of
pharmacological targets have been identified, with a particular
focus on drugs that are readily translatable to humans. These
include the p-adrenergic receptor antagonist propranolol
(Debiec and Ledoux, 2004; Diergaarde et al., 2006; Brunet et al.,
2008; Milton et al., 2008; Kindt et al., 2009; Soeter and Kindyt,
2010) and the glucocorticoid antagonist mifepristone (Jin et al.,
2007; Taubenfeld et al., 2009; Pitman et al., 2011). However, this
compelling evidence is challenged by several studies showing
only limited or no effects of propranolol on aversive (Muravieva
and Alberini, 2010; Wood et al., 2015; Schroyens et al., 2017) and
appetitive memory reconsolidation (Milton et al., 2012; Pachas
et al,, 2015; Dunbar and Taylor, 2016). One potential account
of these apparent discrepancies is that memory destabilisation
was not engaged in those studies in which propranolol was
not effective—namely, that these studies had not overcome the
“boundary conditions” of reconsolidation. This explanation
is supported by a series of case studies in which propranolol
was effective when administered before memory reactivation
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FIGURE 1 | Alternative retrieval-dependent memory processes affecting paviovian associative memories. Fully consolidated associative memories engage four
alternative retrieval-dependent processes, presented in boxes: retrieval alone (green), reconsolidation (destabilisation /re-stabilisation; blue), limbo (purple), or
extinction (orange). Prediction error, as the discrepancy between what is predicted by the conditioned stimuli (CS)-unconditioned stimulus (US) memory and what
occurs, is necessary for all but retrieval alone. Lines indicate which memory process is dominant depending on CS re-exposure (number of events or duration).
Dominant memory traces are those sensitive to amnestic interventions. With a limited number of CS re-exposures, amnestic manipulations reduce subsequent
expression of the conditioned response (CR) and are interpreted as engaging memory reconsolidation. By contrast, extended CS re-exposure leads to the formation
of extinction memory, and amnestic treatments will prevent this new memory from forming. For intermediate CS re-exposures, neither reconsolidation nor extinction
is engaged, and the memory trace becomes insensitive to amnestic agents. PE: prediction error (yellow arrowheads).

when the expectations of PTSD patients had been violated,
but ineffective when their expectations had not been violated
(Kindt and van Emmerik, 2016). Thus, we would argue that one
of the greatest barriers to the translation of reconsolidation-
based interventions to the clinical situation is the reliable
engagement of the memory destabilisation process. Furthermore,
a better understanding of some of the subtleties in boundary
conditions—along with a non-behavioural, independent
marker of memory destabilisation—would likely provide
great insight into the apparent fragility of reconsolidation
interference effects.

DESTABILISING THE ORIGINAL MEMORY

Boundary Conditions

Studies in both vertebrates and invertebrates have shown
that destabilisation of the original CS-US memory at retrieval
relies upon a specific amount of prediction error—enough for
the original memory to be sufficiently inaccurate to require
updating, but not so much that the experience is consolidated
as a new memory (see Osan et al., 2011; Gershman et al,
2017 for computational perspectives on boundary conditions).
Prediction error, the discrepancy between the expected and
actual outcome following a CS presentation, is necessary to

destabilise both appetitive and aversive memories in crabs
(Kaczer et al., 2011; Lopez et al., 2016), rats (Morris et al.,
2006; Reichelt et al., 2013), and humans (Sevenster et al.,
2013; Das et al, 2015). Typically, for pavlovian CSs, a brief
duration of re-exposure or a small number of CS re-exposures
is sufficient to induce memory destabilisation without engaging
extinction, for both appetitive and aversive memories and across
species (Eisenberg et al., 2003; Pedreira and Maldonado, 2003;
Flavell and Lee, 2013).

Relatively few studies have undertaken a parametric
investigation of the conditions affecting memory destabilisation.
More frequently, boundary conditions have been discovered
when a memory reactivation session fails to induce sufficient
prediction error to destabilise the memory. Predictions of
specific boundary conditions are rare (though see Osan
et al,, 2011; Gershman et al., 2017 for predictions based on
computational accounts) but two boundary conditions that
have been observed across multiple studies are the strength
and age of the original memory. Importantly, however, these
boundary conditions do not mean that the memory cannot be
destabilised, only that it cannot be destabilised under the same
conditions as weaker or more recent memories. For example,
a strong contextual fear memory required 10 min of context
re-exposure to induce destabilisation, as compared to 3 min for
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FIGURE 2 | Schematic representation of the effects of amnestic or
hypermnestic manipulations on memory persistence as a function of the
dominant memory process. On Day 1, all individuals acquire the same
paviovian CR. On Day 2, different groups receive different (increasing)
numbers of CS re-exposure producing four experimental conditions: retrieval
only (brief CS exposure without prediction error, top row), reconsolidation
(orief CS exposure with prediction, second row), limbo (intermediate CS
exposure, third row) or extinction (prolonged CS exposure, bottom row).
Immediately after each CS re-exposure condition, individuals receive an
amnestic or control treatment (e.g., protein synthesis inhibitor; arrowhead).
For the extinction condition, the plot also shows the effect of a hypermnestic
drug (e.g., D-cycloserine). On Day 3 long-term memory is tested, with
outcomes differing depending on the experimental condition. Retrieval
condition: the amnestic treatment (green bar) does not affect the CR,
indicating that the CS-US memory did not destabilize on Day 2.
Reconsolidation condition: the amnestic treatment (blue bar) produces
memory disruption, due to the interference of the drug with the CS-US
memory re-stabilization process at Day 2. Limbo condition: there is no
difference in CR between vehicle- and drug-treated groups (purple bar),
indicating that the original CS-US memory was not destabilized at Day 2, and
no engagement of extinction mechanisms. Extinction condition: the
amnestic-treated group (red bar) shows high CR, consistent with extinction
disruption during Day 2; it also shows extinction in the group receiving the
hypermnestic drug. On Day 14 the second row shows maintenance of the
low CR in animals receiving the amnestic treatment after memory reactivation.
By Day 14, the vehicle-treated extinction group shows the spontaneous
recovery of the CR, whereas the hypermnestic-treated group (diagonally
striped black and red bar) maintains a low CR due to enhanced extinction.
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a contextual fear memory trained under “standard” conditions
(Suzuki et al., 2004), while the same reactivation procedure led
to extinction for a weakly-trained appetitive pavlovian memory
and reconsolidation for a strongly-trained pavlovian memory
(Reichelt and Lee, 2013).

Similarly, acquisition-to-retrieval intervals modify the
requirements for memory destabilisation. Early observations

PE

(WU destabilisation

restabilisatio

FIGURE 3 | CS-US memory processing after a brief retrieval. In the presence
of prediction error (PE), brief retrieval induces CS-US memory destabilisation.
Destabilised or labile CS-US memories are again susceptible to amnestic
interventions, as they were during the consolidation phase. Labile CS-US
memories are restabilised by a neural process dependent on de novo gene
expression and protein synthesis. Restabilised CS-US memories return to a
stable state, impervious to amnestic agents. Notably, reconsolidated CS-US
memories become more precise and longer-lasting (CS-US*, see text).

CS-USs

amnestic
intervention

suggested that memories older than 14 days did not destabilise
(Milekic and Alberini, 2002). However, older associative
memories destabilise if the CS re-exposure session is extended
(Suzuki et al., 2004), and it is possible to destabilise strongly
trained pavlovian CS-cocaine memories even after many weeks
(Lee et al., 2006b). Furthermore, in small-scale clinical trials,
both strong and old memories have been shown to destabilise
under specific reactivation conditions. The maladaptive
memories underlying spider phobia were destabilised and
disrupted by the administration of the beta-blocker propranolol
when patients believed that they would need to pick up a
tarantula and were stopped just before doing so (Soeter and
Kindt, 2015). Similarly, PTSD patients showed a steep decline
of fear symptoms after receiving a reconsolidation-based
intervention during which patients were required to rate the
extent to which the expectations of their response to trauma
re-exposure had been violated (Kindt and van Emmerik, 2016;
Kessler et al., 2018).

There is, however, the potential for unfalsifiability when
considering memory destabilisation and boundary conditions.
When a reactivation session induces a memory to become
once again susceptible to amnestic agents, it is considered
that the parameters of that reactivation session have induced
memory destabilisation. If the reactivation session does not
induce the memory to become susceptible to anamnestic agent,
then boundary conditions are invoked. Independent neural
markers of memory destabilisation, that do not rely only on
behavior, would therefore be a valuable addition to studies of
memory destabilisation.

Neural Markers of Memory Destabilisation
Several neurochemical and molecular mechanisms contributing
to memory destabilisation have been identified. At the cell
surface level, destabilisation depends upon specific subtypes of
glutamatergic receptors, dopamine receptors, and L-type voltage-
gated calcium channels.
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One of the first studies of the neurochemical mechanisms
of memory destabilisation showed that the GluN2B-subtype-
selective NMDA receptor (NMDAR) antagonist ifenprodil could
block the destabilisation of auditory fear memory (Ben Mamou
et al, 2006, and subsequent replication by Milton et al,
2013). Furthermore, reducing the relative number of GluN2B-
containing NMDARs in a mouse selectively overexpressing
GluN2A-containing NMDARs in BLA projection neurons
at the time of memory reactivation, led to fear memories
that did not destabilise when those of controls undergoing
the same memory reactivation procedure did (Holehonnur
et al, 2016). This supports hypotheses asserting that the
balance between GIuN2A-NMDAR and GluN2B-NMDAR
expression may mediate resistance to memory destabilisation
(Zhang et al., 2018).

Although AMPAR antagonism has been shown to prevent
memory retrieval without impairing memory destabilisation
(Milton et al, 2013), it appears that as for NMDARs,
specific types of AMPARs may be necessary for memory
destabilisation. There is a transient reduction in AMPARs
expressing the GluA2 subunit (which makes the receptor
calcium-impermeable) at the neuronal membrane following
fear memory reactivation, which is followed by an increase in
AMPAR expression within 7 h of the reactivation session (Rao-
Ruiz et al., 2011). Using cell-penetrating peptides that blocked
the translocation of AMPARS, it was also shown that preventing
AMPAR endocytosis at memory reactivation prevented fear
memories from becoming updated (Rao-Ruiz et al., 2011)
or sensitive to anisomycin (Hong et al, 2013). Therefore,
although activity at AMPARs is more implicated in memory
retrieval, there is a correlation between the expression of specific
AMPAR subtypes and resistance of established fear memory
to modification.

Considering that GluA2-lacking AMPARs are permeable
to calcium, it may be that the dynamic of calcium influx is
important in supporting memory destabilisation. At least in
the hippocampus, another potential neurochemical mechanism
underlying memory destabilisation depends upon L-type
voltage-gated calcium channels (LVGCCs), blockade of which
prevents the destabilisation of reactivated fear memories
(Suzuki et al., 2008; Flavell et al, 2011). Additionally, the
administration of nefiracetam, a pharmacological agent that
enhances LVGCC calcium currents (Yoshii and Watabe, 1994),
was shown to enhance the destabilisation of fear memory
(Flavell and Lee, 2019).

As noted above, memory destabilisation is induced when
expectations are violated at reactivation or, more formally, a
“prediction error” is induced. Reward prediction error has been
strongly associated with dopamine release from the ventral
tegmental area (Schultz et al., 1997) and it also appears that
dopamine is required for the destabilisation of both appetitive
(Merlo et al., 2015) and aversive memories (Flavell and Lee,
2019). However, dopaminergic signalling does not appear to
be sufficient to induce memory destabilisation, as enhancing
dopaminergic signalling with the D; dopamine receptor agonist
SKF38393 did not induce destabilisation of a strong fear memory
under reactivation conditions that would normally destabilise a

weaker memory (Flavell and Lee, 2019). This may indicate that
it is the specific timing of phasic dopaminergic signalling that
is critical for memory destabilisation, rather than tonic increases
in dopamine.

Intracellularly, memory destabilisation is dependent upon
multiple molecular pathways including proteasome signalling
and protein degradation. Memory destabilisation depends
upon the ubiquitin- and proteasome-dependent degradation of
pre-existing postsynaptic proteins, as shown for fear (Lee et al.,
2008; Fukushima et al., 2014; Fustifiana et al., 2014; Jarome et al.,
2015; Orsi et al., 2019; Tay et al., 2019), spatial (Artinian et al,,
2008), object recognition (Furini et al., 2015; Stiver et al., 2017)
and drug memories (Ren et al., 2013). It is hypothesised that
this mechanism is responsible for the reorganisation of original
memory through the degradation of pre-existing synapses and
concurrent formation of updated synapses in conjunction with
new information presented at retrieval (Kaang et al, 2009;
Jarome and Helmstetter, 2013). The regulation of this system has
been linked to intracellular calcium signalling (Da Silva et al.,
2013; Jarome et al., 2016) and NMDAR activation (Rosenberg
etal., 2016).

Despite the advances made in wunderstanding the
neurochemical and molecular underpinnings of memory
destabilisation, there remains a lack of direct, real-time
measurement that destabilisation has occurred. This gap is
important not only to provide insight into apparent failures
to replicate reconsolidation interference effects, but also for
translational studies targeting maladaptive memories in patients,
since the learning history and age of the maladaptive memory
formation is unique for each patient. Identification of the
right parameters to engage destabilisation and avoid boundary
conditions, through isolation of a specific and unambiguous
biological marker, would constitute a breakthrough in our
capacity to modify maladaptive content of naturalistic memories
in patients.

MEMORY INHIBITION THROUGH
EXTINCTION

Pavlovian Extinction and Behaviour
In contrast to the engagement of pavlovian memory
reconsolidation by brief exposure to the CS alone, prolonged
exposure, or a large number of repetitions of the CS reduces
conditioned responding through the process of extinction.
During extinction, individuals learn that the CS no longer
predicts the emotionally relevant US. It is widely accepted that
extinction does not erase or modify the original CS-US memory
but inhibits its behavioural expression by establishing a new
inhibitory memory trace associating the CS with the absence
of the US (CS-noUS; Pavlov, 1927; Bouton, 2004). In clinical
settings, pavlovian extinction is the basis of cue exposure therapy,
which is widely used for the treatment of specific phobias and
PTSD (Rothbaum and Schwartz, 2002).

In common with memory reconsolidation, extinction occurs
when the individual experiences prediction error, but requires
much longer CS alone exposure. However, memory extinction
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appears more temporally and spatially context-dependent than
memory reconsolidation. The inference that the original CS-US
memory remains intact after extinction is based on the
findings that behavioural responding to the CS recovers, over
time (spontaneous recovery), when the extinction context is
changed (renewal), or after the unexpected presence of the US
(reinstatement). Also, the residual associative value of the CS
allows it to elicit behavioural responses more rapidly than a
novel CS (rapid reacquisition; Bouton, 2014). However, despite
the common requirement for prediction error, reconsolidation
and extinction are mutually exclusive processes. Due to the
partial overlap in the mechanisms of these processes, the
same experimental manipulation can produce bidirectional
effects depending on whether reconsolidation or extinction
is engaged during re-exposure (Lee et al, 2006a), and the
two processes are separated by a “limbo” period during
which neither process is engaged (Merlo et al, 2014, 2018;
Cassini et al., 2017).

Neural Mechanisms of

Pavlovian Extinction

Reconsolidation and extinction are complex psychobiological
processes that require changes in neuronal connectivity
supported by neural and molecular events. Even though
these processes are supported by distinct brain networks,
for pavlovian memories the basolateral amygdala (BLA) is
critical for both (Maren and Quirk, 2004; Nader, 2015).
Moreover, reconsolidation and extinction engage partially
overlapping molecular mechanisms, similar to the relationship
between reconsolidation and the initial consolidation of
memories. As extinction relies on the formation of a new
inhibitory memory, many mechanisms supporting extinction
acquisition and consolidation have common and distinctive
partners compared to the consolidation of the CS-US memory
(for a review see Pagani and Merlo, 2019). Among other
mechanisms, extinction consolidation relies on de novo
protein and mRNA synthesis (Pedreira and Maldonado,
2003), believed to support the synaptic changes necessary for
behavioural inhibition.

Shared Mechanisms Engaged by Memory
Reconsolidation and Extinction

Reconsolidation and extinction are both initiated by similar
intracellular and extracellular events, such as activation of
NMDARs (Lee et al., 2006a; Flavell and Lee, 2013; Merlo et al.,
2014, 2018) and activation of protein kinases (Merlo et al.,
2014, 2018). It is well-established that the consolidation of
extinction memories depends on NMDAR-mediated changes in
synaptic plasticity (Baker and Azorlosa, 1996; Lee et al., 2006a).
Santini et al. (2001) have further suggested that consolidation
of extinction learning involves a transfer from NMDAR-
independent early plasticity to NMDAR-dependent stabilisation
that requires protein synthesis. There is also some evidence
that the acquisition of the extinction memory, but not its
consolidation, is blocked by the administration of GluN2B-
selective NMDAR antagonists given shortly before extinction
training (Dalton et al.,, 2012) though not 1 h before training

(Cahill et al., 2019). This finding highlights the distinct nature
of neural and molecular mechanisms underlying acquisition,
consolidation, and retrieval of extinction memory (Santini et al.,
2001). Similarly, administration of the NMDAR partial agonist
D-cycloserine (DCS) enhances the acquisition of the extinction
memory, with no effect when administered after re-exposure in
rodents (Ledgerwood et al., 2003; Lee et al., 2006a) and, indeed
in human patients undergoing prolonged exposure therapy for
phobia (Smits et al., 2013).

As for memory destabilisation, dopamine has also been
implicated in pavlovian extinction learning (for review see
McNally et al., 2011). Administration of the selective D;-
dopamine receptor antagonist SCH23390 directly into the
BLA impairs the acquisition of extinction, though not its
consolidation. By contrast, infusions of SCH23390 into the
infralimbic cortex impair extinction consolidation, but not
acquisition (Hikind and Maroun, 2008). Furthermore, it has
been demonstrated that dopamine receptor antagonism impairs
both extinction acquisition as well as the consolidation of
extinction memory. Furthermore, the administration of the
dopamine precursor L-DOPA enhances the consolidation of
extinction in both mice and humans (Haaker et al., 2013). It
has also been shown that administration of the D,-dopamine
receptor antagonist, haloperidol, in the nucleus accumbens
(NAc) impaired suppression of fear responses after extinction
(Holtzman-Assif et al., 2010). This evidence supports the role
of dopaminergic activity in extinction learning and especially
pointing towards the NAc as a critical locus for learning and
retention of the inhibition created by fear extinction training
(Holtzman-Assif et al., 2010). Previous studies investigating
extinction have focused mostly on interactions between the BLA
and mPFC, however, it has been proposed that dopamine release
in the NAc may regulate the interactions between BLA and mPFC
(Laurent and Westbrook, 2008) that are required for inhibitory
learning during extinction (Holtzman-Assif et al., 2010).

Similar to memory destabilisation, extinction appears to
depend upon activation of LVGCCs and protein degradation.
Administration of the LVGCC antagonists nifedipine or
nimodipine blocked extinction (Cain et al., 2002) with
prolonged re-exposure, and blocked the destabilisation of
the original memory with brief re-exposure (Suzuki et al.,
2004, 2008). Similarly, inhibiting protein degradation by
infusing the proteasome inhibitor lactacystin immediately
following extinction training prevents extinction of cocaine
reward memory in the conditioned place preference
procedure, while inhibition of protein degradation
following brief exposure prevents memory destabilisation
(Ren et al., 2013).

Where molecular mechanisms are common between
reconsolidation and extinction, this leads to the possibility that
pharmacological interventions could have opposite effects on the
pavlovian memory depending upon the extent of CS re-exposure.
Considering that maladaptive memories across patients with
anxiety disorders or addiction vary in strength and age, the
effect of retrieval may vary between patients, with a session
inducing memory destabilisation in one case and extinction in
another. Thus, the administration of a pharmacological agent
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to either disrupt the original memory or enhance extinction
may worsen symptoms if the cue exposure session engages the
alternative memory process (Price et al., 2009; Gerlicher et al.,
2019). Targeting molecules or pathways that are differentially
engaged by memory reconsolidation or extinction could reduce
the risk of manipulating the undesired memory process.

Distinct Mechanisms Engaged by Memory
Reconsolidation and Extinction

Despite some of the molecular and neural similarities between
extinction and reconsolidation mentioned above, marked
distinctions are differentiating between these processes at the
molecular level.

A clear difference between reconsolidation and extinction
mechanisms exists at the level of transcription factors. For
example, while NF-kB is necessary for the reconsolidation of
fear memory, it is inhibited during extinction training (Merlo
and Romano, 2008). By contrast, the nuclear factor of activated
T-cells (NFAT) is required for fear extinction, but not for
reconsolidation (de la Fuente et al., 2011). A comparable double
dissociation has been found with brain-derived neurotrophic
factor (BDNF) and the transcription factor Zif268. While both
the consolidation of new memory and extinction requires BDNF
(Lee et al,, 2004; Peters et al., 2010), it is not required for
memory reconsolidation, at least for hippocampal-dependent
fear memories (Lee et al., 2004). On the other hand, Zif268 de
novo expression is required for reconsolidation but constrains
memory extinction (Lee et al., 2004; Kirtley and Thomas, 2010).

Extinction May Involve Some Synaptic Restructuring
Events in Common With Memory Destabilisation

The notion that pavlovian extinction involves “unlearning” of
the original CS-US memory is difficult to reconcile with the
widely reported phenomena of spontaneous recovery, renewal,
and reinstatement, all of which indicate that the original memory
must remain intact. However, while extinction clearly does
involve the formation of a new CS-no US memory that competes
with the CS-US memory for behavioural expression, it is possible
that the original memory also undergoes some modification, if
only to reflect that the CS is now ambiguous, or to incorporate
the representation of other cues or contexts that may allow the
appropriate response to the CS to be disambiguated (Clem and
Schiller, 2016).

Empirically, this view is supported by recent advances in
neuronal ensemble research, offering a deeper understanding of
how memory engrams can store and retrieve memories. While
there do appear to be distinct engrams for fear and extinction
memories within the amygdala (Herry et al., 2008), there is
also evidence suggesting that extinction learning requires the
reactivation of the original memory in both the hippocampus and
amygdala (Khalaf et al., 2018; Khalaf and Griff, 2019).

Recent work indicating that targeting of protein kinases
or phosphatases can produce complementary, rather than
bidirectional, effects on reconsolidation and extinction further
supports the hypothesis that extinctions go beyond the formation
of a new CS-noUS inhibitory associative memory to more of
a combination of new memory formation and inhibition

of original memory (Pagani and Merlo, 2019). While the
re-stabilization of a reconsolidating memory depends upon
protein kinases (as discussed above), extinction requires the
activity of phosphatases and some kinases, and is constrained
by kinase activity. The protein kinase CaMKIla and the
protein phosphatase calcineurin have been of particular
interest. Phosphoproteomic analyses have revealed that the
serine-331 residue on CaMKIla is differentially regulated by
memory reconsolidation and extinction, where inhibitory
phosphorylation is decreased and increased respectively (Rich
et al., 2016). Furthermore, inhibition of CaMKIIa within
the basolateral amygdala disrupted the reconsolidation of a
CS-drug memory when combined with brief CS re-exposure
and facilitated extinction when combined with prolonged CS
re-exposure (Rich et al.,, 2016). This could provide a promising
therapeutic target, as a pharmacological intervention that
both disrupts reconsolidation and enhances extinction of
maladaptive memories.

CaMKIIa is thought to be a negative regulator of the
protein phosphatase calcineurin (Rich and Torregrossa, 2018),
which has been extensively studied for its role in extinction.
Calcineurin is necessary for the extinction of both contextual
(Lin et al., 2003) and auditory fear memory (Merlo et al., 2014).
Enhancement of calcineurin activity through the administration
of chlorogenic acid both enhances extinction and disrupts
the reconsolidation of CS-drug memories, with the effect
on extinction being prevented by the co-administration of
a calcineurin inhibitor (Rich et al., 2020). The finding that
the same molecules—CaMKIla and calcineurin—can produce
opposite effects on both reconsolidation and extinction warrants
further investigation.

The hypothesis that extinction involves at least some
alteration of the original memory also fits well with layered
connectionist (Kehoe, 1988) and statistical models of learning
(Dunsmoor et al., 2015; Gershman et al,, 2017). The layered
connectionist model proposes that pavlovian conditioning does
not produce a direct link between the CS and CR, but rather
associates in separate layers the CS and CR with an intermediate
element, X. According to this view, extinction weakens the CS-X
association, while leaving the X-CR association relatively intact.
This conceptualisation therefore allows for both unlearning (of
CS-X) and preservation (of X-CR) to occur simultaneously. In
statistical models of learning, the degree to which the original
memory is updated vs. new learning happening depends on
inferring whether or not the current trial can be associated to
the original latent cause—in which case, the original memory
will be updated—or if it is different enough to require new
latent cause grouping—in which case a new extinction memory
will form. This also means that the memory updating vs.
new learning balance is influenced by the training protocol
used during extinction training. When the conditions during
extinction training are more similar to the original training
context, it is more likely that the original memory will be
updated or “unlearned.” According to Gershman et al. (2017),
updating mechanisms depend on the reconsolidation of the
original memory, while new learning is dependent upon the
extinction processes.
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THE SPACE IN BETWEEN

As mentioned above, the behaviourally opposing memory
mechanisms of reconsolidation (affecting the original CS-US
memory) and extinction (promoting the formation of an
inhibitory CS-noUS) are linked by the common environmental
event of CS re-exposure. The addition of further unreinforced CS
re-exposure, therefore, has a non-linear effect on the individual’s
behavior, producing a dramatic effect on the individual’s
behavioural repertoire and promoting a variety of cellular
and molecular modifications in a myriad of brain regions.
Surprisingly, the behavioural and mechanistic properties of the
transition between memory states—sometimes referred to as “the
null point” or “limbo”—produced by increasing the number of
unreinforced CS re-exposure has only recently begun to capture
research interest. It has been observed for discrete auditory
fear memories in rats, where bidirectional manipulations of
NMDAR activity affected memory reconsolidation or extinction
when administered before brief or prolonged CS re-exposure
sessions respectively (Lee et al., 2006a), but no effect when
administered before an intermediate number of CSs (Merlo
et al., 2014). Similar results were observed for the pavlovian
conditioned approach (Flavell and Lee, 2013) and contextual fear
memories in rats (Cassini et al., 2017; Franzen et al., 2019), and
fear memories in humans and crabs (Sevenster et al., 2014; Merlo
et al, 2019), suggesting that “limbo” is an evolutionarily
conserved feature in  retrieval-dependent  associative
memory processing.

As this insensitive or limbo phase is associated with an
intermediate number of CS presentations, there are two potential
accounts for the apparent lack of effect of pharmacological
manipulations. One is that the intermediate number of CS
re-exposure fails to engage either memory reconsolidation (due
to excessive CS re-exposure) or extinction (due to insufficient
CS re-exposure) within a single individual. An alternative at
the population level is that intermediate CS re-exposure engages
reconsolidation in some animals while engaging extinction in
others. According to this second account, the amnestic agent
(e.g., MK801) should have a similar deleterious effect on the
CR in both the reconsolidating and extinguishing individuals,
but as the effect would be to reduce fear at test in the
reconsolidating individuals and to enhance fear at test in the
extinguishing individuals, these effects would effectively cancel
out at the population level. This is mechanistically possible,
but somewhat improbable since it implies both processes
should be equally sensitive to the manipulation. Detailed
analysis of a large number of fear-conditioned rats injected
with MK801 before an intermediate duration context exposure
showed that there was no reduction in the correlation between
freezing levels at re-exposure and test sessions, no differential
effects within subpopulations, and no change in variability
compared to saline-treated controls (Cassini et al., 2017).
Moreover, at the molecular level, limbo is associated with no
change in ERK1/2 activation in the BLA, which is increased
during both reconsolidation and extinction (Merlo et al., 2018).
This suggests that intermediate CS re-exposure engages the
distinct mnemonic process of limbo, characterised by the

absence of known retrieval-dependent plasticity mechanisms and
memory processes.

During limbo, the memory is not only insensitive to NMDAR
manipulations. Administration of midazolam, an enhancer
of GABAergic activity, also failed to affect contextual fear
conditioned responding after intermediate CS re-exposure (Alfei
et al,, 2015; Franzen et al,, 2019). Furthermore, protein synthesis
inhibition, a “gold standard” amnestic manipulation, did not
affect conditioned responding when administered after an
intermediate number of CS re-exposures in the crab Neohelice
granulatus (Merlo et al., 2019). Altogether, these data support
the hypothesis that intermediate CS re-exposure engages limbo,
a state where extinction does not take place, but also where the
original CS-US memory is insensitive to well-tested amnestic
interventions. Limbo may therefore represent the CS “space”
where there is too much novel information regarding the CS to
allow modification of the existing memory, but not enough to
engage new learning. Alternatively, limbo may be a completely
new process, with distinctive neural mechanisms, affecting
conditioning responding in an unestablished manner. Further
investigation is needed to distinguish between these alternatives
or propose new hypotheses.

A better understanding of limbo may help to explore
further the mutually exclusive nature of memory reconsolidation
and extinction, and how they interact to determine memory
persistence or inhibition. Pharmacologically manipulating the
limbo state, if possible, could be used to extend CS-US memory
lability into longer CS re-exposure protocols and thereby
delay extinction, increasing the window of opportunity to alter
maladaptive naturalistic memories in patients.

CONCLUSIONS AND FUTURE
DIRECTIONS

Considering the complex relationship between memory
destabilisation/reconsolidation, limbo, and extinction, and their
respective boundary conditions (Merlo et al, 2014; Cassini
et al., 2017), any potential therapeutic intervention that aims
to target one of these processes has the potential to result in
unexpected effects on the other process, leading to the possibility
of maintaining or even enhancing maladaptive memories
(Lee et al., 2006a; Tronson et al., 2006). As already noted, to
achieve greater reliability of treatment strategies and insight
into the apparent fragility of memory reconsolidation, it is
necessary to identify clear markers for memory destabilisation
and subsequent memory processes. One promising approach
could be event-related potentials, which can distinguish unique
neurophysiological markers for consolidated, reconsolidated,
or extinguished memories (Mueller et al., 2014; Campos-
Arteaga et al, 2020). Applied to humans, such markers
would allow the application of more effective treatments
for those suffering from maladaptive emotional memories.
Preclinically, this type of approach could help to determine
whether apparent contradictory findings and failed replications
of reconsolidation manipulations are due to a failure to engage
memory destabilisation. Moreover, precise characterisation of
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the exclusive cellular and molecular mechanisms of memory
destabilisation and extinction will help to determine the effects of
different retrieval-associated manipulations. This insight, mainly
to be obtained in animal paradigms, is crucial for evaluating
the translational potential of memory modification to decrease
maladaptive behavior in clinical practice.
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