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From Paths to Routes: A Method for
Path Classification
Andrea Gonsek, Manon Jeschke, Silvia Rönnau and Olivier J. N. Bertrand*

Neurobiology, Bielefeld University, Bielefeld, Germany

Many animals establish, learn and optimize routes between locations to commute

efficiently. One step in understanding route following is defining measures of similarities

between the paths taken by the animals. Paths have commonly been compared

by using several descriptors (e.g., the speed, distance traveled, or the amount of

meandering) or were visually classified into categories by the experimenters. However,

similar quantities obtained from such descriptors do not guarantee similar paths, and

qualitative classification by experimenters is prone to observer biases. Here we propose

a novel method to classify paths based on their similarity with different distance functions

and clustering algorithms based on the trajectories of bumblebees flying through a

cluttered environment. We established a method based on two distance functions

(Dynamic Time Warping and Fréchet Distance). For all combinations of trajectories,

the distance was calculated with each measure. Based on these distance values, we

grouped similar trajectories by applying the Monte Carlo Reference-Based Consensus

Clustering algorithm. Our procedure provides new options for trajectory analysis based

on path similarities in a variety of experimental paradigms.

Keywords: bumblebee, clustering, route, classification, clutter, navigation

1. INTRODUCTION

Finding a location in an unknown environment can be a daunting time- and energy-demanding
task. In contrast, returning to a known location is much easier than finding it for the first time.
To return to an already known location, animals and artificial agents alike can move along
habitual routes. Forming and following of routes has been observed in numerous taxa; from insects
(Lihoreau et al., 2011; Woodgate et al., 2016; Buatois and Lihoreau, 2016; Woodgate et al., 2017)
to mammals (Hurlebaus et al., 2008; Pfeiffer and Foster, 2013); thus, it is a wide-spread strategy to
navigate in a familiar environment. Despite the large number of taxa following routes, it remains
little understood how routes are established and followed.

Thanks to the rise of miniature embedded tracking devices (Nagy et al., 2010; Genzel et al.,
2018; Greif and Yovel, 2019), and high-throughput computational methods, tracks of individual
animals in various natural habitats (Graving et al., 2019) have become more wide spread in recent
years. With this expanding collection of paths gathered by scientists, there is a growing need for
efficient data-analysis pipelines to identify, classify, and compare different paths across taxa, species,
or individuals.

There is a distinction to be made between an animal’s path and a route. A path specifically
describes the animal’s trajectory of movement, while the route can be visualized as a string around
which different paths meander. Depending of the consistency of the paths taken among different
runs, a potential route may not easily be recognizable to an observer. However, when many paths
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are observed and clearly show a common overarching structure,
one may conclude that the animals are following the same route.

To date, different paths were visually grouped into different
routes. However, this may lead to unintentional biases
toward a preferred hypothesis. Alternatively to a qualitative
assessment, one may cluster paths numerically. Paths belonging
to the same route would share similar descriptions, be they
their average speed, their sinuosity, or spatial similarity
among paths. Therefore, we aim at finding descriptions of
paths to group them into common routes. During the last
century, numerous methods comparing two paths have been
developed and refined (see for review Magdy et al., 2015),
yielding similarity measures between paths. Therefore, on
the one hand we will try to cluster paths based on their
characteristics (such as average speed, or positional spread);
on the other we will try to cluster paths based on paths
similarity measures. With both descriptions of paths (flight
characteristics and path similarities) we attempt to identify
clusters in the data.

Numerous techniques have been developed to identify clusters
in data. Many clustering techniques require to choose the
number of clusters beforehand. Others address this problem by
using metrics to determine an appropriate number of cluster
[e.g., Monti consensus clustering, (Senbabaoğlu et al., 2014),
Non-negative Matrix Factorization (Lee and Seung, 2001) or k-
means with Ward cost function (Braun et al., 2010)]. Such
algorithm may however bias the results toward higher or lower
number of clusters. A novel method, named Monte Carlo
reference-based consensus clustering (M3C), allows to cluster
the data and determine the number of clusters from the data
while avoiding a bias toward a higher number of clusters
(John et al., 2020). This is performed by statistically testing a
given number of clusters against the null hypothesis of having
only one cluster.

We propose to combine a clustering algorithm (here M3C)
and a number of features describing paths, be it flight
characteristics (e.g., average speed) or similarity measures, to
identify potential routes followed by animals. To illustrate this
combination, we use behavioral data of bumblebees, Bombus
terrestris, known for their route following skills (Lihoreau
et al., 2011), flying through a heavily cluttered environment.
We compare the trajectories of bees through an obstacle
parkour by using two similarity measures [Dynamic Time
Warping (Salvador and Chan, 2004) and Fréchet distance
(Fréchet, 1906; Magdy et al., 2015)], derive the number
of potential routes and associate the individual trajectories
to their corresponding route by using the M3C clustering
algorithm. Furthermore, we classify trajectories based on
flight characteristics, such as the average speed, to assess
whether several characteristics are sufficient descriptors to
identify routes from paths. The clustering algorithm may yield
ambiguous results. We complemented the clustering outcomes
with a method to visualize high dimensional data. Such
visualization allow to disambiguate between different clustering
outcomes. Finally, we discuss the potential use of alternative
similarity measures and how to place novel trajectories into an
existing classification.

2. MATERIALS AND METHODS

2.1. Data Acquisition
2.1.1. Animal and Hive
We used two healthy hives of Bombus terrestris provided by
Koppert B.V., The Netherlands. Bumblebees were transferred
into a 30 × 30 × 30 cm3 acrylic box. Inside the hive box,
bumblebees were provided with pollen. Before starting the
experiment, the bumblebees got 1 week of habituation time
to access the foraging chamber at any time. In the foraging
chamber, bumblebees were provided with feeders containing
sucrose solution (0.5kg/L). After habituation, we could usually
observe bumblebees flying in a direct manner between foraging
chamber and hive. These bees, likely to be foragers, were marked
to track their individual learning progress. To this end, the
animals were captured and restrained on their way back to the
hive. A small colored plastic tag was fixed with resin on the
animals’ thorax. After themarking procedure, the bumblebee was
placed close to the hive entrance.

2.1.2. Procedure
The habituated bees were allowed to travel through a foraging
tunnel (140 × 30 × 30 cm3) connected to the hive box and a
foraging chamber via 2.5 cm diameter tubes and acrylic boxes
(see Figure 1). The walls of the tunnel were covered with a red
and white 1/f noise pattern (as in (Ravi et al., 2019)). When
an individually marked bumblebee returned from the foraging
chamber, it was rerouted by using small acrylic gates into an
experimental tunnel, parallel to the foraging tunnel. Only one bee
at a time was permitted to cross the experimental tunnel.

The experimental tunnel, used for individual training and
recording, contained 49 vertical objects (29.5 × 1 cm2)
suspended from the ceiling and creating a cluttered environment.
The objects were made of red acrylic that blocks light below a
wavelength of 650 nm. Objects were placed as in Figure 1. Five
cameras (Basler acA2040-90umNIR) with red filters (Heliopan
RG715) viewed the tunnel from different perspectives, and
allowed recording the bee’s behavior.

A recording started as soon as the bee crossed the infrared-
light barriers placed before to the tunnel entrance, and stopped
as soon as the bee crossed the light barriers after the tunnel exit.
While recording, the tunnel was illuminated from below by light
filtered through 650 nm cutoff low-pass acrylic, so that the objects
were transparent for the cameras but were perceived as dark by
the bumblebees (Dyer et al., 2008).

2.1.3. Trajectories
Inbound flights of individually marked bumblebees were
recorded while they were flying through the clutter. The
calibrated cameras recorded at 60 frames per second. Each
bumblebee was recorded ten times. The frame-wise position of
the recorded bee was triangulated using flydra (Straw et al., 2011).

Afterwards, the trajectories were manually reviewed to check
for possible errors. Only trajectories after the fifth trial were
considered. In addition, since the setup was invariant along
the altitude (i.e., the z-dimension), we reduced the trajectories
to their planar projection. We selected trajectories during
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FIGURE 1 | Experimental setup shown from above. The hives were kept in an

acrylic box shown on the left. Bees were allowed to forage on sucrose solution

in the foraging chamber (to the right, not shown), which could be reached by

traveling through a tube and tunnel (top) system. Marked foragers could, upon

exiting the foraging chamber, be re-directed into the experimental tunnel

(bottom), where 49 vertical objects form a complex cluttered environment,

which they had to cross to return to their hive.

which bees entered, swiftly crossed, and exited the tunnel. We
used a total of 83 trajectories from 27 different individuals
(see Figure 2).

2.2. Path Clustering
Our aim was to group trajectories into distinct routes. The
trajectories were not directly grouped to each other based
on the time course of their x,y coordinates, but reduced
to a certain number of features, be it flight characteristics
(e.g., average speed) or similarity measures (see section 2.2.2
below). This grouping is akin to the problem of identifying
clusters, where each cluster of trajectories would correspond
to a route.

2.2.1. Flight Characteristics
Along a given route, the bee may fly slower than along another
route, because for example obstacles might be closer to the
bee Baird et al. (2005). The bee may also decide to follow one
wall of the tunnel or to center in it (Serres et al., 2008). Thus
the maximal, average, and standard deviation of lateral position
may be good predictors of a route. Finally the average and
standard deviation of the gaze direction, as well as the traveled
distance divided by the shortest distance between the start and
the end of the bee’s path (i.e., the sinuosity), inform about the
overall flight direction and how much the bee meandered in
the clutter.

Seven flight characteristics were used to describe each
bumblebee’s flight trajectory: the average speed µs, the lateral
position µy of the average trajectory, gaze direction µα in the
tunnel, the standard deviation of the lateral position σy and of
the gaze direction σα , the maximal lateral position max(y), and
the sinuosity.

2.2.2. Path Similarity
Our secondmethod to describe each path was based on similarity
measures of their structure. Several functions can evaluate the
similarity between two trajectories (Magdy et al., 2015; Su et al.,

2020). These functions yield a distance which is the inverse of the
similarity between the two trajectories.

Since animals may meander differently along a route,
the selected similarity measures between paths must take
into account divergent path lengths and keep the traversed
locations ordered along time. We considered two measures:
a variant of Dynamic Time Warping (DTW) and the Fréchet
distance. DTW minimizes the sum of absolute differences
between two trajectories, whereas Fréchet identifies the
shortest distance between two trajectories that is sufficient to
connect points along the trajectories. DTW and Fréchet thus
capture different similarities between trajectories, and can be
regarded as a global and local measures, respectively (see also
Supplementary Figure 1).

The two distance functions required numerous computations,
because they iterated through individual observations for each
trajectory pair. To reduce the computational cost for the
similarity measures, we re-sampled the trajectories as follows:
The trajectories were interpolated and afterwards down-sampled
to achieve equal distances between neighboring points, in order
to keep the shape of the trajectory. The distance between the
points was the median speed across all trajectories.

2.2.2.1. Dynamic Time Warping and FastDTW
Dynamic Time Warping (DTW) was one of the similarity
measures between two temporal sequences, here two trajectories
(Salvador and Chan, 2004). To illustrate this measure, we may
picture two strings with knots laid flat on a table. Our goal is
then to connect the knots from one of the strings to the other
one using the minimum amount of connecting materials. The
connections are not allowed to cross each other, we try to make
them as short as possible, and the first knots on the each of the
strings are connected to each other. DTW is an algorithm that
finds such connections between the strings. In our case, the knots
are the observed bee’s positions, and the strings are the time axes
of the trajectories (see also Supplementary Figure 1). Therefore,
DTW captured similarities by working on the full paths (i.e.,
global measure of path similarity).

The computational demands for this function scaled
quadratically with the length of the trajectories and was therefore
inefficient to use with long trajectories. FastDTW linearly
approximates DTW by using a multi-level approach that
recursively projects a solution from a reduced resolution and
then refines the projected solution (Salvador and Chan, 2007).

2.2.2.2. Fréchet Distance
The Fréchet distance is a spatial similarity measure that can be
best described intuitively as a person walking a dog (Fréchet,
1906). They are connected by a retractable leash and are walking
on different paths. Assuming that both the person and the dog
are allowed to travel with different speeds, but are not allowed to
backtrack their path, the Fréchet distance describes the minimal
length the leash would need to have to connect both throughout
their journey (see also Supplementary Figure 1). Therefore,
Fréchet captured similarities with an extremum function (i.e., a
local measure of path similarity). It took into account the location
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FIGURE 2 | Overview of the trajectories (A) and their descriptions, path similarity (B) and flight characteristics (C). (A) Top view of all unclassified trajectories that were

used. (B) Heatmap of normalized distance values of both similarity measures (DTW and Fréchet), where the columns represent the trajectories, and the rows the

respective paired trajectories for both measures. (C) Heatmap of normalized flight characteristic values. The columns represent the trajectories and the rows depict

the flight characteristic values.

of points, as well as their order, but did not shift points along their
time axis.

2.2.3. Monte Carlo Reference-Based Consensus

Clustering Algorithm
We clustered the path descriptions (either flight characteristics
or path similarity) by using the Monte Carlo Reference-based
Consensus Clustering algorithm (henceforth called “M3C”).
M3C solves a common problem of selecting a suitable number
of clusters and also introduces formal hypothesis testing, by
generating random data to get an estimate of a random
Gaussian distribution.

M3C runs the clustering algorithm multiple times, for each
number of clusterK, resulting in potentially different partitioning
of the data. A consensus is created based on the different runs
(Vega-Pons and Ruiz-Shulcloper, 2011). M3C builds a consensus
matrix showing the probability of two samples being part of
the same clusters. A very high and a very low probability
indicate a small ambiguity whether the cluster allocation is
correct. The consensus matrix is used to create the cumulative

distribution function (CDF) curve. An ideal CDF curve has
a flat shape, because ideally only very small and very high
probabilities are noted in the consensus matrix. A proportion
of ambiguous clustering (PAC) can be derived from the CDF
curve. The PAC score quantified the ambiguity of cluster
assignments between clustering runs based on the cumulative
distribution function (CDF) of the consensus matrix (see
Supplementary Figures 3A,B, Figures 1B,C in John et al., 2020).

The lower left portion of the CDF curve represents sample
pairs that are rarely clustered together, and the upper right
part represents those that are almost always clustered together,
whereas the middle segment represents sample pairs with
ambiguous assignments in different clustering runs. The PAC-
score quantified the middle segment of the CDF curve. It
was defined as the fraction of sample pairs with consensus
indices falling in an interval between U1 and U2, where U1

is a value close to 0, and U2 a value close to 1 (usually 0.1
and 0.9). Thus, a low PAC-score and therefore a flat middle
segment indicated a low rate of discordant assignments across
clustering runs.
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Furthermore, M3C assessed whether the PAC score for a given
number of K is significantly lower than that for a single cluster
K = 1. M3C simulated data sets to get null distributions of PAC
scores for K = 1 and tested the following hypothesis.

H0: the PAC score does come from a single Gaussian cluster
The alternative hypothesis was:
HA: the PAC score does not come from a single Gaussian cluster

This hypothesis testing was done for each K (here ranging from
2 to 10 routes) and thus provided a p-value for each K. When
a PAC score was at a low local minimum and its associated p-
value is below 0.05, the path descriptions significantly clustered,
indicating distinct group of paths (i.e., routes).

The procedure to decide on a suitable number of clusters
was not unambiguous. Indeed more than one K may have a low
PAC score associated with a p-value below 0.05. To disambiguate
between two K we visualized the cluster by projecting the data (a
high dimensional space) using t-distributed stochastic neighbor
embedding (t-SNE) on a 2D space. After projection, clusters
become visible and may allow to visually disambiguate between
clustering outcomes.

2.2.4. Comparison of Path Clustering
Our method used a free parameter: the re-sampling coefficient.
We investigated the effect of the free parameter for a range of
speeds s ∈ [2, 11] mm/frame. The choice of the re-sampling
coefficient may change the clusters of trajectories. Therefore,
we reran our clustering algorithm with different coefficients.
We, then, compared the clustering results from the re-sampling
coefficient s 6= 6 mm/frame to the one with s = 6 mm/frame.

The clustering results were compared by building a confusion
matrix with the reference being s = 6 mm/frame as follows. A
given pair of trajectories (A and B) belonged to the same cluster
when trajectories were re-sampled with s = 6 mm/frame and
also when the trajectories were re-sampled with s 6= 6mm/frame.
Hence, we had a true positive. Similarly, two trajectories (A and
C) did not belong to the same cluster with both re-sampling
coefficients. Thus, we had a true negative. Additionally, when
two trajectories (A and D) belonged to the same cluster with the
reference re-sampling (resp. the tested re-sampling) coefficient
but did not with the tested re-sampling (resp. reference re-
sampling) coefficient, we had a false negative (resp. false positive).

We used a precision score from the confusion matrix derived
from whether pairs of trajectories clustered or did not cluster
together. The precision score was the amount of true positives
divided by the sum of the true positives and false positives.

The resulting precision scoremay be due to chance. Therefore,
to interpret the precision scores statistically, we simulated 100
random clustering results. We randomly assigned trajectories
to a given cluster (from two to ten clusters). We calculated
the precision score for the 100 random clustering T and
derived from their distribution the probability that our observed
precision score (or a higher score) t came from this distribution
p = P(T ≥ t|H). In this case, the distribution served
as null hypothesis, where the critical value for α = 0.05
can be inferred from the precision score value at the 95th
percentile of the distribution. Consequently, the p-value for our
observed precision score was determined by the cumulative

probability of all values beyond that point, i.e., the area
under the graph between the 95th and 100th percentile of
the distribution.

3. RESULTS

We proposed a method to identify routes based on quantitative
descriptions of individual trajectories. To illustrate our
method, we used paths from bumblebees flying in a cluttered
environment. Our procedure consisted of four steps:

1. Describing the trajectory: path similarity or flight
characteristics

2. Deriving the number of routes
3. Validation of route number
4. Visualization of the routes.

3.1. Describing the Trajectories of
Bumblebees
We described the bumblebees’ paths (Figure 2A) by first using
flight characteristics. Each trajectory is thus described by seven
values. We observed that some trajectories share multiple
characteristics and thus may form clusters of paths (Figure 2C).

Second, we described the bumblebees’ paths by using path
similarities. We used two measures Fréchet distance and DTW
on 83 trajectories. Each trajectory is thus described by 83 values
for each measure. The path distances contain two diagonals with
zeros. These values correspond to the similarity of each trajectory
with itself. Blocks of similar values are present, thus potentially
different clusters (Figure 2B).

These two descriptions will be independently fed to the
M3C algorithm.

3.2. Determining a Significant Number of
Routes
When looking at bees’ trajectories in the clutter, it seems that
paths visually cluster along specific “routes” (Figure 2). Using
our descriptions of trajectories (flight characteristics or path
similarities) we applied the M3C algorithm to identify groups of
trajectories belonging to the same route.

When using flight characteristics, we found that two clusters
(K = 2) have a local minimum PAC-score and are significant.
When using DTW, Fréchet, or both path similarity measures,
we observed local minima of the PAC-score, at K = 2, at
K = 4, and at K = 2 and K = 4, respectively (for
single measure, see Supplementary Figure 2, for both measures,
see Figure 3). Furthermore, the p-values for these numbers of
clusters are below 0.05.

Thus, we found a significant number of clusters of trajectories
described by either flight characteristics or path similarities.
We have therefore different potential clustering outcomes.
To disambiguate between them we will visualize the clusters
with t-SNE.

3.3. Visualization of Clusters
We have grouped the trajectories of bumblebees into similar
routes by using the M3C method, yielding high dimensional
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FIGURE 3 | Output from the M3C algorithm based on similarity measures (left) and flight characteristics (right). (A) PAC-scores (Proportion of Ambiguous Clustering)

of different number of clusters (K) for similarity measures. (B) p-values of different numbers of clusters (K) for similarity measures. The red dotted line indicates the 0.05

significance level, where points (plotted in red) reach the significance level and points below the line (plotted in black) do not. (C) PAC-scores of different numbers of

clusters (K) for flight characteristics. (D) p-values of different numbers of clusters (K) for flight characteristics. The red dotted line indicates the 0.05 significance level,

where points (plotted in red) reach the significance level and points below the line (plotted in black) do not.

data. To visualize such high dimensional data, they can be
projected onto a 2D space by using linear (e.g., Principal
Component Analysis) or non-linear projection (e.g., t-distributed
stochastic neighboring embedding: t-SNE). Here, we used t-
SNE to visualize the two path similarity measures (a 166D
space) and the flight characteristics (a 7D space) in a 2D space,
respectively. The data points are then labeled according to
their corresponding clusters derived from the M3C. The path
similarities projected onto a 2D space formed four clusters
matching the clusters derived from the M3C (Figure 4C).
In contrast, the projection of the flight characteristics in a
2D space does not form such distinct and spatially apart
clusters (Figure 4D). One may observe two clusters, but
one of them contains points associated to the two routes,
hence the clustering outcome is not validated by t-SNE.
Visualization with t-SNE indicated K = 4 but not K =

2 clusters as the M3C for the path similarities and flight
characteristics, respectively.

Interestingly, the clustering outcome with K = 4 resulted
in a split of one of two clusters with K = 2. The partitioning
of the cluster was thus conserved between K = 2 and K = 4
(see Supplementary Figure 5).

3.4. Visualization of Routes
The last step of our method is to visualize the labeled paths
and an average route representing the derived route structure.
We plotted each cluster of trajectories, based on flight similarity.
We can see that the trajectories assigned to each cluster are
spatially closer to one another than to those of the other derived
routes (Figure 4A). When visualizing the routes obtained from
clustering based on flight characteristics (Figure 4B), the second
cluster contains dissimilar paths. Overall, the trajectories grouped
based on path similarity form visually coherent groups. The same
is not true for the grouping based on flight characteristics.

3.5. Effect of Re-sampling Trajectories
We re-sampled our trajectories to reduce the computational
demand while preserving the shape of the trajectories by using a
constant traveling speed (re-sampling coefficient). Nevertheless,
the re-sampling may impact the classification results. To
assess the impact of the re-sampling coefficient, we performed
clustering for different re-sampling coefficients.

We classified pairs of trajectories for two classification
methods (reference s = 6 mm/frame and alternative re-sampling
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FIGURE 4 | Comparison of classified trajectories between similarity measures and flight characteristics. The four different colors represent the different clusters. (A)

Top view of all trajectories classified with similarity measures. In each subplot, the trajectories belonging to their respective route are plotted, as well as their average

trajectory (in a thicker line). In addition, for each other route, the averaged trajectory is added with a lower opacity. (B) Top view of all trajectories classified with flight

characteristics. In each subplot, the trajectories belonging to their respective route are plotted, as well as their average trajectory (in a thicker line). In addition, for each

other route, the averaged trajectory is added with a lower opacity. (C,D) Visualization of M3C clustering with t-SNE (t-distributed stochastic neighboring embedding).

(C) t-SNE plot of trajectories classified by using similarity measures. (D) t-SNE plot of trajectories, classified by using flight characteristics.

s 6= 6 mm/frame). By building a confusion matrix from this
classification, we derived the precision of the alternative re-
sampling. A precision of one means that pairs of trajectories are
sorted in the same manner for both the ground truth and the
alternative re-sampling.

We observe that the precision is close to 1 across the tested
range of re-sampling parameters (Figure 5), especially for K = 4
clusters, the chosen reference number of clusters. However, this
precision score may have been obtained by chance. Therefore,
we statistically test how likely the precision comes from a
random clustering of paths. We observe that the simulated
precision scores are distinctly below our tested precision scores

(Supplementary Figure 6). Thus, the precision scores obtained
from the different re-sampling parameters, are significantly
different from a random clustering of trajectories. Since the
precision scores are close to 1 and significantly different from
random clustering, the re-sampling parameters do not strongly
impact the classification results.

4. DISCUSSION

We developed a quantitative method to derive routes from
groups of trajectories. The number of potential routes was
chosen based on the proportion of ambiguous clusters and
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FIGURE 5 | Effect of different re-sampling coefficients on the precision score.

For each re-sampling coefficient (x-axis), the precision score for each possible

number of clusters was tested. K = 6 serves as a reference (truth values) for

the other re-sampling coefficients.

statistical tests assessing the plausibility of multiple routes
among our collection of trajectories. We described trajectories
and then clustered them based on their descriptors using
Monte Carlo Reference-based Consensus Clustering (John et al.,
2020). Path similarity measures (DTW and Fréchet measures)
yielded meaningful clusters of trajectories (i.e., routes). In
contrast, clustering results based on DTW or Fréchet similarity
measures alone were not validated by the t-SNE visualization
(Supplementary Figure 2). The samewas observed for clustering
based on flight characteristics (e.g., average speed, and average
lateral position). Concluding only on the result of M3C may
lead to ambiguous results, as a low PAC-score and a rejection
of the null hypothesis (i.e., having only one cluster) may be
found for different numbers of clusters. By using M3C on
two path similarity measures and visualizing the results with t-
SNE, we could determine a potential number of routes in the
trajectories of bees.

Computing the path similarity between a pair of trajectories is
time consuming. The complexity of the algorithm often grows as
a product of the length of the two trajectories (L1 and L2). Since
we calculated the similarities between all pairs of Nt trajectories
of average length L̃, the complexity was in the order of (L̃ ×

Nt)2. We reduced the computational demand by re-sampling
every trajectory to lower the number of observations. The re-
sampling parameter in our tested range did not strongly affect
the resulting classifications.

4.1. Alternative Uses of our Approach
The bees in the cluttered environments flew from one end of
the tunnel to the other. Our method already takes the distance
between the first observations between two paths into account
when computing similarity measures (due to a property of
DTW). However, in nature, animals will travel between two
locations in both directions. The route followed by the animal
may differ between an inbound and outbound journey (as was
observed in ants, Kohler and Wehner, 2005). Comparing an
inbound path with an outbound path withoutmirroring, will lead
to different routes, even if the paths visually overlay in space.
Clustering the animal’s inbound and outbound journey requires
to mirror either the inbound or outbound paths so that they start
at the same location.

In addition, in nature animals may slightly deviate from their
route, for example by being pushed by a gust of wind (Riley et al.,
1999; Wystrach and Schwarz, 2013; Ravi et al., 2016). The larger
the deviations are, the smaller the similarities between paths
become. Thus it may lead to classifications of such trajectories
into different routes. Using partial match measures such as the
LCSS distance (see Su et al., 2020 for review) lower the risk of
classifying several disturbed trajectories belonging to the same
route into different routes.

4.2. Associating Novel Trajectories to
Clusters
Understanding the underlying mechanisms driving animals
through their environment often involves building a model of
the perception-behavior loop and simulating an agent moving
in the environment. However, when the originally observed
trajectories are inherently variable (e.g., Lobecke et al., 2018), it
becomes difficult to assess whether an artificial agent mimics,
at least to some extent, the animal’s behavior. Furthermore,
simulated trajectories might differ between runs (for example due
to intrinsic noise in the model, e.g., Bertrand et al., 2015; Le Möel
and Wystrach, 2020), which might differ to some extent from
the animal’s behavior. For a route-following agent, one would be
satisfied, if the same number of routes can be derived from the
agent’s trajectories, as were derived from the animal’s trajectories.
Our clustering method can be used to address these aspects.
First, as we did here, routes can be extracted from a collection of
experimentally observed trajectories. Second, the same procedure
can be applied on modeled trajectories to assess whether the
descriptions of these simulated trajectories also cluster into the
same routes as the experimentally determined trajectories. Third,
we can map the trajectories of the modeled agent to the cluster of
the animal’s trajectories (or vice versa). Indeed, our method relies
on a classifier (e.g., partition around medoids) using trajectory
similarities. By calculating the similarity between an agent’s
trajectory (or any novel trajectory) and those of an animal, the
agent’s trajectory becomes a point in the input space of the
classifier. Thus, we can assign it to one of the clusters, i.e., one
of the routes of the animals. Therefore, we can compare an agent
path with the behavior by using our method.

4.3. Clustering Trajectories of Non-route
Following Behaviors
We developed our method to derive routes from trajectories.
However, we can extend it to trajectories that do not form routes.
For example, animals may steer in a given direction to go away
from a food source and hide its collected reward (e.g., dung
beetle, Dacke et al., 2013), move in a convoluted manners to
avoid a predator or chase prey (Boeddeker et al., 2003; Kane
and Zamani, 2014; Wardill et al., 2017) or perform complex
search behavior when searching for home (Doussot et al., 2020;
Schultheiss et al., 2015). In these examples, the animals are
not following a route. However, one may be interested in the
similarities between trajectories. One may seek to statistically
group the runs of multiple dung beetles or the convoluted paths
of chasing flies. The series of turns may be more important
than the actual position of the animal when comparing such
trajectories. Instead of using position based similarity measures
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(such as DTW and Fréchet), one may use similarity measures
based on the direction of movements of the animals (e.g., SPADE,
Chen et al., 2007).

Taken together, by combining trajectory similarities and a
clustering approachwithout knowledge of the number of clusters,
common path structures between the trajectories of walking,
flying or swimming animals can be identified. We illustrated
our method by using flights of bumblebees in cluttered terrain
and could extract four common routes. Trajectory classification
has applications in several fields (Wang et al., 2020) and is an
opportunity to identify common strategies in animal behavior,
from maintaining a given direction to following routes, or
chasing prey.
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