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Department of Psychology, Trinity University, San Antonio, TX, United States

Maladaptation of reward processing for natural rewards, such as sucrose or sugar, may

play a role in the development of diseases such as obesity and diabetes. Furthermore,

uncoveringmechanisms to disrupt or reversemaladaptation of reward-seeking behaviors

for natural reinforcers can provide insight into treatment of such diseases, as

well as disorders such as addiction. As such, studying the effects of potential

pharmacotherapeutics on maladaptive sugar-seeking behavior offers valuable clinical

significance. Sucrose conditioned place preference (CPP) paradigms can offer insight

into aspects of reward processes as it provides a way to assess acquisition and

expression of context-reward associations. The present study examined the effect of

peripheral oxytocin injections on sucrose CPP in rats. Oxytocin, when administered

prior to CPP test, attenuated expression of sucrose CPP. However, oxytocin, when

administered during sucrose conditioning, did not affect subsequent place preference.

These findings suggest oxytocin sufficiently attenuates expression of sucrose-associated

place preference.

Keywords: oxytocin, sucrose, sugar, reward, conditioned place preference (CPP)

INTRODUCTION

Overconsumption of sugar has been shown to lead to a myriad of diseases. Excess sugar can lead
to an increased risk of developing cardiovascular disease and type 2 diabetes (Stanhope, 2016).
This excessive consumption also promotes obesity and increases visceral fat volume, which is
associated with risk factors for metabolic disease (Carr et al., 2004). The fact that a wide variety
of foods contain added sugar perpetuates the issue. For example, sugar-sweetened beverages, such
as fruit juice and soda, account for the primary source of added sugar in the diets of people over
the age of 2-years-old in the United States (Bailey et al., 2018). While numerous studies have
examined potential therapeutic targets for the treatment of drug-related behaviors and addiction,
relatively few studies have examined therapeutic targets that modulate reward behaviors related to
natural reinforcers. The present study aimed to examine the effect of a potential therapeutic target,
oxytocin, on sucrose-associated place preference behavior.

Oxytocin is a neuropeptide implicated in a variety of behaviors including addictive processes,
stress responses, and social affiliations (Lee et al., 2016). Previous experiments have shown
that oxytocin affects the seeking and reinstatement behavior to a variety of drugs of abuse,
including alcohol (King and Becker, 2019), methamphetamine (Carson et al., 2010), and
cocaine (Morales-Rivera et al., 2014; Leong et al., 2016). Early evidence has also demonstrated that
oxytocin reduced reinstated sucrose-seeking behavior (Zhou et al., 2015a). Additionally, studies
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have demonstrated that oxytocin attenuated sucrose-seeking
behavior and taking behavior in a sex-dependent manner (Cox
et al., 2013). Here, we examine whether oxytocin is also
effective in disrupting the acquisition and expression of a
sucrose-associated place preference.

The conditioned place preference (CPP) paradigm allows
experimenters to study context-dependent reward memory and
the rewarding value of natural and drug stimuli (Carr et al.,
1989; Figlewicz et al., 2001). The paradigm provides an effective
method for examining reward processes without necessarily
the formation of substantial addictive behaviors while still
providing insight into the processes that might precede it. The
CPP paradigm has commonly been employed to investigate
drug reinforcers, including cocaine (Nomikos and Spyraki,
1988) and methamphetamine (Tuazon et al., 1992). Depending
on the reinforcer, CPP can be achieved with a single trial
(morphine: Mucha et al., 1982; cocaine: Bardo et al., 1986;
methamphetamine: Baracz et al., 2012), or can also be induced
after multiple administrations (Nomikos and Spyraki, 1988).
Recently, a growing body of literature has demonstrated that CPP
is a valuable paradigm to study natural reinforcers as well (Bardo
and Bevins, 2000). The CPP paradigm is ideal for investigating
the effects of oxytocin administration on the processes related to
sucrose reward-related behavior.

The goal of the present study is to evaluate the role
of oxytocin in attenuating sucrose-associated place preference
through the establishment of sucrose CPP. Although high
sucrose consumption is a prevalent cause for many health
conditions, pharmacological interventions of sucrose-seeking
behavior have not been thoroughly elucidated. Specifically we
demonstrate here that administration of peripheral oxytocin
prior to expression, but not during conditioning, of sucrose place
preference effectively reduces sucrose-associated place preference
behavior, indicating that oxytocin is an effective pharmacological
option to disrupt sucrose-associated reward behaviors. Potential
insights into the use of oxytocin as an option to disrupt
maladaptation of reward processes are also discussed.

METHODS

Subjects
Adult male (maintained at 275–300 g throughout study) Sprague-
Dawley rats (Charles River Laboratories, N = 35) were used in
this study. Rats were single-housed on a reverse 12:12 light-dark
cycle in a set temperature and humidity-controlled vivarium.
During the experiment, animals were food-restricted to 10 g of
chow daily and water ad-libitum. All procedures were approved
by the Institutional Animal Care and Use Committee (IACUC)
of Trinity University.

Apparatus
The CPP apparatus (Panlab–Harvard Apparatus) was composed
of two Plexiglas compartments (each: 30.0 cm length × 30.0 cm
width × 34.0 cm height) that were connected by a central
corridor (10.0 cm length × 8.0 cm width × 34.0 cm height).
One compartment had a black floor and walls, while the
other compartment had a white floor and walls. The central

corridor had gray walls and a gray floor. All floor and wall
textures were consistent. The animal’s location and transitions
between compartments were measured using pressure plates
under the floors of the gray and black compartments and the data
were relayed to the tracking software, PPCWIN, via a control
panel (Panlab–Harvard Apparatus). The doors in between the
compartments were manually operated sliding doors.

Drugs
Oxytocin (Cell Sciences) was dissolved in 0.9% NaCl saline and
administered intraperitoneally (i.p.) at a dose of 1 mg/kg.

Behavioral Protocol
Sucrose Priming
For 2 days prior to the start of the habituation phase, all rats were
food restricted to 10 grams of standard chow and given 10 sucrose
pellets (45mg each, Bio-Serv) each, daily.

Habituation
Behavioral training began with a habituation trial to determine
baseline place preference. No sucrose was provided for the
duration of habituation. During habituation, all rats were placed
in the gray central corridor. Then, the doors were opened so
the animal was allowed free access to both of the compartments
for an entire 15-min session. During the session, the amount
of time the rat stayed in each compartment was measured
and the percentage of time spent within either compartment
was calculated to determine the animal’s baseline preference.
Whichever compartment that the rat did not display greater
baseline preference for was designated as the sucrose-paired
compartment during subsequent conditioning trials.

Conditioning
Rats were randomly assigned to the different treatment groups
and counterbalanced such that all the rats did not start
conditioning in the same compartment each day (i.e., subsequent
sessions started in opposite chambers). Animals received three
sucrose-paired sessions in the non-preferred compartment on
alternate days (e.g., Days 1, 3, 5) and three unpaired sessions on
the days in between sucrose-paired sessions. Training sessions
ran for 6 consecutive days and lasted 30-min each. During the
sucrose conditioning days, animals initially received five sucrose
pellets followed by five more every 10min (15 pellets total),
delivered at regular intervals by the experimenter. Sucrose pellets
were consumed in all conditions. On unpaired sessions rats
received “sham deliveries,” in which the experimenter would
make identical movements every 10min without the actual
delivery of sucrose pellets.

Testing
On the 7th day (Test Day), animals underwent the same
procedure as in habituation to determine if sucrose conditioned
place preference had been established. No sucrose was provided
for the duration of testing. Depending on the experimental group,
the animals either received an injection of saline (VEH) or
oxytocin (OXY) test day (described below).
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Experimental Procedures
Pre-test Oxytocin (Exp. 1a)
To determine the effect of oxytocin on the expression of sucrose-
associated place preference, all rats underwent sucrose priming,
habituation, conditioning, and testing as adapted from Figlewicz
et al. (2001) and described above (Figure 1). On day 7 (Test Day),
rats were either injected with OXY (1 mg/kg; i.p.; n= 7) or VEH
(n = 7) 35min prior to testing. The test session was identical to
the habituation procedure.

Oxytocin During Conditioning (Exp. 1b)
To determine the effect of oxytocin on the acquisition of
sucrose-associated place preference, all rats underwent identical
behavioral procedures as Exp. 1a. Rats either received an
injection of OXY (1 mg/kg; i.p.; n = 8) or VEH (n = 6) 35min
prior to the start of sucrose-paired sessions during conditioning.
All rats also received an injection of VEH 35min prior to the
start of non-sucrose-paired sessions. No injections were given
on test day.

No Manipulation (Exp. 1c)
To determine that development of any place preference was
specifically due to sucrose-associated conditioning, one group of
rats (n = 7) did not receive sucrose pellets during conditioning.
The animals received sucrose pellets only during priming but did
not receive any sucrose pellets during behavioral training or test.
All rats underwent the same conditioning and testing procedures
without drug manipulation.

Statistical Analyses
Amount of time and percentage of time spent in chambers
was calculated using PPCWIN software. Percentage of time
spent in the sucrose-paired chamber was calculated as time
spent in sucrose-paired chamber/total time spent in black and
white chambers. Time spent in the gray chamber was omitted
as no time was spent in this chamber during conditioning
trials. Two-way repeated measures ANOVAs were performed
to determine between-group differences in place preference
between OXY and VEH treated animals and within-group
differences between baseline and test preference. Post-hoc
Sidak’s multiple comparisons test were performed to compare
differences in time spent in sucrose-paired chambers within
habituation or test across treatment groups. All data are
presented as the mean± S.E.M. and α was set at p < 0.05.

RESULTS

Pre-test Oxytocin Disrupts Expression of
Sucrose Conditioned Place Preference
A two-way repeated measures ANOVA revealed a significant
main effect of treatment group [F(1, 12) = 20.94, p < 0.01]
and significant main effect of test [F(1, 12) = 8.059, p < 0.05].
There was a statistically significant interaction between the effect
of treatment and test on sucrose preference [F(1, 12) = 17.34,
p< 0.01]. A post-hoc Sidak’s multiple comparisons test revealed a
significant difference in time spent in the sucrose-paired chamber
during test between OXY (M = 21.01, SD = 12.35) and VEH

(M = 58.22, SD = 9.54; p < 0.01) treated animals but no
significant difference between both groups in baseline preference
(OXY: M = 26.85, SD = 12.35; VEH: M = 27.33, SD = 9.12;
n.s.). These results suggest that OXY treated animals displayed
attenuated expression of sucrose-associated place preference
relative to VEH treated animals at test (Figure 2A).

Oxytocin During Conditioning Did Not
Affect Acquisition of Sucrose Place
Preference
Animals in Exp. 1b underwent similar behavioral procedures as
Exp. 1a except OXY was administered prior to conditioning trials
instead of prior to test. A two-way repeated measures ANOVA
revealed a significant main effect of test [F(1, 12) = 18.14, p <

0.01]. There was no significant main effect of treatment group
[F(1, 12) = 1.730, n.s.] and no significant interaction [F(1, 12)
= 0.2431, n.s.]. A post-hoc Sidak’s multiple comparisons test
revealed no significant difference in time spent in the sucrose
chamber between treatment groups at test (OXY:M = 38.11, SD
= 15.64; VEH: M = 47.08, SD = 9.67; n.s.) or baseline (OXY:
M = 22.38, SD = 11.72; VEH: M = 27.23, SD = 10.63, n.s.),
suggesting that OXY administration during conditioning did not
affect acquisition of sucrose-associated place preference relative
to VEH treated animals (Figure 2B).

Animals Showed No Change in Baseline
Behavior Without Sucrose Conditioning
In order to determine that place preference behavior was a result
of sucrose-pairing during conditioning, rats underwent the same
procedure as Exp. 1a and 1b without any sucrose-pairings. A
paired t-test revealed no significant difference in time spent in the
sucrose-paired chamber during test (M = 29.23, SD= 13.79) and
baseline preference [M = 19.15, SD = 13.16; t (6) = 1.78, n.s.;
Figure 2C] when animals were not exposed to sucrose-pairings
in either chamber. These results suggest that the place preference
developed in prior experiments were a result of sucrose-pairings
within those chambers.

DISCUSSION

The present study demonstrates that sucrose conditioned place
preference was successfully acquired in animals that received
sucrose-pairings in a specific context and that peripheral
administration of oxytocin significantly disrupted expression
of conditioned place preference when administered before the
test. However, oxytocin administered during conditioning trials
did not affect the acquisition of sucrose conditioned place
preference. These findings suggest that oxytocin sufficiently
attenuates expression of sucrose-associated place preference and
may be a viable option to disrupt expression of maladaptive
sucrose-seeking behaviors.

Oxytocin’s effects on reward-seeking behavior for natural
and drug reward have been previously documented, with
oxytocin reducing alcohol- (King and Becker, 2019), cocaine-
(Zhou et al., 2015b; Leong et al., 2016; Kohtz et al., 2018;
Weber et al., 2018), opioid- (Kovács et al., 1985; Sarnyai and
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FIGURE 1 | Experimental timeline and pharmacological manipulation in (A) Experiment 1a (B) Experiment 1b (C) Experiment 1c. Sucrose-conditioning sessions were

counterbalanced in Experiment 1a and 1b. In Experiment 1b, animals in the OXY treatment group received OXY injections only prior to sucrose-paired conditioning

sessions. Animals in Experiment 1c received no access to sucrose pellets during conditioning or any injections of OXY or VEH. VEH = Vehicle; OXY = Oxytocin.

FIGURE 2 | Percentage of time spent in sucrose-paired chamber on test. (A) Rats injected with OXY displayed an attenuation in time spent in the sucrose-paired

chamber during preference test relative to VEH treated rats. There was no difference in baseline preference between VEH and OXY treated rats. (B) All rats

successfully acquired sucrose-associated conditioned place preference. There was no difference in time spent in sucrose-paired chamber during preference test

between OXY or VEH administered during conditioning. (C) Non-conditioned rats, receiving no sucrose-pairings or drug manipulation, spent displayed no difference in

time spent in sucrose-paired chamber relative to baseline. VEH = Vehicle; OXY = Oxytocin; N.C. = No conditioning * indicates significant difference at p < 0.05.

Kovács, 1994; Zanos et al., 2014), and methamphetamine-
(Carson et al., 2010; Cox et al., 2013, 2017; Everett et al.,
2020) seeking behavior, alcohol (Peters et al., 2017) and sugar
consumption (Zhou et al., 2015a), craving for marijuana in
marijuana-dependent individuals (McRae-Clark et al., 2013),
and opioid craving in opioid-dependent individuals (Moeini

et al., 2019). Although shown using different paradigms, there
is abundant evidence for oxytocin’s ability to attenuate drug-
seeking behaviors. The present study adds to this body of
literature suggesting that oxytocin is also capable of inhibiting the
expression of reward-context associations once these associations
have been established.
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Oxytocin’s effects on reward-context associations are likely
acting through its well-established interactions with various
structures within the reward circuit. The medial pre-frontal
cortex (mPFC) has been implicated in the contextual aspects
of reward (Haber and Knutson, 2010), possibly through its
projections to the dorsal hippocampus (Le Merre et al., 2018).
The mPFC also contains reciprocal glutamatergic (afferent) and
dopaminergic (efferent) projections with the ventral tegmental
area (VTA; Qi et al., 2009). Oxytocin exerts inhibitory effects
within the mPFC via the release of γ-aminobutyric acid (GABA)
from interneurons onto glutamatergic neurons (Qi et al., 2012).
Another study also indicated a potential inhibitory role of
oxytocin in the mPFC, as peripheral oxytocin attenuated cocaine
cue-induced Fos expression (Leong et al., 2017). This oxytocin-
mediated inhibitory response within the mPFC has been shown
to disrupt stress-induced reinstatement of methamphetamine
CPP (Qi et al., 2009). The amygdala has previously been shown to
be involved in the consolidation and expression of amphetamine-
induced conditioned place preference (Hiroi and White, 1991;
Hsu et al., 2002). Furthermore the central amygdala (CeA),
specifically, has been implicated in the acquisition (Rezayof
et al., 2007; Li et al., 2011) and expression (Li et al., 2011) of
morphine CPP. Oxytocin has been found to excite GABAergic
interneurons within the CeA to attenuate emotional responses
(Huber et al., 2005; Knobloch et al., 2012). It stands to reason
that this inhibitory response from oxytocin might disrupt
reward-associated conditioned place preference. There are also a
number of studies that suggest oxytocin exerts influence directly
within the nucleus accumbens (NAc) to modulate reward-
seeking behaviors. Previous research has shown that infusion of
oxytocin directly into the NAc attenuates methamphetamine-
seeking behavior (Baracz et al., 2016; Bernheim et al., 2017;
Cox et al., 2017). Furthermore, peripheral administration of
oxytocin has been found to normalize cued cocaine-induced Fos
expression in the NAc, demonstrating a potential normalizing
effect of oxytocin (Leong et al., 2017). Oxytocin has also been
shown to affect extracellular dopamine levels in the NAc after
being injected into the VTA (Melis et al., 2007).

Previous studies have shown that oxytocin disrupted the
acquisition of methamphetamine (Baracz et al., 2012) and
oxycodone (Fan et al., 2019) conditioned place preference when
administered prior to conditioning sessions. The results of
the present study show no effect of oxytocin administration
during conditioning in acquisition of sucrose conditioned place
preference. These differences might be due to natural and
drug reward being mediated by overlapping yet distinct neural
pathways (Nestler, 2005; Alhadeff et al., 2019), resulting in
a differential effect of oxytocin at various stages of reward-
seeking behaviors. Furthermore, it is also likely that, unlike
drugs of abuse, the relatively lower hedonic and incentive
value of sucrose is insufficient for oxytocin to exert an effect
during acquisition (Kelley and Berridge, 2002). Interestingly,
oxytocin has also been shown to enhance the expression
of morphine-induced conditioned place preference, but not
acquisition, when injected intracerebroventricularly (Moaddab
et al., 2015). While these results may directly conflict with the
present findings and findings of previous studies showing an

attenuating effect of oxytocin on drug-seeking behavior, it is
possible that oxytocin facilitates expression of morphine CPP
due to morphine’s effects on endogenous oxytocin signaling
(Kovács et al., 1987). Previous studies have shown that
expression of oxytocin receptor and µ-opioid receptor in
regions such as the central amygdala (CeA) may result in
oxytocin-mediated modulation of morphine’s effect (Han and
Yu, 2009). Additionally, oxytocin has been shown to act as
a positive allosteric modulator of µ-opioid receptors (Meguro
et al., 2018), which might explain the facilitating effect of
oxytocin on morphine CPP but not for other drugs of abuse or
natural rewards.

Some studies have questioned the ability for peripherally-
administered oxytocin to cross the blood-brain barrier (BBB)
(Ermisch et al., 1985; Kang and Park, 2000), although recent
studies have suggested otherwise (Neumann et al., 2013).
Peripheral administration of oxytocin caused a rapid increase of
oxytocin microdialysates measured in the dorsal hippocampus
and amygdala (Neumann et al., 2013). In addition, a central
administration of an oxytocin receptor antagonist inhibited
the effects of peripherally injected oxytocin on heroin self-
administration, morphine tolerance, and cocaine seeking
(Sarnyai et al., 1991; Sarnyai and Kovács, 1994). These results
suggest that peripheral oxytocin drives behavioral effects
through a central mechanism, either by passage through the
BBB or through a feed-forward central-release mechanism. For
example, peripheral oxytocin suppresses meth-seeking behavior
by potentially drive central oxytocin signaling via vagus nerve
projections (Everett et al., 2020). Regardless, future studies
should examine the effect of centrally-infused oxytocin on
sucrose conditioned place preference. Oxytocin has been shown
to reduce sucrose and food intake in rats (Zhou et al., 2015a).
Both intraperitoneal and intracerebroventricular injection of
oxytocin dose-dependently decreased food intake in rats with
ad libitum food and food-restricted rats (Arletti et al., 1989,
1990). Similarly, central oxytocin injections have been shown
to decrease intake of a sucrose solution (VTA: Mullis et al.,
2013; NAc core but not shell: Herisson et al., 2016). Intravenous
oxytocin has also been shown to reduce food intake in food-
deprived rats, but showed no effect on intake of a sugar solution
(Klockars et al., 2017).While it is possible that oxytocin’s anorexic
effect may have influenced the ability of oxytocin to attenuate
sucrose place preference, particularly when administered
during conditioning, we found no reduction in sucrose pellet
intake following oxytocin administration in sucrose-paired
conditioning sessions. Furthermore, the results and experimental
paradigm of our study examine the effect of oxytocin on
sucrose-seeking behavior as there is no sucrose present during
testing. Therefore, while oxytocin has previously shown to
influence food/sucrose-taking behavior, the present study
complements this literature by showing oxytocin also influences
sucrose-seeking behavior.

Our present findings demonstrate that oxytocin successfully
disrupts sucrose conditioned place preference only after
conditioning has been successfully established but does
not impact the acquisition of conditioned place preference.
Several factors might be driving the oxytocin-specific effect
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on sucrose place preference expression. First, previous studies
have demonstrated that the hippocampus is a key structure
facilitating the formation and expression of conditioned
place preference (Rezayof et al., 2003). In particular, dorsal
hippocampus CA1 D2 receptors have been implicated in the
expression of drug-associated conditioned place preference
(Haghparast et al., 2013; but see Maldonado et al., 1997). A
number of studies have suggested that oxytocin interacts with D2
signaling within the hippocampus (Lazzari et al., 2019). Oxytocin
receptors are located on GABAergic interneurons within the
dorsal hippocampus (Zaninetti and Raggenbass, 2000). These
GABAergic interneurons mediate D2-mediated signaling within
the hippocampus (Yoon et al., 2015) and it stands to reason that
oxytocin might exert its effect on D2 receptor signaling, and thus
expression of place preference, via this circuit. Alternatively, the
opioid system has been implicated in the expression, but not
acquisition, of conditioned place preference of natural reinforcers
(Mehrara and Baum, 1990). The opioid component of neural
reward circuits is further supported in studies demonstrating
that the µ-opioid receptor agonist, buprenorphine, attenuates
expression of cocaine conditioned place preference (Kosten et al.,
1991; Suzuki et al., 1992). A number of studies have investigated
oxytocin’s interactions with the µ-opioid receptor. For example,
oxytocin-induced nociception is blocked by intra-NAc infusion
of µ-opioid receptor antagonist (Gu and Yu, 2007). Therefore,
oxytocin’s effect on expression of conditioned place preference
could also be driven by its interaction with the endogenous
opioid system.

Previous studies have shown that oxytocin produces sex-
specific differences in natural and drug related reward-seeking
behaviors (Cox et al., 2013; Zhou et al., 2015a; Leong et al.,
2016) and that oxytocin receptor expression in the brain show
sex-specific differences (Dumais and Veenema, 2016). These
studies highlight that the oxytocin system and the behaviors it
modulates may be sexually dimorphic and that efforts should
be made to directly compare effects of oxytocin between males
and females. While the present study investigated the effect of
oxytocin on sucrose-seeking behavior inmale rats, we used a dose
of oxytocin (1 mg/kg) that has been shown to effectively reduce
sucrose reinstatement in males and females (Zhou et al., 2015a).

However, future studies should examine the effect of oxytocin in

sucrose conditioned place preference in females as well.
In conclusion, the present study demonstrates that oxytocin

can sufficiently reduce expression of sucrose-mediated
conditioned place preference. Further studies should be
carried out to determine the specific structures and mechanisms
involved in this process. The results presented here provide
clinical significance, given the health risks associated with
excessive sugar consumption. Furthermore, these results provide
additional insight into the processes that underlie oxytocin’s
effect on reward-related maladaptive behaviors.
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