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Previous studies suggested a causal link between pre-natal exposure to ionizing

radiation and birth defects such as microphthalmos and exencephaly. In mice, these

defects arise primarily after high-dose X-irradiation during early neurulation. However,

the impact of sublethal (low) X-ray doses during this early developmental time window

on adult behavior and morphology of central nervous system structures is not known.

In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects

and persistent radiation-induced anomalies has remained unexplored. To assess the

efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were

X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented

radiation-induced (1.0Gy) anophthalmos, exencephaly and gastroschisis at E18, and

reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical

vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted

radiation-induced impairments in vision and olfaction, which were evidenced after

exposure to doses ≥0.1Gy. These findings coincided with the observation of a reduction

in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial

length of the eye following exposure to 0.5Gy. Finally, MRI studies revealed a volumetric

decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5Gy

irradiation, which could be partially ameliorated after FA food fortification. Altogether, our

study is the first to offer detailed insights into the long-term consequences of X-ray

exposure during neurulation, and supports the use of FA as a radioprotectant and

antiteratogen to counter the detrimental effects of X-ray exposure during this crucial

period of gestation.
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INTRODUCTION

Exposure to ionizing radiation during embryonic development
has been linked to an increased risk of birth defects. The
type and severity of these defect are predominantly determined
by the developmental stage during which exposure occurred
(Craenen et al., 2017). Epidemiological studies on Ukrainian
cohorts illustrated an increased prevalence of neural tube defects
(NTDs) and eye defects (EDs) in regions severely contaminated
with radioactive Cs-137 isotopes following the Chernobyl nuclear
accident. Although there are no accurate dose estimates, uptake
of radioactive isotopes is known to be particularly high in
pregnant women living in these regions (Wertelecki et al., 2016).
Initially, it was observed that the more recent Fukushima Daiichi
nuclear power plant accident elicited no increase in birth defects
and pre-natal mortality due to environmental radioisotope
contamination (Fujimori et al., 2014), but subsequent papers
debated this conclusion (Mangano and Sherman, 2015; Scherb
et al., 2016). In contrast to these more recent observations,
reports after the atomic bombings in Japan only mentioned an
increased incidence of microcephaly and intellectual disability
(Plummer, 1952; Neel and Schull, 1956). It is likely that the
discrepancy in health effects of the nuclear accidents and atomic
bombings stems from differences in dose, dose rate, exposure
duration and radiation type. The above highlights the need to
increase our knowledge about the effects of pre-natal irradiation
on biological structures and functions.

Exposure to ionizing radiation during pregnancy most
commonly occurs during clinical radiodiagnostic or therapeutic
procedures (Mettler et al., 2009). Although medical practitioners
advise against irradiation during pregnancy, it may be
unavoidable in medical urgencies (Lazarus et al., 2009). In
terms of radiation protection, conventional shielding methods
are currently being used to partially mitigate the fetal dose
(Chatterson et al., 2014; Moore et al., 2015; Owrangi et al., 2016).
However, depending on the dose or the developmental stage
during which exposure occurs, these conventional shielding
strategies may not suffice. Animal studies have shown that the
neurulation period in the early embryo is especially radiosensitive
with regard to the pathogenesis of radiation-induced NTDs and
ED (Russell, 1950, 1956; Di Majo et al., 1981; Heyer et al., 2000;
Craenen et al., 2017, 2020b), but also in terms of cognitive
disabilities and altered vision. Indeed, a decreased visual acuity
in atomic-bomb survivors, irradiated in the first trimester, and
born from mothers with acute radiation syndrome (≤2 km
from hypocenter) has been reported (Burrow et al., 1964).
Yet, most experimental work has focused on health risks after
radiation exposure during neurogenesis, coinciding with the
second trimester of human pregnancy (Plummer, 1952; Neel and
Schull, 1956; Verreet et al., 2015, 2016a,b). Furthermore, there
are currently no anti-teratogens or radio-protectants available to

Abbreviations: EPM, Elevated plus maze; E, embryonic day; ED, eye defect;

FA, folic acid; MRI, magnetic resonance imaging; MWM, Morris water maze;

NF+GCL, nerve fiber+ retinal ganglionic cell layer; NTD, neural tube defect; NS,

non-social odor; RARE, rapid acquisition relaxation enhancement; RM, repeated

measures; S, social odor; SD-OCT, spectral domain optical coherence tomography.

prevent (congenital) morphological and functional defects that
arise from irradiation during brain development.

Folic acid (FA), a synthetic vitamin, is generally known to
prevent NTDs [reviewed in Imbard et al. (2013)], in addition
to other defects such as heart defects and some skeletal defects
(Kappen, 2013). Besides, FA has been suggested to prevent
the development of age-related neurodegenerative diseases and
overall cognition (Craenen et al., 2020a). Several countries
enforce staple food fortification, whereas others support FA
supplementation during pregnancy (Imbard et al., 2013). Of note
is that FA supplementation/fortification initiatives are currently
lacking in high-risk areas, such as those severely contaminated
with radioisotopes from the Chernobyl disaster. Although FA
food fortification can prevent some defects such as NTDs, its
efficacy depends on the causative teratogens or mutations. For
example, BMS-189453 (a synthetic retinoid) causes anomalies
such as NTDs and heart defects that can be prevented with FA
fortification (Cipollone et al., 2009), whereas arsenate-induced
NTDs do not appear to be responsive (Ferm and Hanlon, 1986).
Interestingly, many of the hallmark consequences of ionizing
radiation exposure, including oxidative stress, DNA damage,
cell cycle arrest, cell death and epigenetic alterations, might be
countered by FA (Heyer et al., 2000; Martin et al., 2014; Reisz
et al., 2014).

This study is the first to offer an in-depth analysis
of the morphological and behavioral consequences of
irradiation during neurulation in mice. To this end, we
used a multidisciplinary approach, including an extensive
behavioral test battery and imaging techniques such as spectral
domain optical coherence tomography (SD-OCT) and magnetic
resonance imaging (MRI). In addition, we assessed the efficacy
of FA food fortification in preventing fetal malformations as well
as adult functional and morphological defects resulting from
X-ray exposure.

MATERIALS AND METHODS

Animals and FA Fortification
All animal experiments were conducted in line with the relevant
guidelines and were approved by the Institutional Ethical
Committees of SCK-CEN/VITO (ref. 02–012) and the Animal
Welfare Committee of the KULeuvenUniversity, and are in strict
accordance with the European Communities Council Directive
of 22 September 2010 (2010/63/EU). C57BL6/J mice (Janvier, Bio
Services, TheNetherlands) were housed in individually ventilated
cages, under standard laboratory conditions (12-h light/dark
cycle) and fed ad libitum. One week before coupling, animals
designated for the macroscopic fetal study were placed on a
control Teklad (Carfil Quality, Oud-Turnhout, Belgium) diet (3.5
mg/kg FA), a FA fortified diet (8 mg/kg FA) or an extra-FA
fortified diet (12 mg/kg FA). The FA concentrations within the
final customized food products were investigated in compliance
with ISO 17025. We selected the dose of 8 mg/kg because it
was observed that this is an effective concentration to achieve
antiteratogenic effects in mice (Gray and Ross, 2009; Harris,
2009). A dose of 12 mg/kg was included based on the assumption
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TABLE 1 | Sample sizes.

Control diet High FA diet

(8 mg/kg)

High FA diet

(12 mg/kg)

0.0 Gy 0.1 Gy 0.5 Gy 1.0 Gy 0.0 Gy 0.1 Gy 0.5 Gy 1.0 Gy 1.0 Gy

n N n N n N n N n N n N n N n N n N

Macroscopic 126 15 n.a. n.a. 116 18 n.a. n.a. n.a. 114 19 107 16

Skeletal 9 3 n.a. n.a. 9 3 n.a. n.a. n.a. 9 3 9 3

Behavior/OCT 10 4 13 6 12 6 n.a. 12 4 11 6 12 6 n.a. n.a.

MRI 9 4 12 6 5 3 n.a. 5 2 7 5 7 4 n.a. n.a.

N, number of litters; n, number of fetuses.

that some teratogens require higher doses of FA (Gray and Ross,
2009; Harris, 2009).

Animals designated for the behavioral tests and MRI were
limited to the control diet or the 8 mg/kg FA diet, and were
kept on their respective diets until they were euthanized. Timed
couplings were performed during a 2-h period at the start of the
light phase (7:30 a.m.−9:30 a.m.) to attain synchronous timing
of embryonic development. The day of coupling was identified
as E0. At E7.5, animals were placed in a Plexiglas holder and
transported to the irradiation installation. Mice intended for
the macroscopic study were either sham-irradiated or irradiated
with 1.0Gy of X-rays. Animals used for behavioral testing and
MRI were sham-irradiated or received a sub-lethal dose of 0.1
or 0.5Gy of X-rays at E7.5. Irradiation was performed using an
X-strahl 320 kV (0.14 Gy/min, inherent filtration: 0.21 mmAl,
additional filtration: 3.8mm Al + 1.4mm Cu + DAP, tube
voltage: 250 kV, tube current: 12mA,) in accordance to ISO
4037. The number of animals used for the macroscopic, skeletal,
behavioral and MRI experiments is depicted in Table 1, unless
otherwise specified.

Macroscopic Scoring and Skeletal
Stainings
The dissections, macroscopic scorings and alcian blue/alizarin
red skeletal stainings were performed at E18 as previously
described (Craenen et al., 2017). For the skeletal analyses, E18
fetuses were randomly selected from the macroscopic study. The
axial skeleton was analyzed, with a focus on the vertebrae and the
ribs. A subdivision was made between atlas, cervical, thoracic,
lumbar, sacral and caudal vertebrae, whilst also differentiating
between true, false and floating ribs and sternum.

Behavioral Tests
Starting at week (W)5 and ending at W14, behavioral tests were
performed on male mice in the order described below (Table 2).
All experiments were performed under blinded conditions. To
assess visual acuity, optokinetic tracking was performed. We
included cage activity to assess global activity, during both light
and dark-phase, and assessed explorative and social behavior
with the open field and social exploration tests. The elevated
plus maze (EPM) was included to ascertain anxiety, whereas
the accelerating rotarod was used to identify issues in motility.
Next, to explore olfactory performance we used the odor

TABLE 2 | Overview of test order and age at time of testing.

Protocol Age range (weeks)

Optokinetic tracking response W5–W7

Optical coherence tomography W5–W7

Cage activity W7–W9

Open field W7–W9

Social exploration W8–W10

Elevated plus maze W8–W10

Accelerating rotarod W8–W10

Odor habituation/dis-habituation W9–W11

MRI W9–W11

Morris Water Maze W10–W13

Passive avoidance W12–W14

habituation/dis-habituation assay. Finally, two tests for memory
were included: the Morris water maze (MWM) and passive
avoidance, to test spatial and fear-related memory, respectively.

Optokinetic Tracking Response
Using a virtual-reality chamber (OptoMotry, Cerebral
Mechanics, Medicine Hat, AB, Canada), the optokinetic
tracking response was assessed (De Groef et al., 2016; Van
Hove et al., 2016). The animal was placed on the center of an
elevated platform within the optokinetic installation, where a
vertical sine wave pattern was displayed on the monitors. Using a
real-time camera system, visual acuity was scored manually using
a staircase procedure, composed of random spatial frequencies
(100% contrast, 12◦ per second speed).

Cage Activity
The impact of ionizing radiation exposure on ambulatory
behavior was investigated over a 23 h time-period, starting at 4
p.m. until 3:30 p.m. the next day (Verreet et al., 2016a). During
this period, animals were individually housed in transparent
cages (20 × 26 cm) with minimal bedding, chow and water and
placed in a laboratory-built activity logger with three infrared
beams. Beam breaks were recorded over 30min time bins.
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Open Field and Social Exploration
To assess exploration and social interaction, a transparent
Plexiglas arena (50 × 50 cm) was used (Stroobants et al., 2008;
Bollen et al., 2015; Callaerts-Vegh et al., 2015). The arena was
homogenously illuminated and equipped with an Any-maze
(Dublin, Ireland) tracking system. For the open field test, animals
were placed in the empty arena for 1min of acclimatization,
immediately followed by a 10min test phase with active tracking.
The social exploration experiment was identical to the open field
test, except that in the center of the arena a small cage with two
same-sex strange mice was placed.

Elevated Plus Maze
In order to investigate anxiety, animals were subjected to EPM
testing as was previously described (Verreet et al., 2015). The
cross-shaped EPM consisted of two perpendicular open and
closed arms (21 × 5 cm). Five infrared detectors were installed
on the EPM: 2 at the exits out of the closed arms and two at
the entrances to the open arms (entries/exits) and one along the
length of the open arms (time spent on the open section). The
animal was placed in a closed arm and after 1min of adaptation,
beam breaks were recorded for 10 min.

Accelerating Rotarod
General motor function and balance following in utero X-ray
exposure during neurulation were assessed using an accelerating
rotarod (Ugo Basile, Italy), as was described previously (Verreet
et al., 2015). Initially, the animals underwent two adaptation trials
(2min each), each at a constant speed of 4 rpm. In turn, the
mouse was subjected to four subsequent test trials, where during
each 5min trial the rotation speed gradually increased from 4 to
40 rpm. Latency was recorded when the mouse lost its footing
and fell off the rotating beam.

Odor Habituation and Dis-Habituation
To assess the interaction of mice with olfactory cues, i.e.,
habituation and dis-habituation, the animals were subjected to an
odor discrimination test as was described previously (Yang and
Crawley, 2009; Yang et al., 2012; Arbuckle et al., 2015). Animals
were individually placed in a fresh cage with a small amount
of bedding, followed by 30min of acclimatization with a dry
cotton swab fixed to the cover grid (tip ∼5 cm from bottom).
Next, the animals were exposed to a sequence of 15 subsequent
odor exposures (2min each): Three trials with water, three trials
with grape (non-social odor 1 = NS1), three trials with banana
(NS2), three trials with social odor one (S1) and three trials
with social odor two (S2). For the preparation of the NS odor
tests, respectively 1:100 diluted grape extract (SAFC, W26820-8-
K methyl anthranilate ≥98%) and 1:100 diluted banana extract
(Acros Organics, AC269481000 n-Butyl propionate >99%) on
cotton tips was used. For the S odors, cotton tips were dipped
in water and moved in a cross-pattern through the bedding of
soiled cages of same-sex mice. During each trial, sniffing-time
was recorded manually whenever the subject’s nose was within
a 2 cm radius of the cotton swab. The inter-session interval never
exceeded 2 min.

Morris Water Maze
In order to assess whether FA and sub-lethal pre-natal doses of
X-rays during neurulation affected adult spatial learning, MWM
was performed. Animals were tested in a circular pool (diameter
150 cm, height 30 cm), filled with opacified non-toxic water
as previously described (Latif-Hernandez et al., 2016; Verreet
et al., 2016a). For the acquisition trials, a see-through acrylic
platform was consistently placed in the same quadrant, 1 cm
below the water surface. The pool was located in the center of a
homogeneously-lit room, with invariable visual cues. Acquisition
training was performed over a period of 5 days, followed by a 2-
day resting period, followed again by 5 days of training. During
each training day, every mouse was subjected to four trials.
The trial interval was approximately 15-min and the quadrant-
starting positions varied in a semi-random order for every trial.
If the animal was unable to find the platform within 120 s, it was
placed on the platform for 10 s and subsequently removed from
the basin. On day 5 of the acquisition trials and 2 days after
the last acquisition trial, probe trials were performed. During
these probe trials, the platform was removed from the basin
and mice were subjected to a single probe trial of 100 s, where
the starting position was opposite to the target quadrant. Using
an automated video capture and tracking system (EthoVision,
Noldus, The Netherlands), various parameters such as trajectory
and swim speed were recorded. We observed floating behavior
(swim velocity <5 cm/s, more than 30 s per swim) in all groups,
except the control diet + 0.0Gy group. However, for the path
length analysis to determine if the animals covered the same track
during learning, we included all animals due to the low animal
numbers per group. Non-responders (floating>35% of test time)
were excluded for the reference memory test. As such, a reduced
number of animals was included for the reference memory test,
as compared to Table 1. More specifically, for this analysis in
particular we included under control diet condition 29 animals
(9 for 0.0Gy, 11 for 0.1Gy and 9 for 0.5Gy), and 27 under high
FA condition (10 for 0.0Gy, 9 for 0.1Gy and 8 for 0.5 Gy).

Passive Avoidance
We investigated fear-aggravated learning and memory using a
passive avoidance set-up (Lo et al., 2013). Animals were placed
in a brightly lit compartment and the door leading into a dark
adjacent chamber was opened after 5 s. Latency to enter the dark
chamber was timed starting immediately after opening of the
dark chamber and stopped when the animal had all four paws
on the electric grid in the dark room. Next, the door separating
the two compartments was closed and a shock (0.3mA, 2 s) was
administered. The next day, the procedure was repeated, albeit
without the administration of an electric shock.

In vivo Imaging
Optical Coherence Tomography
To assess retinal development and thickness, SD-OCT was
used as was previously discussed (Van Hove et al., 2016). The
animal was anesthetized by intraperitoneal (ip) injection of 75
mg/kg body weight ketamine (Anesketin, Eurovet, Bladel, The
Netherlands) and 1 mg/kg medetomidine (Domitor, Pfizer, NY,
USA). Shortly before imaging, pupils were dilated using topical
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0.5% tropicamide (0.5% Tropicol, Thea Pharma, Wetteren,
Belgium). Next, SD-OCT was performed using an Envisu
R2210 (Bioptigen, Morrisville, NC, USA) via 100 serial B-
scan lines with each line consisting of 1,000 A-scans, in a
1.4 × 1.4mm field. Afterwards, ip injection of atipamezol (1
mg/kg, Antisedan, Pfizer) was applied to reverse the anesthesia.
Thickness of the retina was investigated using InVivoVue Diver
software (Bioptigen).

Magnetic Resonance Imaging
For MRI we used female mice, which originated from the
same litters as the behavioral test mice. When the female mice
were on average W10, in vivo MR imaging of the brain was
performed using a 7 T Bruker Biospec 70/30 MRI scanner (30 cm
horizontal bore with actively shielded gradients (200 mT/m),
Bruker Biospin, Ettlingen, Germany). All data were acquired
using a quadrature volume coil (72mm internal diameter,
transmit, actively decoupled) in combination with a dedicated
mouse brain surface receive coil (Bruker Biospin). To obtain
high resolution 3D images of the entire mouse brain, image
acquisition and animal anesthesia was performed similar to
previously described experiments (Verreet et al., 2016a). In brief,
after the acquisition of localizer scans morphological 3D MR
imaging was performed using a rapid acquisition relaxation
enhancement (RARE) T2-weighted sequence with a RARE factor
of 16 and a repetition time and echo time of 1,000ms and
67ms, respectively. The field of view was 24 × 15 × 8.3mm
with a matrix of 256 × 160 × 88, resulting in an isotropic
resolution of 94µm. The total acquisition time was 16min. The
methodology of image post-processing and the labeled template
was based on previously published work (Verreet et al., 2016a).
Briefly, we first corrected for image intensity inhomogeneity
using the N4 bias field correction algorithm (Tustison et al.,
2010) using an in-house developed MeVislab pipeline (MeVis
Medical Solutions, Germany). Images were affinely registered
to the template used in Verreet et al. (2015, 2016a) to obtain
brain masks for each animal, which were isotropically dilated
by 2 voxels. These brain masks were applied to the raw data
and the bias field correction was repeated. Finally, images were
non-rigidly registered to the template using the Fast Free-Form
Deformation algorithm implemented in Niftyreg (Modat et al.,
2010). Template labels were propagated to the individual study
images using the transformations obtained from this step, and
quantified using an in-house developed Python script (Python
2.7, Python Software Foundation).

Statistics
Statistical analyses were performed with GraphPad Prism 7.02
(GraphPad Software, San Diego, CA, USA). To analyze the
data on the macroscopic and skeletal defects, the Kruskal-Wallis
methodology was used, in combination with Dunn’s post-hoc
testing. Data on pre-natal viability were assessed using two-
way ANOVA and Dunnet testing for multiple comparisons.
For most behavioral tests, MRI and SD-OCT, we used two-
way ANOVA (with pairing where required) in combination with
Dunnet (inter-dose comparisons) and (Holm-)Sidak (inter-diet

comparisons) post-hoc tests. To assess dishabituation, paired t-
testing was done, whilst two-way ANOVA + Sidak was utilized
to investigate habituation. To perform inter-dose and inter-
diet comparisons, one-way ANOVA + Dunnet was used in
conjunction with the first trial of the different odors. For all
statistical tests, a p-value of 0.05 was considered statistically
significant. All values are represented as mean± SEM.

RESULTS

FA Reduces the Prevalence of
Radiation-Induced Anophthalmos,
Exencephaly and Agnathia
First, we examined the prevalence of radiation-induced EDs
and the prevention thereof with FA fortification. The prevalence
of left-eye anophthalmos (Figure 1A), microphthalmos
(Figure 1B) and iris anomaly (Figure 1C) was significantly
increased following X-irradiation (respectively, 28.26 ± 4.72,
23.56 ± 4.28, and 17.92 ± 3.39 %). In contrast, X-irradiation
did not affect the prevalence of the left eye open phenotype
(3.03 ± 1.40%) (Figure 1D). Similar observations were made
for the right eye (respectively 42.41 ± 5.93, 29.32 ± 3.93, and
18.59 ± 4.35%) (Figures 1E–H). Here, the right eye also showed
an increase of the open phenotype (4.55 ± 1.89%). Of interest,
we revealed a partial prevention of radiation-induced left-eye
anophthalmos with both the 8 mg/kg FA (9.02 ± 3.40%) and 12
mg/kg FA (10.62 ± 2.74%) diets (Figure 1A). No such rescue
was observed for the right eye (Figure 1E).

In addition, we determined the number of fetuses with
exencephaly, agnathia, gastroschisis and cleft palate. X-
irradiation increased the prevalence of exencephaly (15.26 ±
3.95%) and agnathia (17.88 ± 4.17%) when the animals were fed
the control diet, whilst 8 and 12 mg/kg FA provided significant
prevention of both exencephaly (respectively, 4.89 ± 2.10 and
4.43 ± 2.03%) (Figure 2A) and agnathia (respectively, 5.41 ±
1.86 and 1.56 ± 1.56%) (Figure 2B). Furthermore, irradiation
also increased the number of fetuses affected by gastroschisis in
mothers on the control diet (11.3 ± 2.83%), but here no rescue
was observed with the FA fortified diets (Figure 2C). Finally,
X-ray exposure at E7.5 did not affect the occurrence of cleft
palate in the fetuses, regardless of the diet (Figure 2D).

FA Counteracts the Effects of X-Ray
Exposure on Pre-natal Survival
In the next part of our study, we investigated the impact of
X-irradiation during neurulation on the number of implants,
pre-natal deaths and fetal weight. Neither X-irradiation nor
FA fortification affected the total number of conceptuses per
pregnant female (Figure 3A). In terms of late fetal deaths (E18
fetuses with no signs of life), an increase was observed after
irradiation in mothers on the control diet, while this increase
was prevented with 8 and 12 mg/kg FA diets (Figure 3B).
Furthermore, we found an increase in resorptions (implantation
site at E18, which holds no developed fetus, and shows evident
embryonic-stage death) after 1.0Gy irradiation, with a notable
rescue after 8 mg/kg, but not after 12 mg/kg FA fortification
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FIGURE 1 | Prevalence of various eye defects observed at E18, following 1.0Gy X-ray exposure at E7.5, and prevention with FA fortification. Radiation significantly

increased the risk for left eye anophthalmos; a defect that could in turn be prevented by both FA fortified diets (8 mg/kg and 12 mg/kg FA) (A). Although both left eye

(Continued)
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FIGURE 1 | microphthalmos (B) and iris anomaly (C) were induced by X-irradiation, no rescue effect of FA was observed on these phenotypes. The left eye open

phenotype was not increased in prevalence following irradiation (D). Although defects of the right eye, including anophthalmos (E), microphthalmos (F), iris anomaly

(G) and open eye (H) were more prevalent following irradiation, we observed no significant prevention of these defects by FA. Data are represented as mean ± SEM,

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

FIGURE 2 | Prevalence of radiation-induced birth defects at E18, affecting the head and abdomen, and the prevention with FA. Irradiation at E7.5 significantly

increased the risk for exencephaly (A), agnathia (B) and gastroschisis (C). The first two of these radiation-induced defects could be partially prevented by FA food

fortification (both 8 and 12 mg/kg) (A,B). Radiation had only minimal impact on the prevalence of cleft palate (D). Data are represented as mean ± SEM, *p ≤ 0.05,

**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

(Figure 3C). Finally, irradiation resulted in a marked fetal weight
loss at E18 (Figure 3D), which was not rescued following FA
fortification. Of note, sham-irradiated fetuses gained weight
when placed on the 12 mg/kg FA diet, as compared to sham-
irradiated animals on the control diet (Figure 3D). Altogether,
we were able to demonstrate a preventive role of FA for radiation-
induced late fetal deaths and resorptions.

Axial Skeletal Defects and Prevention With
FA
To assess general teratogenicity of X-ray exposure on the axial
skeleton, alcian blue/alizarin red staining was utilized, a common
methodology to assess the sub-macroscopic teratogenicity of
chemical and physical agents (Young et al., 2000). X-irradiation
at E7.5 increased the number of defects within the vertebrae,
specifically in the atlas, the cervical vertebrae and the thoracal
vertebrae when the animals were fed the control diet (Figure 4A,
atlas, cervical and thoracal vertebrae). Within the cervical
region, radiation primarily resulted in fused vertebrae and

excessive cartilage (Figures 4B,C). At the thoracic level, the
most common vertebral defects included fusions and excessive
cartilage, whereas ribs were often missing (Figures 4D,E). Here,
we also observed impaired ossification of the ribs (Figure 4F)
and split ossification centers within the vertebrae (Figure 4G).
Of note, irradiation also increased the incidence of a tilted
sternum (Figures 4H,I). To a lesser extent, radiation lead to
tilted vertebrae, displaced ribs, hooked (i.e., bent) ribs and
short-length ribs (Supplementary Figures 1A–C). 8 mg/kg FA
fortification prevented the occurrence of radiation-induced
defects in the cervical region, whilst the 12 mg/kg diet group
also showed a strong trend (henceforth defined as P= 0.05–0.08)
toward prevention (Figure 4, cervical vertebrae). Surprisingly, a
combination of 8 mg/kg FA and 1.0Gy increased the number of
defects within the caudal vertebrae, as compared to the 1.0Gy
irradiated animals that were fed the control diet (Figure 4A,
caudal vertebrae). Furthermore, a trend was observed for the
rescue of defects within the true and false ribs following
fortification with the 8 mg/kg and 12 mg/kg diets (Figure 4A
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FIGURE 3 | Impact of 1.0Gy X-ray exposure at E7.5 and FA on the number of conceptuses (A), late fetal deaths (B), resorptions (C) and fetal weight (D). Neither

radiation nor FA diet (8 and 12 mg/kg FA) had an impact on the number of conceptuses at E18 per litter (A). Irradiation strongly increased the rate of late fetal deaths

when mothers were fed the control diet, whilst FA fortification prevented this (B). A significant increase in resorptions was observed for irradiated mice on the control

diet, which was in turn prevented only by the 12 mg/kg FA diet (C). FA fortification significantly increased fetal weight, whilst irradiation decreased fetal weight (D).

Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001.

true and false ribs). Overall, FA fortification partially prevented
skeletal defects within the cervical and thoracic vertebrae, whilst
a trend toward prevention could be observed within the true and
false ribs.

Abnormal Adult Brain Morphology
Following Pre-natal X-Ray Exposure
We performed volumetric MRI analyses to assess whether the
adult brain is structurally affected following irradiation at E7.5.
Here we also assessed whether FA fortification could prevent
any radiation-induced anomalies with inclusion of the 8 mg/kg
FA diet, which was based on the rescue effect we observed
in view of the radiation-induced fetal defects. We observed
no differences in the volumes of whole brain, the olfactory
system, the frontal cortex, the corpus callosum, the amygdala,
the cerebellum and the corpora quadrigemina in response to
radiation and/or FA (Supplementary Table 1). In contrast, other
brain regions were affected by the radiation dose and the diet.
Ventricles appeared significantly enlarged following irradiation
[F(2, 37) = 6.125; P = 0.0050] (Figure 5A), although no
significance was reached when comparing individual radiation
doses. We also found a radiation-induced reduction in volume
of the hippocampus (Figure 5B), striatum (Figure 5C), thalamus
(Figure 5D), midbrain (Figure 5E) and pons (Figure 5F) when
the mothers were irradiated with 0.5Gy. Of interest, an
interaction effect between irradiation and the diet could be
established for the hippocampus [F(2, 37) = 4.654; P = 0.0157)

(Figure 5B), midbrain [F(2, 37) = 4.654; P = 0.0157] (Figure 5E)
and the pons [F(2, 37) = 3.792; P = 0.0318] (Figure 5F), which
supports an FA-dependent rescue of radiation-induced size
decrease. Furthermore, X-irradiation resulted in a trend toward
a volumetric decrease of the posterior cerebral cortex [F(2, 37) =
2.731; P = 0.0783] (Figure 5G) and the basal ganglia [F(2, 37)
= 2.768; P = 0.0758] (Figure 5H). Unexpectedly, FA food
fortification reduced the size of the basal ganglia [F(1, 37) = 4.961;
P = 0.0321) (Figure 5H) and the striatum [F(1, 37) = 7.067; P =
0.0115] (Figure 5C). A trend toward FA-induced size decrease
was also observed for the anterior commissure [F(1, 37) = 3.796;
P = 0.0590] (Figure 5I).

Irradiation Impairs Vision and Olfaction,
Which Is Ameliorated by FA Fortification
In order to determine whether X-irradiation during neurulation
can affect visual acuity later in life, and whether these effects
could be countered by FA, a virtual optokinetic drum was
used. Here, we observed that radiation decreased visual acuity
[Figure 6A, F(2, 64) = 10.02; P = 0.0002], whilst FA increased
visual performance as compared to animals on the control diet
[Figure 6A, F(1, 64) = 6.565; P = 0.0128]. Furthermore, the
impairment in acuity elicited by 0.1Gy was alleviated by FA
(Figure 6A). SD-OCT analysis did not show any changes in total
retinal thickness following X-ray exposure or FA fortification
(Figure 6B). Yet, a more detailed investigation revealed that the
nerve fiber and retinal ganglionic cell layer (NF+GCL) thickness
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FIGURE 4 | Prevalence and categories of axial skeletal defects at E18,

following 1.0Gy at E7.5 and prevention by FA. (A) Radiation significantly

increased the number of defects in the atlas, cervical and thoracal vertebrae,

while an insignificant trend could be observed in the ribs. FA fortification with 8

mg/kg prevented defects within the cervical vertebrae, with a trend toward

prevention apparent in the true and false ribs. (B–I) In control animals, the

arches of the cervical vertebrae only sporadically demonstrated an anomaly

(B), whereas irradiation lead to a notable presence of vertebral fusions

(affecting two or three arches, shown by an arrow← and arrowhead ◭,

respectively) and excessive cartilage≪ (C). In controls, both the thoracic

vertebrae and ribs never showed any anomalies (D), but irradiated fetuses

often lacked ribs (arrowhead ◭) and depicted excessive cartilage (double

arrowhead≪) and fusions (arrow←) in the vertebrae (E). In addition, the ribs

also showed delayed ossification (arrowhead ◭) (F) and the vertebral bodies

showed split ossification centers (arrowhead ◭) (G). Finally, radiation also

promoted the presence of a tilted sternum (H,I). Data are represented as

mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Asterisks

indicate a significant change as compared to the control FA + 1.0Gy group of

the respective skeletal region.

was decreased following 0.5Gy irradiation [Figure 6C, F(2, 63)
= 7.618; P = 0.0011], which was not alleviated following the
FA-rich diet. On the other hand, the high FA diet was shown

to elicit a protective effect on the radiation-induced decrease in
eye diameter (Figure 6D). Altogether, we showed a radiation-
induced decrease in visual acuity starting from a low dose of
0.1Gy onward, together with a reduced NF and GCL layer
thickness and eye diameter following 0.5Gy. FA prevented the
decreased visual acuity elicited by 0.1Gy, and rescued the 0.5
Gy-induced decrease in axial eye size.

To investigate whether X-ray exposure during neurulation
has an impact on olfactory performance and discrimination,
and whether radiation-induced differences can be rescued by
FA, we performed an olfaction-dependent habituation and
dis-habituation test. When presented with a novel odor, mice
will show specific approach and sniffing behavior (dishabituation,
see Table 3), which increases further in the presence of S odors,
and diminishes over the three time bins of 2min (habituation).
To compare the rate of habituation and dishabituation between
the groups, we calculated the difference in sniffing time between
(a) within the same odor of trial 1 and trial 3 (habituation)
and (b) between odors from old to new odor (dishabituation).
Habituation was observed in all conditions for all odors,
indicating a normal loss of interest for odors over time
(Figures 7A,B, Table 3). Similarly, approach behavior to a novel
odor was observed in both sham and irradiated animals and was
not affected by FA enrichment (Figures 7A,B,Table 3). However,
irradiation reduced the total amount of time spent sniffing
NS odors under control diet conditions compared to sham-
irradiated animals (Figure 7C). Two-way ANOVA for factor diet
(control diet or FA) and dose (sham, 0.1 and 0.5Gy) during
the NS odor presentation, indicated a significant effect for diet
[F(1, 63) = 4.078; P = 0.048] and for dose [F(2, 63) = 3.908; P =
0.025] without significant interaction. Post-hoc analysis revealed
a significant difference between sham- and 0.5 Gy-irradiation in
the control diet group, indicating a reduced approach time to
NS odors after irradiation. This reduced approach was alleviated
when given the high FA diet. Of note, this reduced sniffing
time is not due to an inability to approach, since presentation
of S odors increased the sniffing time, but is possibly due to a
decrease in attractiveness or detection of the odor itself. High
FA diet normalized the sniffing time and approach to novel
odors to baseline levels (Figures 7B,C), which is indicative of a
protective role for FA. A similar trend was observed for S odors,
however, the two way ANOVA did not indicate a significant
effect of either factors. To conclude, irradiation in conjunction
with the control diet resulted in hyposmia (i.e., a decreased
sense of smell) for the NS odors, or a reduced interest in NS
odors. These anomalies were alleviated when the diet was fortified
with FA.

No Changes in Activity and Motor
Performance Following Irradiation of
Animals on the Control Diet
General arousal and changes in circadian activity was assessed in
the 23 h cage test. Under control diet conditions, radiation had no
effect on the spontaneous activity, and all animals displayed the
typical increase in night-time activity. Here, repeated measures
(RM) ANOVA indicated a significant effect for time [F(47, 1504)
= 38.34; P < 0.0001], but not for radiation dose (Figure 8A).
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FIGURE 5 | Volumetric analyses of various brain regions after pre-natal irradiation at E7.5. Ventricles were significantly increased after irradiation (A), whereas the

hippocampus (B), striatum (C), thalamus (D), midbrain (E) and pons (F) were significantly smaller following a dose of 0.5Gy in animals on the control diet. According

to two way ANOVA, the radiation factor was significant in decreasing size of the posterior cerebral cortex (G). FA by itself decreased the size of the basal ganglia (H)

and the anterior commissure (I). Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01.

Animals on the high FA diet also showed a typical increase in
night-time activity [F(47, 1504) = 50.38; P < 0.0001). In addition,
the high FA diet increased night-time activity in mice exposed to
a low dose of 0.1Gy [F(2, 32) = 5.063; P= 0.0123) (Figures 8B,C).
When animals were fed the high FA diet, repeated-measures
(RM) ANOVA revealed a significant interaction effect between
radiation and diet during the dark period [F(2, 64) = 3.485;
P = 0.0366], and post-hoc analysis indicated that only 0.1Gy
was significantly different from the sham-irradiated group (P

= 0.0191). This interaction effect was also observed in the

overall duration of the experiment [F(2, 64) = 4.127; P = 0.0206]

(Figure 8D).

Balance and coordination was tested on the accelerating
rotarod, but radiation had no effect on motor coordination, and
we also saw no effect of FA diet (Supplementary Figure 2).

Radiation Did Not Affect Overall Cognition,
but FA Adversely Altered Social Behavior
Open Field and Social Exploration
The open field test was used to assess exploratory behavior
in a novel and stressful environment. The animals are dark-
adapted and then placed in a brightly illuminated open field
for 10min. Anxious animals will spend their time close to the
walls and will not enter the open center zone. We observed that
all groups spent most of their time close to the wall, and there
was no effect of radiation nor of FA enriched diet on the time
spent in the periphery (Figure 9A). Center visits were frequent
(Figure 9B) but overall rather short (Figure 9C). Furthermore,
the distance the animals traveled over 10min was similar in all
groups (Figure 9D). Likewise, other parameters, such as latency
to enter the center, walking speed or distance traveled in the
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FIGURE 6 | Visual acuity, retinal morphology, eye size and the impairment thereof by X-irradiation during neurulation. Radiation decreased visual acuity in adult mice

(W5-W7) starting from 0.1Gy, according to the optomotor test (A). 8 mg/kg FA increased the irradiation dose required for a significant effect on optokinetic response

to 0.5Gy (A). Irradiation or FA diet did not affect total retinal thickness, according to OCT analysis (B), but a more detailed analysis showed that 0.5Gy significantly

reduced thickness of the nerve fiber + ganglion cell layer (C). Using the MRI images for eye-size measurements, we identified a reduced axial length following 0.5Gy,

which was in turn ameliorated by FA fortification (D). Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

TABLE 3 | Differences in sniff time used to assess habituation and dishabituation.

Control diet 8 mg/kg FA

Dose 0.0Gy 0.1Gy 0.5Gy 0.0Gy 0.1Gy 0.5 Gy

Habituation: difference in sniff time within same odor

Time (s) −26.2

± 3.2

−21.8

± 3.7

−18.7

± 2.1

−24.7

± 2.2

−22.5

± 3.2

−23.0

± 3.3

Dishabituation: difference in sniff time from old to new odor

Time (s) 30.6

± 4.0

13.0

± 3.9

20.4

± 3.2

30.9

± 4.1

25.3

± 4.0

27.4

± 3.2

To quantify habituation (reduction in sniffing time to the same odor) and dishabituation

(changes in sniffing time from old to new odor), we calculated the difference between tx1-

tx = ∆t, and averaged the values across all odors for each animal. All ∆t were different

from 0 and there was no effect of radiation and/or FA. Data are represented as mean

± SEM.

center were also not different between the groups (respectively,
Supplementary Figures 3A–C). We used a modified setup to
evaluate social approach: two stranger mice were placed in
the center of the arena and provide an attraction point for

the test mouse. We observed similar distance covered in all
groups (Figure 10A), but FA fortification decreased the time
spent in the center as compared to animals on the control
diet [Figure 10B, F(1, 63) = 4.316; P = 0.0418]. Factors such as
center distance, center entries, mean speed, time in periphery
and latency to enter the center were unaltered (respectively,
Supplementary Figures 4A–E).

Elevated Plus Maze
The EPM is considered the typical test to assess anxiety related
exploration. We observed no significant difference in total beam
breaks between the different groups. Two-way ANOVA indicated
no effect of factor radiation [F(2, 63) = 0.4912; P = 0.6142]
nor of diet [F(1, 63) = 2.206; P = 0.1424) on total beam breaks
(Figure 11A). Open arm visits (Figure 11B) and open arm dwell
(Figure 11C), both readouts for anxiety, were similar in all
groups. In general, neither radiation exposure nor diet had an
impact on anxiety-related activity.
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FIGURE 7 | Odor habituation and dis-habituation in adult mice (W9–W11) following pre-natal irradiation at E7.5, under control or FA fortified diet. All animals show a

typical approach behavior toward novel odors (dishabituation) and reduction in sniffing over time toward the same odor (habituation) (A,B). Under control diet

condition, irradiated animals show reduced sniffing time to novel odors (A). In contrast, under high FA diet, sniffing time is at sham level (B). The total amount of

sniffing time toward a non-social odor, was reduced in irradiated animals under control diet, while high FA fortification increased the sniffing time to sham levels (C).

Data are represented as mean ± SEM, *p ≤ 0.05 vs. sham (post hoc), $ p ≤ 0.05 control vs. FA diet (two-way ANOVA).

Morris Water Maze
During place learning, under control diet, all groups learned
in a similar way to locate the hidden platform (Figure 12A).
RM ANOVA indicated an effect for day [F(9, 270) = 41.4; P <

0.001], but not for radiation dose and no interaction. In contrast,
under FA conditions, RM ANOVA indicated an effect for day
[F(9, 288) = 37.0; P < 0.001], and an effect of dose [F(2, 288)
= 4.34; P = 0.022), without interaction (Figure 12B). Post-hoc
analysis indicated, as compared to sham-irradiated animals, a
significantly longer path length in 0.5 Gy-irradiated animals only
on the first 2 days [q(3) = 4.0; P = 0.013, and q(3) = 3.6; P
= 0.029] (Figure 12B). However, this finding was considered
biologically irrelevant due to the low number of days affected.
The probe trials were interspersed after day 5 and 10. Target
quadrant preference was evaluated by comparing time spent in
the target quadrant with chance level (25%). Under control diet
conditions, 0.1 Gy-irradiated mice showed a clear lack of target
quadrant preference even after 2 weeks of training, which was
also true for 0.5 Gy-irradiated animals during the first probe
trial (Figure 12C). When the diet was FA fortified, all radiation-
dose groups demonstrated significant target quadrant preference
during the second trial (Figure 12C), suggestive for a FA-induced
amelioration of reference memory and supporting FA to have a
role in learning and memory. Nonetheless, these results are to
be interpreted with caution due to the relatively low numbers of
animals being included in the analysis.

Passive Avoidance
The effect of pre-natal X-ray exposure and FA on amygdala
and hippocampal dependent fear-related memory formation was
tested using the passive avoidance set-up. Animals on the control
diet [F(1, 30) = 86.87; P < 0.0001] and on the high FA diet [F(1, 30)
= 219.7; P < 0.0001] demonstrated an increased latency to enter
the dark chamber after the shock (Supplementary Figure 5A).
A comparison between animals on the control diet and on the

high FA diet revealed no interaction between diet and latency
[Supplementary Figure 5B, F(1, 18) = 0.1248; P= 0.7280]. These
data suggest that neither radiation nor high FA diet has an impact
on passive avoidance learning.

DISCUSSION AND CONCLUSION

Radiation-Induced Anophthalmos,
Exencephaly and Gastroschisis Are
Prevented by FA
X-irradiation at E7.5 induced various congenital eye defects,
exencephaly, agnathia and gastroschisis in the offspring.
Interestingly, the right eye appeared more susceptible toward
radiation-induced anophthalmos as compared to the left eye.
This observation is in line with our previous study (Craenen
et al., 2017) and could be explained by the used mouse strain with
a C57BL6/J genetic background. C57BL6/J mice have a strong
natural tendency toward developing asymmetrical eye defects,
with a bias toward right-eye anophthalmos/microphthalmos
(Smith et al., 1994). Alternatively, in the developing embryo
there are various gestational stages that demonstrate left-
right asymmetry (e.g., various signaling mechanisms). Even
the developing eye is known to exhibit such developmental
asymmetry (Levin, 2005), hypothetically allowing potential
teratogens such as ionizing radiation to interfere with the left-
right axis during embryogenesis. Hence, to assess why radiation
induces an asymmetric eye phenotype, it is of interest to compare
our results to a differentmouse strain, and tomore closely explore
the molecular mechanisms along the embryonic left-right axis
after X-irradiation.

In this study, we demonstrated for the first time that FA
fortification (8 mg/kg FA and 12 mg/kg FA) prevents radiation-
induced anophthalmos, exencephaly and agnathia. Already in the
1960’s a link between FA intake and the incidence of congenital
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FIGURE 8 | Cage activity in adult mice (W7–W9) and the impact of X-irradiation at E7.5 and FA food fortification. When the control diet was fed, no effect of pre-natal

radiation exposure on cage activity was observed (A). When animals were fed the FA diet, irradiation with 0.1Gy at E7.5 significantly increased activity during the dark

period, as tested in adult 7–9 week old mice (B). (C,D) A summarized total of beam breaks during the dark period (C) and the overall experiment (D) confirmed the

observations made in (A,B). Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

EDs was suggested. For instance, maternal FA-deficiency was
shown to increase the risk of EDs in rats (Armstrong and
Monie, 1966). A later study supported these findings, where

a FA-deficient diet in mice could lead to anomalies such as
anophthalmos and microphthalmos (Maestro-de-las-Casas et al.,
2013). Furthermore, ethanol-induced retinal anomalies were
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FIGURE 9 | Effect of embryonic X-irradiation and FA fortification on exploration behavior in adult mice, according to the open field test. Neither E7.5 irradiation, nor

diet had an impact on the time spent in the periphery (A), entries into the center (B), time spent in the center (C) and the total distance traveled (D). Data are

represented as mean ± SEM.

FIGURE 10 | Social exploration in an adapted open field test was unaffected by 1.0Gy exposure at E7.5, but was impaired by FA fortification. Neither radiation, nor

FA diet had an impact on exploration behavior in adult mice, according to the total distance traveled in the arena (A). In contrast, FA fortification resulted in animals

spending less time in the center, in close proximity to the unknown mouse (B). Data are represented as mean ± SEM, *p ≤ 0.05.

rescued with FA supplementation in zebrafish (Muralidharan
et al., 2015). In contrast, an epidemiological study could
not determine a link between FA intake and the risk for

anophthalmos and microphthalmos. Yet, the authors conceded
that several caveats such as a small case population and the lack
of clinical analyses of key biomarkers may have impaired proper
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FIGURE 11 | Effect of embryonic X-irradiation and FA fortification on anxiety, tested in the elevated plus maze. Neither irradiation at E7.5 nor diet had an effect on the

total number of beam breaks (A), beam breaks in the open arms (B) or time spent in the open arms (C) by adult animals. Data are represented as mean ± SEM.

FIGURE 12 | Spatial place learning and reference memory of adult mice in the MWM, following X-ray exposure at E7.5 and/or FA food fortification (8 mg/kg FA). All

groups learned to located the hidden platform under control diet (A) and FA fortification (B). Reference memory was assessed during interspersed probe trials (C). In

FA enriched diet, all animals displayed significant preference to the target quadrant above chance level (25%). Data are represented as mean ± SEM, *p ≤ 0.05 to

chance level (25 %).

effect estimation (Shaw et al., 2007). The second category of
radiation-induced birth defects that appears folate-responsive,
is exencephaly. The prevention of exencephaly by FA is well-
described in literature, albeit not with ionizing radiation as the
effecting teratogen, but with e.g., ethanol (Yanaguita et al., 2007)
and glucose (Wentzel and Eriksson, 2005; Oyama et al., 2009). Of
note, international FA food fortification initiatives have already
successfully decreased the incidence of NTDs (Blom et al., 2006).
The third category of radiation-induced birth defects, that is
partially preventable by FA, is agnathia. In humans, agnathia
is a very rare congenital disorder, commonly classified within
the otocephaly family of disorders (incidence <1/70 000 births)
(Gekas et al., 2010; Herman et al., 2012; Jagtap et al., 2015;
Sergouniotis et al., 2015). To our knowledge, the only published
observation where FA fortification could prevent agnathia was in
Twisted gastrulation mutant mice, which have a high penetrance
of midline facial defects and jaw defects (Billington et al., 2013).
Even though our study is the first to demonstrate the prevention
of X-ray-induced anophthalmos, exencephaly, and agnathia, the
rescue is only partial. It would be of interest to further explore
the efficacy of other radioprotectant compounds, potentially in
combination with FA, in preventing these defects.

In contrast to the defects discussed above, we observed no
folate-responsiveness of radiation-induced iris anomalies, open

eye and gastroschisis. The iris anomaly observed in our study
was characterized by a strongly decreased pupil size, with the
most severe cases having no apparent pupil at all (Smith et al.,
1994; Craenen et al., 2017). In accordance, in a previous study
on hyperthermia-induced iris anomalies, no protective effect
of FA could be found (Czeizel et al., 2011). Yet, there are
to our knowledge no other publications that have previously
investigated the efficacy of FA in preventing open eye anomalies.
Hereto, it might be worthwhile to investigate the protective effect
of thyroxine supplementation on radiation-induced open eyes,
as some success was already made with this hormone (Juriloff,
1985). With regard to gastroschisis, it remains severely debated
whether these defects can be prevented with FA, with efficacy
strongly depending upon the acting teratogen (Godwin et al.,
2008; Paranjothy et al., 2012; Yang et al., 2016).

Reduced Fetal Weight and Increased
Pre-natal Death Following Irradiation Are
Ameliorated by FA
Aside from gross macroscopic defects, other aspects of pre-
natal development were also assessed. Irradiation significantly
reduced fetal weight at E18, as was also observed in a previous
study (Craenen et al., 2017), which was not notably ameliorated
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by FA. This stands in contrast to the teratogen ethanol, where
embryotoxic weight loss can be prevented by FA (Xu et al.,
2006). However, a potentially adverse outcome observed after
fortification of the highest dose of FA was the increase of
fetal weight at E18. Epidemiological studies already reported
that increased fetal weight is a consequence of FA fortification
(Tamura and Picciano, 2006; Balarajan et al., 2013; Li et al., 2016;
Ramakrishnan et al., 2016), which is linked to type 2 diabetes and
adult obesity (Curhan et al., 1996; Johnsson et al., 2015). Both
the number of late fetal deaths and resorptions were increased
following irradiation, which is consistent with previous work
(Pampfer and Streffer, 1988; Kim et al., 2001; Craenen et al.,
2017). These cases of pre-natal mortality were reduced by FA
fortification, which is in line with epidemiological studies that
focused on fetal loss (Andersen et al., 2010) and miscarriage
(Byrne, 2011).

Radiation-Induced Fetal Morphological
Defects, and Prevention With FA
Since the mid-twentieth century, it has already been known that
exposure to (high) doses of ionizing radiation during pregnancy
can result in a variety of axial and appendicular skeletal
defects (Jarmonenko, 1988). These studies focused mostly on
severe spinal defects such as spina bifida, which are known
to result from exposure to external radiation sources such as
neutrons and γ-rays (A-bombs) and internal contamination
from e.g., depleted uranium (commonly used in munitions)
[reviewed by Hindin et al. (2005)]. In our study, pre-natal
irradiation had the most detrimental impact on the cervical
and thoracic vertebrae. This was also observed in a study by
Russell, who used 2.0Gy of X-rays at E7.5 (Russell, 1956).
A contrasting study described more malformations in the
ribs of CRI mice than in the vertebrae, following 2.0 Gy-γ-
irradiation at E7.5 (Kim et al., 2001). This difference might
be mouse strain dependent, or might result from variations
in radiation dose and type. In further support of our study,
a dose-dependent induction of skeletal malformations after
irradiation (0.5Gy to 4.0Gy) at E11.5 was observed (Kim et al.,
2001). It would therefore be interesting to further investigate
this dose-dependency and the existence of a dose-threshold in
our experimental set-up. Intriguing was the presence of split
spinal ossification centers after irradiation, which could lead
to open vertebral arches and potentially spina bifida occulta
in later life (Regnier et al., 2002). Altogether, we are the first
to explore in such detail developmental defects in the axial
skeleton after irradiation at E7.5, and to demonstrate that FA
fortification can significantly reduce the risk for radiation-
induced skeletal defects.

Although we observed an increase in axial skeletal defects after
1.0Gy irradiation, it appears that the sub-lethal doses (Craenen
et al., 2017) used for the behavioral assays (≤0.5Gy) might have
been too low to elicit any functional detriment. Indeed, in terms
of motor performance, none of the behavioral tests could identify
a clear impairment following irradiation, as is discussed in more
detail below.

Persistent Radiation-Induced Defects in
the Adult Nervous System and the
Preventive Role of FA
Because pre-natal exposure to ionizing radiation can induce gross
congenital central nervous system defects (e.g., microphthalmos
and anophthalmos) at moderate to high X-ray doses (0.5–1.0Gy)
(Craenen et al., 2017), we decided to explore whether this can
elicit functional and morphological neurological defects that
persist into adult age.

We used in vivo MRI to investigate whether X-ray exposure
during neurulation has an effect on adult brain and eye
morphology. Although we observed no global microcephaly, as
was shown after irradiation during neurogenesis (Verreet et al.,
2015, 2016a), volumetric analyses unveiled a decreased volume
of some dedicated brain areas. More specifically, we observed
that 0.5Gy significantly reduces the size of the hippocampus,
striatum, thalamus, midbrain and pons. These structures are
involved in various mechanisms, ranging from cognition to
visual acuity. For example, the thalamus is known for its
importance in processing and relaying visual information (Tyll
et al., 2011). The pons and midbrain are also involved in visual
functioning, as anomalies within these brainstem regions can
result in both horizontal and vertical gaze palsy (Strupp et al.,
2014; Lin et al., 2018). Furthermore, we observed that irradiation
with 0.5Gy decreased the axial length of the adult eye, which can
be relayed directly to an increased incidence of radiation-induced
microphthalmia (Verma and Fitzpatrick, 2007; Craenen et al.,
2017), and can be associated to an increased risk of refractive
errors (Bhardwaj and Rajeshbhai, 2013). Supporting the MRI-
based findings, SD-OCT revealed a decreased thickness of the
NF+GCL layer in the adult eye, following 0.5Gy at E7.5, which
might lead to a decreased visual acuity (Moster et al., 2016).

Concomitant with these radiation-induced alterations in the
brain and the observed eye anomalies, we indeed observed a
decreased visual acuity following E7.5 irradiation. Interestingly,
this was also observed in 0.1 Gy-irradiated animals, that did
not show a decreased eye size and NF+GCL thickness nor a
reduction in brain volumes, suggesting that other mechanisms
might also be involved. Themorphological defects underlying the
radiation-induced loss of visual acuity may thus extend beyond
changes in eye structure and warrants further investigation.

Even though pre-natal irradiation had no marked impact
on the olfactory system in the adult brain, behavioral tests for
olfaction were included in the test battery. This decision was
based on a previous study that showed transient transcriptional
disturbances in the embryonic head following 1.0Gy irradiation
at E7.5 that were related to the development of the olfactory
epithelium (Craenen et al., 2020b). This is an important
observation, as the olfactory system starts to develop during this
neurulation period (Treloar et al., 2010). Besides, the overall
process of olfaction extends well-beyond the olfactory lobe
(Lehmkuhl et al., 2014), with congenital anomalies within the
peripheral olfactory system (e.g., the olfactory epithelium) having
been linked to hyposmia (Bergman et al., 2010). We are the
first to demonstrate a decreased olfactory acuity in adult mice
following 0.5Gy at E7.5. In particular, we could demonstrate a
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more pronounced anosmia for NS than S odors, which could
be attributed to the functional importance of social odors
and/or chemical differences between the respective odorants
(Sinding et al., 2017). Since defects at this level might explain
the observed hyposmia, it is of interest for future studies to
more closely investigate this complex structure following pre-
natal X-irradiation.

In contrast to the morphological and sensory anomalies
discussed above, we observed no effect of irradiation on
cognition. Previous behavioral screenings demonstrated that
irradiation of mice during neurogenesis had a marked effect
on memory-based performance (Verreet et al., 2015, 2016a).
However, when we irradiated animals during neurulation, no
evidence for impaired memory formation or retention could
be observed, both for spatial and fear-dependent learning.
The observation that 0.5Gy irradiation decreases hippocampal
volume may appear paradoxical in that sense, but this volumetric
decrease might not be directly related to a loss in function.
Although irradiated animals had a notable loss of visual acuity,
the defect may have been too small to influence MWM
performance, which depends on large and distinct visual cues
(Lindner et al., 1997; Brown andWong, 2007; Phillips et al., 2013;
Vorhees and Williams, 2014).

Many of the radiation-induced anomalies that were observed
in adult mice could be (in part) prevented by FA fortification.
FA fortification by itself had only a minimal impact on the adult
tests. For instance, we observed a decreased social exploration
in mice on the FA-fortified diet and also identified a lower
volume of the basal ganglia (i.e., caudate putamen and adjacent
structures). This might be related to the social impairments in
these mice, since a decreased basal ganglia volume was already
linked with autism-spectrum disorder (Barua et al., 2014), but
whether FA fortification is a risk factor for abnormal social
behavior remains controversial [reviewed in Wiens and DeSoto
(2017)]. Furthermore, this volumetric loss might have played a
role in the changes in cage activity as well, because the basal
ganglia are involved in the regulation of the sleep-wake cycle (Qiu
et al., 2010) and general activity (Portmann et al., 2014).

It is important to note that, depending on the causative factor,
congenital defects may respond in a dose-dependent manner
to FA fortification, with higher doses of FA yielding lower
defect prevalences (Gray and Ross, 2009). Yet, in our study, the
radioprotective role of FA did not appear dose-responsive and
no added benefit was noted following 12 mg/kg FA fortification.
Hence, we decided to limit the studies in adult animals to the
8 mg/kg FA diet. Radiation-induced volumetric decreases of
the hippocampus, striatum, thalamus, midbrain and pons were
prevented with FA fortification. In addition, FA rescued visual
acuity loss following a dose of 0.1Gy, but not 0.5Gy. Yet, not all
morphological eye anomalies were prevented by FA, for instance
the radiation-induced reduction of NF+GCL thickness. Finally,
radiation-induced hyposmia for NS odors was alleviated by AF.
To the best of our knowledge, were are the first to highlight this
radioprotective/antiteratogenic character of FA. In all, we can
conclude that X-ray exposure during neurulation affects the adult
nervous system at both a morphological and functional level,
from a dose of 0.1Gy onward, and that these defects can be in part

prevented by FA food fortification. In the context of radiation
protection, our study supports the use of FA fortification to
increase the dose threshold required to elicit adult brain and
eye anomalies.

Potential Mechanisms Underlying
FA-Mediated Radioprotection
Although the exact mechanism through which FA elicits its
radioprotective role is currently unknown, it is still of interest
to highlight several likely modes of action. A first hallmark
consequence of ionizing radiation exposure is the generation
of reactive oxygen and nitrogen species, which can in turn
damage various cellular structures. The detrimental impact of
excessive oxidative stress in the developing embryo and pregnant
mother has been repeatedly addressed in literature. Indeed,
it appears that a disturbed redox status is a recurrent theme
in the etiology of birth-defects caused by various chemicals,
including thalidomide, phenytoin and ethanol (Dennery, 2007).
FA is known to have antioxidative properties in vitro, which is
suggestive of its potential radioprotective effect, but it remains
unclear whether this antioxidative role persists at a systemic level
in vivo. A second hallmark consequence of irradiation is DNA-
damage (Reisz et al., 2014), which can theoretically be repaired
more efficiently with an increased access to one-carbon donors
such as FA. A third hallmark consequence of irradiation includes
epigenetic alterations, in particular DNA methylation. Folates
fulfill an important role in DNAmethylation (Crider et al., 2012).
As the key one-carbon donor behind the methylation process,
it stands to reason that changes in the folate pool would affect
this epigenetic process and potentially reverse radiation-induced
DNA hypomethylation. The fourth potential mode-of-action lies
in radiation-induced changes in the transcriptome and proteome.
We previously demonstrated that X-irradiation (1.0Gy) at E7.5
in mice reduced the expression of Lhx2, a key transcription factor
for eye, brain and olfactory development (Craenen et al., 2020b).
Furthermore, mutations in genes associated with Lhx2 are known
to cause birth defects such as exencephaly (Barbera et al., 2002).
As such, it is of interest to assess whether the radiation-induced
suppression of Lhx2 transcription/translation can be alleviated
by FA fortification. Although this study does not address any of
the aforementioned modes-of-action directly, an exploration of
the mechanisms that might be involved in the antiteratogenic
and radioprotective effect of folic acid is warranted. Such novel
insights might contribute to developing even more efficient
means to protect the unborn child from genotoxic hazards such
as radiation.

CONCLUSION

FA food fortification is effective at partially preventing the
embryotoxic effects of X-ray exposure. Specifically severe defects
such as anophthalmos, exencephaly and agnathia were responsive
to FA. In addition, late fetal deaths, the incidence of resorptions,
fetal weight and skeletal defects within the cervical and thoracal
vertebrae were all negatively affected by 1.0Gy X-irradiation at
E7.5, which was in turn partially countered by FA. Behavioral
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studies demonstrated that X-ray exposure to sub-lethal doses
(≤0.5Gy) at E7.5 resulted in a decrease of visual acuity and
olfactory performance in the habituation/dishabituation test.
The impaired visual performance was supported by radiation-
induced loss of NF+GCL thickness and a decreased eye diameter,
at least for the highest dose of 0.5Gy. We can conclude from
our MRI data that irradiation during neurulation has more
site-specific consequences than irradiation during neurogenesis
(Verreet et al., 2015, 2016a). As such, it would be of interest to
follow up this study with more sensitive behavioral tests, tailored
more specifically to those brain regions that are decreased in
volume following X-irradiation.

The increasing exposure of humans to ionizing radiation
is a contemporary topic that deserves proper investigation.
The heightened exposure to ionizing radiation finds its roots
in the clinical environment, nuclear disasters, war or terrorist
activities and natural sources such as Radon gas. With this
research paper, the authors wish to address and promote novel
radioprotection strategies such as FA fortification and the future
implementation thereof in high-risk groups that currently do
not have access to FA-fortified staple foods (or FA supplements).
Included in these risk-groups are e.g., pregnant patients who
require radiodiagnostics or radiotherapy and pregnant women
living in radioisotope-contaminated regions. The fetal doses
that can be expected during clinical exposure events (including
conventional radiotherapy, computed tomography and nuclear
medicine) range from 0.01 to 43.9 mGy (Lazarus et al., 2009).
These doses are lower than those used in this study, as we
opted to reduce the number of animals required to observe
significant radiation effects. As such, it is difficult to make a
direct extrapolation from the animal research presented here
to the human exposure scenarios listed above. Nonetheless, as
a proof of concept this study demonstrates the potential for
using FA fortification to protect the unborn child against ionizing
radiation. Protecting the unborn child from the detrimental
effects of ionizing radiation will improve their quality of
life, by preventing radiation-induced birth defects and sensory
deprivation. Although our study in mice indicates that ad libitum
FA food fortification at 8 mg/kg is sufficient to provide a
radioprotective effect, the optimal concentration for humans
remains to be studied in the context of radiation protection.

Considering both the promising results and the limitations of
this study, the authors support larger (epidemiological) studies
(with lower fetal radiation doses) to explore the use of FA as a
radioprotectant in humans.
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