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It has been suggested that the thalamus acts as a blackboard, on which the
computations of different cortical modules are composed, coordinated, and integrated.
This article asks what blackboard role the thalamus might play, and whether that role is
consistent with the neuroanatomy of the thalamus. It does so in a context of Bayesian
belief updating, expressed as a Free Energy Principle. We suggest that the thalamus-
as-a-blackboard offers important questions for research in spatial cognition. Several
prominent features of the thalamus—including its lack of olfactory relay function, its
lack of internal excitatory connections, its regular and conserved shape, its inhibitory
interneurons, triadic synapses, and diffuse cortical connectivity—are consistent with a
blackboard role. Different thalamic nuclei may play different blackboard roles: (1) the
Pulvinar, through its reciprocal connections to posterior cortical regions, coordinates
perceptual inference about “what is where” from multi-sense-data. (2) The Mediodorsal
(MD) nucleus, through its connections to the prefrontal cortex, and the other thalamic
nuclei linked to the motor cortex, uses the same generative model for planning
and learning novel spatial movements. (3) The paraventricular nucleus may compute
risk-reward trade-offs. We also propose that as any new movement is practiced a few
times, cortico-thalamocortical (CTC) links entrain the corresponding cortico-cortical links,
through a process akin to supervised learning. Subsequently, the movement becomes
a fast unconscious habit, not requiring the MD nucleus or other thalamic nuclei, and
bypassing the thalamic bottleneck.

Keywords: thalamus, blackboard architecture, Bayesian cognition, spatial steering, supervised learning, pulvinar,
MD nucleus, paraventricular nucleus

INTRODUCTION

The thalamus occupies a central position in the brain. Because of its volume and extensive
cortical connections (Sherman and Guillery, 2006) it has significant metabolic costs. Compared
to its cost and central position, many theories of thalamic function have an unsatisfactory
aspect; if the thalamus is merely a relay for sense data, or merely an enforcer of cortical
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rhythms, or a controller of arousal, why devote all that
expensive brain real estate to such simple functions, which could
perhaps be done more locally in cortex or brainstem? These
thalamic functions do not seem to license the significant cost of
the thalamus.

These are not the only theories of thalamic function. It
has been proposed (Baars, 1988; Mumford, 1991; O’Reilly
et al., 2017, 2020; Dehghani and Wimmer, 2018) that the
thalamus acts as a blackboard or global workspace in the brain.
Blackboard functions appear sufficiently important to justify
having the thalamus; but what exactly do they mean? What does
a blackboard do? Is the neuroanatomy and neurophysiology of
the thalamus consistent with a blackboard function?

This article addresses those questions, relating the blackboard
proposals to Bayesian inference in the brain, as entailed by the
Free Energy Principle (Friston, 2003). In this article, we will
use spatial cognition, planning of movements, and risk-reward
trade-off decisions as three examples to illustrate the role of the
thalamus as a central blackboard, central in terms of its physical
location and role in information processing. This will be evinced
through its highly specific anatomical structure and underlying
connectivity as a blackboard system. In this role, the thalamus
can be regarded as instantiating a generative model of objects in
a three-dimensional peripersonal space.

This article explores two key ideas:

• The thalamus is a blackboard for cognition, particularly for
3-D spatial cognition, movement planning; and risk-reward
trade-offs.
• The thalamus entrains the cortex, so that routine movement
tasks and possibly also risk-reward decisions are taken over
by cortico-cortical links, releasing thalamic resources for
more context-sensitive processing.

In a formal approach to planning and decision making,
planning can be realized through probabilistic inference,
expressed as minimization of free energy (Attias, 2003; Baker
et al., 2009; Botvinick and Toussaint, 2012; Mirza et al., 2016;
Kaplan and Friston, 2018). In this formulation, the agent builds
a (minimum free energy) internal model of the world (including
its 3D spatial structure). This is usually referred to as a generative
model. Then the agent represents its beliefs about the future,
present, and the past as joint probability distributions over states,
actions, and consequent outcomes in the future (Kaplan and
Friston, 2018).

The other side of the coin, learning to infer, habituates this
implicit inference enabling fast and automatic recognition of
the most likely cause of sensations—and the aptest behavioral
responses (Friston, 2003). In Machine Learning, this process
has also been referred to as ‘‘amortization’’ (Gershman and
Goodman, 2014). In what follows, we explore the potential roles
played by the thalamus within these frameworks, specifically
through its modulatory role in the attentional selection and
subsequent ‘‘voting’’ in cortico-cortical entrainment.

These proposals articulate a central and vital role for the
thalamus and agree with many experimental findings. Spatial
cognition and the control of movement are cardinal functions
of animal brains; but spatial cognition is hard, involving precise

geometry and the fusion of multi-modal sense data, which
require a scarce central resource—the thalamus—also implying
a need to delegate routine tasks to cortex quickly and efficiently,
by configuring cortico-cortical pathways.

THEORIES OF THALAMIC FUNCTION

For many years, the prevailing characterization of the function
of the thalamus has been that it acts as a relay. This idea was
derived originally from consideration of primary thalamic nuclei
such as the LGN, which evidently relay information from sense
organs to the cortex (Jones, 2007). The idea has been extended
to higher-order thalamic nuclei such as the Pulvinar and the MD
nucleus—suggesting that those nuclei relay information between
cortical regions and subcortical regions.

In recent years, evidence from thalamic neurophysiology and
its engagement by diverse cognitive tasks have brought the
‘‘relay’’ interpretation into question (Sherman, 2007), especially
for higher-order thalamic nuclei. There are two main reasons for
this. First, studies of thalamocortical neuroanatomy speak of an
increasingly complex picture (e.g., Halassa and Sherman, 2019),
of the thalamus connected to diverse cortical regions, which
have a wide range of different functions, via different types of
circuit ‘‘motif’’ including driving and modulatory connections,
both focal and diffuse, convergent and divergent (Shipp, 2003;
Sherman and Guillery, 2006; Barron et al., 2015; Homman-
Ludiye et al., 2020). The most remarkable aspect of thalamic
neuroanatomy—that the thalamic nuclei are close yet have
no lateral connections to one another (Sherman and Guillery,
2006)—remains unexplained. Similarly, the unique anatomy
of the TRN (Pinault and Deschênes, 1998) has yet to be
accounted for.

Second, studies suggest thalamic involvement in a very wide
range of cognitive functions, including perception, attention
(Saalman and Kastner, 2014; Wimmer et al., 2015; Schmitt
et al., 2017), memory (Dumont and Aggleton, 2013; Warburton,
2018), task engagement (Marton et al., 2018), learning, motor
control (Ouhaz et al., 2018), and executive decision-making
(Do Monte et al., 2015). Put simply, the accumulating evidence
about the role, importance, and connectivity of the thalamus
has outrun the ‘‘thalamus as a relay’’ picture. The notion
that cognitive processing is restricted to the cortex—with
the thalamus acting as a kind of message boy—appears to
be untenable. To quote Sherman (2017): ‘‘The conventional,
textbook view of thalamocortical interactions needs a drastic
makeover.’’ In short, higher-order thalamic nuclei may not
merely pass information among cortical regions. We need to
ask what those nuclei do to—or with—this information, as it
traverses the thalamocortical loops.

In the light of the above, it seems unlikely that there will ever
be an exclusive theory of thalamic function, that the thalamus
does ‘‘this and only this.’’ Several proposals are now gaining
traction that may not be mutually exclusive. Some examples
include: passing efference copies of motor controls to cortical
regions, to help to anticipate their effects (Sherman, 2016);
controlling information/cost trade-offs (Dehghani andWimmer,
2018); updating mental representations (Wolff and Vann, 2019);
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playing a role in solving the binding problem (Treisman, 1998),
entraining oscillations between disparate cortical areas to
coordinate processing (Malekmohammadi et al., 2015); deep
predictive learning (O’Reilly et al., 2017). The thalamus has also
been proposed to integrate predictions from across disparate
cortical areas, and subsequently compute the accuracy of those
predictions (Grossberg and Versace, 2008; Bennett, 2020; George
et al., 2020). The thalamus has further been suggested to operate
as an attentional gate or searchlight (Crick and Koch, 1998).

The proposals in this article—for the role of higher-order
thalamic nuclei—are not offered as exclusive proposals; rather, as
a formal account of the computational anatomy of higher-order
thalamic functions that complement or contextualize existing
proposals. In what follows, we elaborate the relay picture of the
thalamus in three important respects. First, following Mumford
(1991), we propose that the thalamus acts as a blackboard,
allowing different specialist cortical regions to cooperate in
solving cognitive problems. Second, following the Bayesian
brain hypothesis (Knill and Pouget, 2004; Doya, 2007; Rao,
2010)—and its expression via the Free Energy Principle (Friston,
2003)—we propose that in its blackboard role, the thalamus
brings about a particular result—the aggregation, or summing,
of the free energy contributions from diverse cortical regions, as
they join in dynamic coalitions for active perceptual inference
and planning. Third, we propose that the scarce bottleneck
of thalamic processing is engaged particularly in novel tasks;
and that thalamocortical circuits then train cortico-cortical
links to take over those tasks as they become amortized and
habitual. We hope that this thalamic blackboard picture may
serve as an indicative framework to bring together the many
interpretations of thalamic function which are now emerging.
First, we describe—from first principles—what a blackboard is.

BLACKBOARD ARCHITECTURES AND
CORTICAL MODULES

The concept of a blackboard (Nii, 1986; Llinas and Anthony,
1993) has emerged over the past decades from computer
science and artificial intelligence. A blackboard is a central
store of information that can be addressed selectively (that is,
written and read) by a set of independent computing processes,
enabling them to solve problems cooperatively. In essence, one
computing process may post partial information or hypotheses
to a part of the blackboard, and other processes may retrieve
that information selectively, enabling them all to work together
to reach a solution.

The blackboard is an analogy to a group of human experts
working cooperatively on a problem. Each expert may write an
idea on any part of the blackboard. All the other experts can see
what has been written and may contribute their own ideas. In
this way, the group can collaborate to accomplish more than any
single expert on their own.

In artificial intelligence, the computing processes may be
accomplished by small independent expert systems, each one
with limited knowledge. This was proposed by Erman et al.
(1980) as an approach to sensor fusion. In scientific or
commercial computing, the blackboard may be a computer

database, such as a Relational Database (Date, 1976), and the
computing processes may be independent computer applications
with different users. In cognitive neuroscience, the computing
processes may be different (i.e., functionally segregated) cortical
regions, and the blackboard may be the thalamus which they
all connect to (Zeki and Shipp, 1988). In the first instance, this
proposal is consistent with the very widespread connectivity of
the thalamus.

At any moment, to control its own movements, an animal
needs to understand the locations and movements of things
around it, inferred from its sensory data. The mammalian cortex
has many cortical modules concerned with different kinds of
sensory data, and with ways of analyzing sense-data, such as:

• Edge detection.
• Motion detection.
• Stereopsis.
• Sound location.
• Locations of touch and movement sensations.
• Shape from shading.
• Shape from motion.
• Linking data from two or more sense modalities.
• Recognition of learned shapes or movements.
• Knowledge of hierarchical structures, such as bodies and
body parts.

We will consider these analytic attributes as cortical knowledge
sources that are functionally segregated in different regions
in the cortex (for instance, in visual or somatosensory maps)
(Zeki and Shipp, 1988; Tononi et al., 1994; Friston and Buzsaki,
2016). It appears that many different types of knowledge source,
and many different instances of some types, operate in parallel
to maintain an internal model of an animal’s surroundings at
any moment (Crick and Koch, 1998; Thomson and Bannister,
2003; Zikopoulos and Barbas, 2007; Saalmann and Kastner, 2009;
Cruikshank et al., 2012; Lewis et al., 2015).

When it comes to recognizing an object with multiple features
and its respective location, separate representations are encoding
‘‘what’’ and ‘‘where’’ in the visual hierarchy (Ungerleider and
Haxby, 1994). From the perspective of Bayesian belief updating
under the free-energy principle, these cortical knowledge sources
can be seen as sets of marginal probability distributions (Friston
et al., 2017a; Parr et al., 2020) that inherit from a factorization of
probabilistic beliefs about the causes of sensation. For example,
knowing what something is conditionally independent of where
something is. In terms of Bayesian belief updating in the brain,
the implicit factorization of probabilities implies the additivity
of free energy gradients1 from different knowledge sources
during multisensory integration. In this article, the role of the
thalamus is taken to be the integration of free energy gradients
from rapidly formed dynamic coalitions of knowledge sources.
The modularity in question subsequently calls upon a gating
mechanism that establishes the different types of interactions

1In predictive coding schemes that implement free energy minimisation, the free
energy gradients can be regarded as precision weighted prediction errors. More
generally, these gradients reflect the discrepancy between some posterior and prior
probabilistic beliefs, encoded in neuronal activity.
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among these factorized representations. The ensuing proposal
is then that the thalamus acts as a blackboard, though which
inference based on different cortical knowledge sources are
integrated into a Bayesian or posterior belief distribution over
the causes of sensations. We will first focus on this integrative
role—and then turn to the question: why are these Bayesian
beliefs necessary for sentient behavior.

For any blackboard application—sensor fusion, computer
databases, or sense data integration—there are some core
requirements for the blackboard. First, the blackboard must
be able to store information, if only for short periods, so that
different knowledge sources can read and write information
to the blackboard asynchronously. The reading and writing,
in this context, corresponds to belief updating that could be
mediated by variational message passing, belief propagation, or
predictive coding; depending upon the nature of the generative
model—and the particular way in which free energy gradients
induce neuronal dynamics (Rao and Ballard, 1999; Bogacz, 2017;
Friston et al., 2017b).

The suggestion that the thalamus, acting as a blackboard,
needs to store information for short periods, is found in
other formulations, such as Dumont and Aggleton (2013) and
Warburton (2018), which implies that thalamic nuclei are also
involved in longer-term memory. The complex roles of the
thalamus imply that any thalamic nucleus may contribute to
several functions; so short-term and long-term storage are not
in conflict.

Second, the blackboard cannot just hold an unstructured
heap of facts or hypotheses. Each knowledge source must
be able to address its inferences selectively to some part of
the blackboard. These inferences must be segregated on the
blackboard, and knowledge sources must be able to selectively
retrieve information from the blackboard. In short, the dynamic
connectivity of the thalamus and thalamocortical connections
must embody the generative model’s delicate causal architecture
that is learned or distilled from the world.

These core requirements are implicit in the blackboard
metaphor. A physical blackboard holds information as chalk
marks, and these chalk marks are distributed across the
plane of the blackboard so that different experts can read or
write selectively to different parts of the blackboard. These
requirements will be called the addressing requirements.

A blackboard architecture accommodates—simply and
compellingly—the computational architectures required for
Bayesian belief updating. In Bayesian inference, the posterior
probability of some hypothesis (for instance, the probability
that there is an object at some location in space) is proportional
to its prior probability, multiplied by the likelihood that
the hypothesis would have caused the current sensations.
In variational treatments of Bayesian belief updating—of
the sort implied by the free-energy principle—the posterior
or conditional probability can be factorized to represent
contributions from different knowledge sources, explaining
conditionally independent aspects of sense data (e.g., what
something is and where something is). This implies that the
log probability of the hypothesis corresponds to the sum of
log probabilities from different knowledge sources (modulo

a constant for all hypotheses). Based on a physical analogy,
this negative log probability can be expressed as Free-Energy,
and the task of a brain in finding the most likely hypothesis is
to minimize its free-energy or to minimize surprise inherent
in sensory input. This minimization can be cast as a gradient
flow on free energy, furnishing a straightforward description
of neuronal dynamics (Friston et al., 2017a). Just as the log
probabilities add, so do free-energy gradients.

This approach to cognition has a strong theoretical basis,
because it can be shown, under very general conditions
(Worden, 1995), that Bayesian cognition affords the greatest the
fitness—and so is the target towards which the evolution of brains
converges. Furthermore, the Bayesian brain can explain many
different aspects of cognition (Knill and Pouget, 2004; Doya,
2007; Seth, 2015; Omidvarnia et al., 2017).

The ensuing Bayesian approach can be applied to a central
problem in animal cognition, which impacts an animal’s survival
at every moment of the day—the problem of inferring the
locations of objects in peripersonal space frommulti-modal sense
data. The animal needs to know these locations at every moment
to control its physical movement, from locomotion through to
visual saccades. The application of Bayesian mechanics to the
location of objects leads straightforwardly to a requirement for
a blackboard architecture—where different knowledge sources
are assimilated to furnish conditional probabilities for the spatial
locations of objects.

The combination of blackboard architecture and Bayesian
inference leads to a specific kind of blackboard—a probability
aggregator (Worden, 2020b), where probabilities are factorized
distributions encoding specialized representations, so logs of
probabilities (and their gradients) are to be added, as in
the Free Energy Principle (Friston, 2003; Parr et al., 2020).
In the aggregator architecture, different hypotheses about the
spatial locations of objects are segregated by location. For
example, for any given hypothesis—that there is an object X
at location Y—different knowledge sources estimate conditional
probabilities for the hypothesis (based on different types of
sense data) and post them to the blackboard. The blackboard
aggregates (i.e., sums) the log contributions from the different
knowledge sources. By Bayes’ theorem, this summation (when
combined with a prior log probability) estimates the overall log
probability of the location hypothesis, from the contributions
of all the knowledge sources, aggregating information from
different modalities and marginal representations. Maximizing
the posterior or conditional log probability (i.e., minimizing the
free energy) produces the most probable identity and location for
each object, in the light of all the sensory evidence at hand.

To illustrate this principle: vision gives the animal a
two-dimensional projection of its surroundings, encoded as 2-D
locations of neurons in some retinotopically mapped visual
cortex. To elaborate a three-dimensional model, as needed to
control movement, various knowledge sources are applied (Leibo
et al., 2015), such as:

1. Stereopsis.
2. Shape from shading.
3. Shape from motion.
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According to varying circumstances, different knowledge
sources may provide the most decisive depth information at
different times, and they may confirm one another, or they
may compete, inferring different depths. All this is encapsulated
in a Bayesian estimate of depth from the different knowledge
sources2. One way in which this could be computed is to sum
the log probabilities of different depth hypotheses as an aggregate
on a blackboard and to determine the most probable depth from
the maximum of the sum—where the sum of the gradients in any
variable is zero.

As a second illustration, consider the (multisensory)
problem of integrating visual information and proprioceptive
information, as is needed for instance in hand-eye coordination,
or in paw-eye coordination for primates (Ernst and Banks,
2002). Proprioception gives information about the position of
a limb, possibly through inferring joint angles; and vision gives
conditionally independent information about the location of the
same limb. At different times, one or the other knowledge source
may dominate; but at all times, the best (fittest, most accurate)
way to combine the two estimates—to estimate the location of
the limb—is by Bayesian estimation. This can be done through
the blackboard aggregation of log probabilities from the two
knowledge sources. We will now unpack the implicit gating
mechanisms in terms of attention and the pulvinar.

ROLES OF THALAMIC NUCLEI

The role of the thalamus in cognition can be characterized by
considering the roles of higher-order nuclei of the thalamus,
including the pulvinar, the Mediodorsal (MD) nucleus, and the
paraventricular thalamus (PVT). An interpretation of their roles
is consistent with recent findings on the role of the MD nucleus
in learning and memory for complex spatial configurations, and
the PVT for balancing danger and reward.

The Pulvinar
The pulvinar links mainly to posterior cortical regions involved
in sense data processing, such as the visual cortex. This is
consistent with a role for the pulvinar in mainly sensory
processing: specifically, in building and maintaining a 3-D
spatial model of ‘‘what is where’’ in the animal’s immediate
surroundings, based on multi-modal sense data (see Rudrauf
et al., 2017). This generative model of space underwrites
Bayesian inference and learning—fitting to all sense data (except
olfaction), using the blackboard/aggregator architecture.

In building a 3D generative model of the animal’s
surroundings, attention to the most informative and precise
inputs is important. Diverse evidence points to the pulvinar
playing a role of this kind:

• There is a double dissociation effect in processing visual
information whereby deactivating the lateral pulvinar
suppresses V1 responses to visual stimuli, whereas

2Technically, the weight afforded different sources is determined by the precision
or confidence placed in the corresponding marginal beliefs- or, when combining
sense-data the precision of the likelihood of those data relative to the precision of
prior beliefs about the causes of those data.

superficial visual layers with overlapping receptive fields
become more responsive as an effect of pulvinar activation
(Purushothaman et al., 2012).
• The presence of presynaptic acetylcholine receptors in
thalamocortical pathways (Lavine et al., 1997), known to
modulate the gain of evoked responses in visual perception.
• Lesions to the pulvinar result in focal attention deficits
(Snow et al., 2009).
• Neural activity in the pulvinar that is associated with
task-relevant stimuli but not with distractors can be
decoded, implying a filtering process (Strumpf et al., 2012;
Saalman and Kastner, 2014) discuss how the Pulvinar
regulates the flow of information between visual areas
(Warburton, 2018), reviews the role of thalamic nuclei in
object recognition tasks.

These examples and others (Shipp, 2004; Kanai et al., 2015)
speak to a form of attentional selection mediated by the
neuromodulatory effects of the type afforded by the pulvinar.
The pulvinar is in the position to selectively enable pre-synaptic
gain sensitivity to particular types of information. Note that the
pulvinar is itself selecting the inputs that it aggregates. In other
words, the pulvinar is, effectively, predicting the precision or
weights that should be afforded the various knowledge sources:
it is effectively selecting the kinds of knowledge sources that
influence belief updating in a base optimal fashion.

In the Bayesian inference thought to be performed by animals
or humans, the difficult problem is finding the optimal balance
between the different types of sensory evidence and their implicit
conditional probability distributions in relation to the different
types of priors. That is, weighing the prior beliefs according
to the sensory evidence sampled by the agent. This balance
is mediated by the relative precisions (i.e., negative entropies)
of the particular belief distributions in question. Deploying
and mixing information is just as important to the agent
as the information itself. The best candidate in maintaining
this balance—by enabling specific representations (i.e., cortical
knowledge sources)—is the pulvinar, inferring, and mediating
visual attentional set.

The Mediodorsal Nucleus
TheMDnucleus is strongly linked to the prefrontal cortex, whose
role relates to executive planning for actions. For non-human
primates, this planning is largely the planning of complex spatial
movements, asking questions such as ‘‘Can I reach that piece of
fruit?’’ ‘‘Can I jump to that branch?’’ and ‘‘Is it strong enough
to bear my weight?’’ There have been extensive investigations
of the role of the MD nucleus in executive decision making,
learning, and spatial cognition (Aggleton and Nelson, 2015;
Mitchell, 2015; Parnaudeau et al., 2015; Ouhaz et al., 2018;
Parnaudeau et al., 2018; Wolff and Vann, 2019), leading to a
complex picture of many related roles for the MD nucleus. Here,
we particularly address the need for spatial control of movement
in tasks where MD-related deficits have been observed
(Mitchell, 2015).

Movement-planning decisions depend on the 3-D
configuration of objects in space, as represented in the
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pulvinar—but now require internal simulation of the planned
movement—‘‘If I jump, how far will I go?’’ and on memories of
recent similar movements—‘‘The last time I tried this. . ..’’ These
‘‘what if’’ questions must be played out (possibly by imagining
the movement at a declarative level) against the background of
what is where now. That is the nature of planning. Then, when
a satisfactory plan has been found, it must be carried out and
monitored—another task requiring an accurate moment-to-
moment model of what is where in three dimensions.

When we refer to ‘‘spatial cognition’’ or ‘‘spatial processing’’
in the context of the Pulvinar or theMD nucleus, we are referring
specifically to a three-dimensional spatial model of the locations
of objects immediately around the animal, as perceived and
used to plan and control muscular movements, rather than to a
two-dimensional navigational space. The latter space is linked to
the hippocampus, to place cells and head direction cells, and the
thalamic nuclei linked to the hippocampus, such as the anterior
dorsal nucleus (Taube, 1995), and the ventral midline nuclei
(Jung et al., 2019).

One might propose that the MD nucleus of the thalamus (and
possibly other thalamic nuclei) uses a shared generative model
of peripersonal space, as orchestrated in the pulvinar, to plan,
to test in imagination, and then to execute, novel or complex
movements, with the PFC.

This interpretation of the role of the MD nucleus is
consistent with:

1. Its position in the thalamus, where it has access to the 3-D
spatial model of current reality.

2. Its extensive cortical connections, particularly to the PFCwith
its executive role in planning.

3. Experimental findings on learning and memory for complex
spatial configurations, in the presence of lesions to MD
nucleus or PFC.

4. Its reciprocal connections with the supplementary motor
area known for its contributions to movement control
(Cunnington et al., 1996; Chen et al., 2010).

5. Recent theoretical formulations (Parr and Friston, 2018)
suggesting that during inference, ascendingmessages from the
MD nucleus to the motor cortex represent the free energy
expected under each potential outcome, given the set of
actions being considered.

Before comparison with the experimental findings, we outline
the proposed mode of functioning of the MD nucleus in
the setting:

• The PFC makes an executive decision that a certain goal
needs to be achieved (e.g., grasping a piece of fruit, jumping
across a stream). The goal requires a coordinated sequence
of physical movements.
• If the goal or the circumstances are novel, it is necessary
to plan and simulate the movements in three dimensions
before carrying them out: failure in simulated 3-D space is
cheaper than real failure.
• The MD nucleus acts as a blackboard for this simulation,
using the model of objects in space computed from sense
data in the pulvinar blackboard.

• The MD nucleus orchestrates cortical motion-control
knowledge sources, which entertain possible movements.
• Planning may involve recalling memories of recent similar
movements, for comparison.
• The action trajectory with the minimum expected free
energy is selected.
• If PFC evaluates the likely level of success to be sufficient,
the sequence is carried out—with pulvinar and MD nuclei
acting as blackboards for the monitoring of the outcome:
see ‘‘planning as inference’’ (Attias, 2003; Baker et al., 2009;
Botvinick and Toussaint, 2012; Maisto et al., 2015; Kaplan
and Friston, 2018).
• For novel sequences, cortical activity is coordinated through
cortico-thalamocortical (CTC) driver pathways.
• If some sequence is repeated successfully, CTC driver
activity produces plastic changes in the corresponding
direct cortico-cortical pathways, via experience-
dependent learning.
• After several successful repetitions, anymovement sequence
becomes ‘‘compiled’’ into direct cortico-cortical pathways,
which are faster than the CTC path, and bypass the thalamic
planning bottleneck.
• So successful planned movement sequences become
habitual and unconscious, as the thalamus entrains cortex.
This is learning to ‘‘infer’’ (Gershman and Niv, 2010; Series
and Seitz, 2013).

This process is similar to the distinction in AI between
‘‘deep’’ or ‘‘causal’’ knowledge (such as explicit spatial modeling
of movements), and ‘‘compiled’’ rules which are cheaper and
faster to apply, once they have been compiled. In a similar
vein, machine learning considers this habitation in terms of
‘‘amortization’’ (Rice and Barone, 2000; Zhang et al., 2018);
namely, deferring the computational cost of planning by
resorting to a hardwired habit (in the right context). The role
of the thalamus is to do itself out of a job—to do the expensive
central ‘‘bottleneck’’ work of explicit modeling of movements
in space only when it is necessary, for novel challenges,
consequently entraining direct cortico-cortical pathways to take
over the job—which they can do in parallel, faster and without
conscious involvement.

The process of thalamus training cortex is illustrated
in Figure 1.

We note that this suggestion, that the MD Nucleus trains the
cortex in new movements, is not intended to be an exclusive
account of what the MD nucleus does. As was noted in ‘‘Theories
of Thalamic Function’’ section of the article, thalamic nuclei are
involved in so many types of cognitive function that any one
account of their function is bound to be incomplete. Different
accounts, such as those cited in ‘‘Theories of Thalamic Function’’
section, can coexist.

Given the many studies of the role of the MD nucleus in
learning and task performance, the evidence may sometimes
seem contradictory. However, the overall picture seems to be
that the MD nucleus is more involved in ‘‘rapid trial-by-trial
associative learning and decision-making’’ (Mitchell, 2015) than
in habitual tasks.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 633872

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Worden et al. The Thalamus as a Blackboard

FIGURE 1 | Mediodorsal (MD) nucleus training cortex by associative learning
(i.e., “this is what I see myself doing in this situation”). Novel movements are
coordinated by the MD nucleus relay driver neurons through corticothalamic
paths (ct) followed by thalamocortical paths (tc). Repeated movements lead
to synaptic changes facilitating a direct cortico-cortical path (cc) to cortex
module 2. These cortico-cortical paths then manage the habitual movement
without thalamic involvement.

Heuristically, this process can also be understood by analogy
to a SatNav (satellite navigation system). The first time
any route is needed, the SatNav does an expensive spatial
computation—comparing different routes for cost, time, and
traffic, and so on. But if a route is selected and traveled, the
spoken instructions are recorded—and the next time that route
is needed, it is only necessary to replay the recording, with
appropriate timings. Cortico-cortical links act as the recorder,
and complex spatial computation is no longer needed. Only
much more circumscribed planning (inference) is required—the
cortex has learned to infer.

The notion that skilled habitual behavior is learned active
inference could be compared with experimental results for
spatial tasks with MD and PFC lesions. Potential neuroscience
experiments best fitted to test this notion would use some
task requiring the planning of spatial movements, in the
following sequences:

a. Test novel—test habitual.
b. MD lesion—test novel—test habitual.
c. Test novel—MD Lesion—test habitual.
d. PFC lesion—test novel—test habitual.
e. Test novel—PFC Lesion—test habitual.

Here ‘‘test novel’’ tests the performance of the task when it is still
new, and requires explicit planning of movements in space; while
‘‘test habitual’’ tests the same task when it has become familiar
and routine. The key contrast is between sequences (b) and (c);
(b) should show a greater impairment than (c), because in (c),
the MD nucleus is no longer needed for habitual movements;

while (d) and (e) should be more similar to each other than (b)
and (c), because PFC lesions should affect novel and habitual
movements comparably.

Several recent experiments have been sufficiently close to
this design to shed light on the nature of spatial planning
(Gaffan and Parker, 2000; Mitchell and Gaffan, 2008; Mitchell
and Chakraborty, 2013). Those experiments lend support to
the interpretation that the MD nucleus, by training the cortex,
delegates the work and so does itself out of a job. In essence,
these experiments suggest that lesions to the MD nucleus
before training disrupt learning and performance; but lesions
after training do not disrupt the performance of learned
discrimination. These results are reviewed by Mitchell (2015)
who writes: ‘‘Recent evidence from monkey models of cognition
shows that the magnocellular subdivision of the mediodorsal
thalamus (MDmc) is more critical for learning new information
than for retention of previously acquired information. Further,
consistent evidence in animal models shows the mediodorsal
thalamus (MD) contributes to adaptive decision-making.’’

To more fully test the hypothesis that the MD nucleus is
used to plan movements, and subsequently, MD entraining
cortex in the planned movements, similar experiments could be
done on non-human primates with MD functioning temporarily
inhibited, for instance using optogenetic suppression (Rikye
et al., 2018), using a task with explicit planning of movements; for
instance, requiring monkeys to move an object to a goal around
various obstacles or traps. A two-dimensional version of this test
could be configured with a computer screen and a mouse-guided
ball, as shown in Figure 2 below.

Experiments using these sorts of tasks could explore not only
the role of the MD nucleus but also the number of examples
needed to train the cortex and make a task habitual (as measured
by reduced task completion times).

The Paraventricular Nucleus
A key aspect of animal behavior, with a strong influence
on survival, is making decisions that balance danger against

FIGURE 2 | Two-dimensional spatial planning task: a monkey is required to
guide a ball to a goal, by moving a mouse, without touching any trap. In the
diagram, traps are stationary; but they could also move, to make the planning
task harder.
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reward—for instance, knowing whether to feed or flee, explore
or exploit (Cohen et al., 2007; Humphries and Prescott, 2010;
Humphries et al., 2012; Friston and Buzsaki, 2016; Konig and
Buffalo, 2016). In rodents, the thalamic paraventricular nucleus
is known to be involved in these kinds of decisions (Choi and
McNally, 2017; Choi et al., 2019).

In a free-energy formulation of a risk-reward trade-off, there
needs to be some common currency in which both risk and
reward are represented, to ensure a seamless trade-off. The
common currency is a logarithm of the probability of survival;
diverse risks, such as predation, reduce this logarithm, and
rewards such as food increase it. In any situation, there is a
diverse set of risks, and the probabilities of death from the
different risks can usually be multiplied (factorization); therefore
the (expected) free energies can be added.

This calculation is therefore suitable for an aggregator
architecture, adding together the free energies from a dynamic
coalition of knowledge sources, much as we propose the pulvinar
sums free energies in spatial perception andmovement planning.
Crucially, for the risk-reward trade-off, as there are many
potential risks, and a few of them are significant at any time, free
energies from a dynamic coalition of knowledge sources need to
be summed—so hard-wired cortico-cortical connections are less
suitable to do the sum, and a central blackboard/aggregator is
a more suitable architecture. This is consistent with the known
role of the paraventricular nucleus in these trade-offs, and a
blackboard role for the thalamus.

Based on the result for motion control (cited in ‘‘The
Mediodorsal Nucleus’’ section) that the thalamus is no longer
involved when a motion becomes habitual (e.g., Mitchell, 2015),
and our interpretation that the thalamus ‘‘trains’’ cortico-cortical
circuits to perform habitual movements, we might venture
a similar prediction for risk-reward behavior. While Choi
et al. (2019) have shown that temporary suppression of the
paraventricular nucleus by chemogenetics disrupts risk-reward
trade-offs when they are novel, we would predict that when
some trade-off becomes routine, suppression of paraventricular
thalamus, in a similar manner to that investigated by Choi et al.
(2019) would no longer disrupt it. Testing this prediction would
depend on some risk becoming routine.

HOW IS THE BLACKBOARD ADDRESSED?

The examples of depth perception and multi-sensory integration
illustrate how hypotheses from different knowledge sources
need to be combined to support Bayesian inference in scene
construction (Hassabis and Maguire, 2007; Mirza et al., 2016).
Stereopsis, shape from motion (Murray et al., 2003), and shape
from shading can each operate across a large part of the visual
field. Further, the varying spatial location has been shown to
impact perceptions of the same object (Finlayson et al., 2020) and
therefore to impact which relevant cortical knowledge sources
would be dynamically engaged. There can be many instances of
each type of knowledge source operating in parallel, at different
parts of the visual field. How are their probabilities to be
aggregated? Which instance of shape from motion should be
aggregated with which instance of stereopsis?

There is one possible answer to these questions. Two
knowledge source instances can only be aggregated (i.e., their
log probabilities should be added) if they refer to the same
latent causes—that is, to a thing at the same inferred location.
Therefore, hypotheses on the blackboard need to be segregated
by location—to instantiate the prior belief that two things
cannot occupy the same location in space. For features in the
animal’s immediate surroundings (including its own limbs),
segregation by hypothesis implies segregation by location. This
question, of the appropriate combination of information from
different cortical knowledge sources, has also been cast as
the binding problem—how to bind together the activities of
different cortical modules (Treisman and Gelade, 1980; Tononi
et al., 1994; Treisman, 1998; Fingelkurts et al., 2010; Feldman,
2013). The current analysis suggests that a possible solution to
the binding problem is binding by inferred location3, through
the blackboard.

There is a further important requirement for Bayesian
inference about objects in space. There is an important prior
probability that in an allocentric frame of reference, most of
the things surrounding the animal do not move. This prior
is so universal that it can be represented and used in animal
brains, for two related purposes: first, if something is known with
high confidence to be static, the animal does not need to keep
checking its location. Second, something which moves deserves
attention. This would involve mandating attention appropriately:
anteriorly to the PFC and motor cortex via the MD thalamus and
posteriorly via the pulvinar (Feldman and Friston, 2010; Brown
et al., 2011; Vossel et al., 2015; Parr and Friston, 2017;Mirza et al.,
2019) but will not be explored further in this article.

So far, we have discussed the requirement for segregation
of information in the blackboard at Marr’s (Marr, 1982) level
2, of algorithms and data structures. The question arises: how
can segregation by location be implemented at Marr’s level
3 of neural implementation? We shall approach neural levels
in three steps. Among many possible neural implementations,
it is worth picking out two extremes, namely, ‘‘focal’’ and
‘‘distributed’’ representations.

In a focal neural implementation, one location in real space
may be represented by the firing of a few neurons at a specific
location in the brain. This is the kind of representation used
in the V1 visual cortex and used in somatosensory maps in the
brain. The focal representation of the V1 cortex is replicated
in the thalamic LGN, which connects to V1 by topographically
organized relay neurons. In secondary thalamic nuclei such as
the MD nucleus and the pulvinar, the situation is less clear.
While there are two concentric visual maps in the pulvinar,
their relation to cortical maps is a much more ‘‘blurred’’
(i.e., distributed) relationship (Shipp, 2003).

In a distributed representation of space, one point in space
is represented not by the enhanced firing of neurons clustered
at some location in the brain, but by a pattern of firing across
many neurons. One can illustrate a distributed representation in

3This means that if two stimuli have the same or overlapping inferred locations on
the blackboard, they are bound together—so that even when there are very many
stimuli, the sets of stimuli which are bound together are small sets.
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a single dimension, by the example of a Fourier representation.
If there is a set of neurons arranged along a single dimension in
the brain (called x), then a pattern of firing rates R ∼ [1 + cos
(kx)] across those neurons can represent an object at location k.
If there are many neurons arranged along the dimension x, then
their firing rates can simultaneously represent the locations k, k′,
and so on of many objects, by superposition of the different cos
(kx) patterns of firing rates.

Such a Fourier-like representation is capable of high capacity
and high spatial precision (as is required to segregate information
on the blackboard); if many neurons (or synapses) with different
internal position x are involved in representing one wave-like cos
(kx) pattern, then k can be determined to high precision. One
output neuron can have its input synapses spatially distributed as
cos (kx), and so be preferentially sensitive to 1 value of k, with
high selectivity.

The Fourier representation generalizes to three dimensions,
provided that neurons and synapses are extended in three
dimensions (as they are in the thalamus), and not in a 2-D
sheet, as in cortex. That is, a represented position k can be a
three-vector; then the distribution of firing rates can be [1 +
cos(k.x)], a wave-like distribution in the volume of the thalamus,
representing positions with high precision in three dimensions.
Because the output neurons can be selective in k, the same set
of neurons can, by superposition of firing rates, represent the
positions of many objects (different k values) simultaneously.

The Fourier representation of position information is only
given as one example of a distributed representation, but it seems
to be a powerful and instructive example. It shows how, in a
three-dimensional volume of the thalamus, a distributed neural
representation could give three-dimensional spatial segregation
of information with high precision and high capacity—which
is one requirement for a blackboard role. It is notable that
each thalamus, unlike many parts of the brain, has an
approximately spherical shape, with comparable extension in all
three dimensions, so enabling it to store positions with high
precision in three dimensions, using a distributed representation.
This regular shape of the thalamus is preserved across many
species (Jones, 2007).

SPATIAL STEERING OF SENSE DATA

Small regions or modules of the cortex can be classified along a
spectrum between two extremes:

1. Regions dedicated to a particular patch of incoming sense-
data, such as parts of the V1 visual cortex, or of somatosensory
cortex; these regions are typically parts of sensory maps, and
perform some homogeneous function across the map, such as
edge detection.

2. Regions dedicated to a particular function, such as face
recognition or word recognition, may use sensory data from
many different sources and locations.

There are regions of cortex between the two ends of
the spectrum—for instance in higher visual areas concerned
with inferring shapes and form (Zeki and Shipp, 1988; Lueck
et al., 1989). This characterization of the cortex—by such a

spectrum—may be a simplification, but it serves to define a lower
limit to the diversity of cortical regions to which the thalamus
is connected.

We focus on the second end of the spectrum, noting that a
face recognitionmodule needs to learn and recognize faces across
a large part of the visual field. We also note an insight from
building artificial neural nets. It is possible to build a working
neural net for face recognition; but to make it learn faces in
the shortest possible time, all the faces must be properly aligned
on some input grid of the net (Denker et al., 1987). Variable
alignment leads to much slower learning. The requirement for
spatial alignment extends to hierarchical multi-layer ‘‘deep’’ nets
(LeCun et al., 2015). If there is a ‘‘nose recognition module’’
serving the face recognition module, the output of the nose
recognition module needs to be properly aligned as an input to
the face recognition module. That is, the nose needs to be at the
center of the face.

This leads to a requirement for spatial steering of sense-data
between cortical modules. In somemodels of hierarchical pattern
recognition (Olshausen et al., 1993, 1995; Lee and Mumford,
2003), spatial steering is accomplished by direct cortico-cortical
connections. The spatial steering needs to be rather precise.
Consider recognizing a face 10 m away, and the need to align
the recognized nose properly on the face. Absolute displacements
from the animal, rather than relative displacements within an
object need to be aligned (Worden, 2020b). If precise alignment is
done by the selection of alternative cortico-cortical fiber bundles,
it may require prohibitive numbers of bundles, most of which are
idle most of the time. In machine learning and some treatments
of spatial attention, this steering is cast as attentional orientation
or selection; e.g., see Humphreys et al. (2009).

Since a thalamic blackboard needs to segregate information
by spatial location, there is an alternative way to do the
spatial steering of sense-data needed for hierarchical pattern
recognition. If the ‘‘nose recognizer’’ posts its results to an
inferred location (an address in the blackboard), and the face
recognizer reads (as it must) from the same location, the
combination of reading and writing has steered the sense-data
spatially between these two cortical modules. Segregation of
information on the blackboard, together with selective writing
and reading, implies steering of sense-data. Spatial steering of
sense-data is one of the core functions of the thalamus as
a blackboard.

This leads to amore powerful concept of the thalamic ‘‘gating’’
of information. Gating is often conceived as the thalamus
simply switching neural paths on and off; a kind of simple
on-off filtering, or tuning up and down of arousal. But it can
also be seen as a precise spatial routing of sense data and
neuronal message passing between cortical modules. This is a
much more demanding requirement than simple gating. It is a
requirement for signal processing rather than for computation.
If the thalamus does spatial steering of sensory information,
how might it do it? Distributed representations—in particular,
Fourier representations—are again instructive.

An analogy from engineering—to illustrate this—is a
steerable phased antenna array used, for instance, in satellite
communications. For steering in one dimension, this is a regular
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FIGURE 3 | The use of a phased array antenna, where the relative phase of
the signals emitted by neighboring antennae controls the direction of the
signal emitted.

linear array of small antennae, all transmitting at the same
frequency (and therefore at the samewavelength). If the antennae
are all in phase, then the radiated signal has a strong peak
at 900 from the line of the array, where they all interfere
constructively. However, if there is a phase lag between each
antenna and the next one, the peak of constructive interference
is moved away from 900. By controlling the relative phases of the
antennae, the output signal can be spatially steered in different
directions. This is illustrated in Figure 3.

This illustrates how a time lag between each antenna and the
next one, which is less than one cycle of their oscillations, means
that the wavefronts are all in phase at some angle θ to the vertical,
where θ is determined by the time lag.

The steerable array principle could be applied in the thalamus,
as follows:

• The phase of the neural signals is the phase of firing relative
to some prominent thalamocortical rhythm, for instance, an
alpha rhythm at 10 Hz, with a 100 ms cycle time.
• The relative phase of different neurons or synapses is
controlled by introducing time lags in the range of
0–100 ms.
• Locations are represented in a Fourier representation, with
three-dimensional wave vectors k.
• Each thalamic relay neuron has a wave-like spatial
distribution of input synapses cos (k.x) over some region of
positions x in the thalamus.
• The represented position k is tuned by varying the time

lags on input synapses in the 0–100 ms range, in a way
dependent on the position of the synapse in the brain.

With the Active Inference framework in mind, this type
of attentional modulation would be mediated by nonlinear
synaptic mechanisms of the sort reviewed above—and implicated
in the deployment of precision. The basic idea is that
to compute the posterior estimate of spatial location, the
log-prior and log-likelihood would each be multiplied by
their respective precisions (represented in the thalamus) then
summed together. In this case, information per se is not
affected since the logs themselves, which are provided by the
cortex, are not being modified. However, the message passing is
affected—messages being switched on or off—depending upon
the afforded precisions.

This is only a high-level sketch of how the thalamus could
steer sense data, and many details remain to be resolved.
However, even based on this high-level sketch we can start
to compare the requisite computational architecture with
thalamic neuroanatomy.

THALAMIC NEURO-ANATOMY FOR
STEERING AND AGGREGATION

The previous sections have examined the hypothesis of the
thalamus as blackboard at Marr’s (1982) Level 2, of algorithms
and data structures. How does this description map onto
thalamic neuro-anatomy, at Marr’s Level 3? The hypothesis
can be related to several prominent features of thalamic
neuroanatomy and physiology, including:

• Quasi-independent thalamic relay cells.
• Thalamo-cortical rhythms.
• Diffuse cortical connectivity of higher-order
thalamic nuclei.
• Inhibitory interneurons.
• The regular three-dimensional shape of the thalamus.
• Driver and modulator pathways.
• Triadic synapses.

The following discussion applies mainly to higher-order
thalamic nuclei such as the MD nucleus and the Pulvinar, rather
than first-order nuclei such as LGN (which appears to have
only a minor spatial steering function). Higher-order nuclei
occupy most of the volume of the thalamus. In contrast to
neurons in the cortex, thalamic relay neurons have no local
excitatory connections. Is this distinctive feature consistent with
a blackboard role?

In what follows, we use the term ‘‘relay neuron’’ purely to
describe a type of neuron which is prominent in all thalamic
nuclei (except the TRN)—without implying that the function of
any nucleus is only a ‘‘relay’’ function.

A lack of local recurrent excitatory connections implies that
it is not possible to sustain some pattern of neural firing by
local positive feedback. This limits the ability of the thalamus
to complex computations or to carry out one blackboard
function—short-term memory for example—using only local
connections within the thalamus. However, hypotheses can be
sustained over unlimited periods by positive feedback between
the thalamus and cortex, for instance in a 10 Hz alpha rhythm.
This cycle can not only sustain short-term memory; it can also
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support a near-Bayesian optimal fit of hypotheses and sense data,
as described in Worden (2020b). The lack of local excitatory
connections in the thalamus does not rule out a blackboard role.
It is known (O’Reilly et al., 2020) that a 10 Hz alpha rhythm is
specifically associated with layer 5 neurons in the cortex and to
the pulvinar.

Relay neurons in thalamic nuclei can support segregation
by location in a distributed representation, as described in
the previous section. For a distributed representation to give
good separation in all three spatial dimensions, the neurons
must be extended in all three dimensions—as is done by
the approximately regular three-dimensional shape of the
thalamus. In a distributed representation, segregation is not
by relay neurons, but by patterns of firing across many
relay neurons. In this connection, there may be a role for
inhibitory interneurons.

In many signal processing applications, the linearity of
transducers is required. This kind of fidelity in the message
passing may be important in the thalamus for two reasons:

1. As an example of a distributed representation, the Fourier
representation depends on linearity, in the following sense: if
a point at position k is represented by a firing pattern [1 +
cos (k.x)], a non-linear transform of this pattern (a harmonic
distortion) would lead to higher harmonics like cos (2 k.x) and
so on—producing spurious represented objects at positions 2
k, 3 k and so on. The linearity of the transducers will minimize
the occurrence of such spurious ‘‘ghost’’ traces.

2. The overall probability of a hypothesis, evaluated from all
relevant knowledge sources, is the one with maximum model
evidence with weighted factors summed over all sources,
with different sums for different distributions across the
distributed representation. For the hypothesis with maximum
model evidence to be found, the summation needs to be as
close to linear as possible.

Seen as a transducer or amplifier, a neuron is not typically
expected to be highly linear. A relay neuron on its own is
expected to introduce non-linear distortion. However, inhibitory
interneurons, which are a prominent feature of the thalamus,
may play a role here.

Again, if we recourse to engineering analogies, the design
of an operational amplifier uses negative feedback (through
resistors) to convert a high-gain, non-linear amplifier into a
lower-gain, but highly linear amplifier. In the same way, local
negative feedback by inhibitory interneurons could convert
the non-linear high amplification of a relay neuron into a
more linear amplification—which is better suited to carry a
factorized representation and to sum log-likelihoods for Bayesian
maximum marginal likelihood estimation.

Next, consider the spatial steering function of the blackboard.
To serve any signal steering function, the blackboard/thalamus
must have two distinct types of inputs. These are the signal
being steered (i.e., information per se) and the instructions
about where and how to steer it. A prominent feature
of thalamic neuroanatomy is the distinction between driver
and modulator pathways (Sherman and Guillery, 2006). This
two-way distinction could be linked to the distinction between

signal and steering instructions, and could even be the
same distinction.

Next consider the mechanism for spatial steering, using
a distributed neural representation, and neural firing phased
relative to a thalamocortical ‘‘carrier’’ frequency (e.g., at 10 Hz).
As in a phased antenna array, signal steering can be accomplished
by introducing a controllable phase shift within the 100 ms
cycle. To tune a given relay neuron to be sensitive to a region
in inferred location k, different phase shifts would need to be
applied to different input synapses of the neuron, depending
on their location in the thalamus. In this way, thalamocortical
connections to a given cortical module could all be sensitive to a
small region around some position k0, with the center k0 of the
region of attention being tuneable within the thalamus.

A distinctive feature of the thalamus is the presence of
triadic synapses in glomeruli (Sherman andGuillery, 2006, 2011),
where three or more neural inputs converge in one synaptic
structure. This contrasts with themore usual dyadic input-output
relation between two neurons and supports the convergence of
two or more neural inputs—such as a sensory signal and its
steering control.

Triadic synapses could have the function of introducing a
controllable time delay (a phase shift), in the region 0–100 ms, to
give spatial steering of a distributed neural representation. As an
alternative to controllable delays, the use of sigma-pi neurons for
signal steering is discussed in (Worden, 2020b). Triadic synapses
could play a sigma-pi role in the thalamus.

These proposals for steering mechanisms are most relevant
to secondary thalamic nuclei such as the pulvinar, rather
than to primary nuclei such as LGN, which seem to support
a more map-like relay function. The secondary nuclei are
amongst the largest in the thalamus and have diffuse cortical
connections, consistent with spatial steering to diverse cortical
knowledge sources.

While the pulvinar is largely concerned with orchestrating
sense-data from the posterior cortex, including vision, the
other large secondary thalamic nucleus, the MD nucleus,
is more closely linked with higher-level decision-making
functions in the prefrontal cortex (Mitchell et al., 2014;
Mitchell, 2015; Dehghani and Wimmer, 2018). The MD
nucleus may be involved in motor and proprioceptive inference
(Friston et al., 2015, 2016), where 3-D movement creates new
possibilities and new options to compare. For non-human
primates, decision-making is largely deciding about physical
movement in space and time. The control of motion, like
the perception of objects in local space from sense data, is
intimately linked with the representation of three-dimensional
space. So it is reasonable to expect that the MD nucleus,
like the pulvinar, is concerned with the spatial segregation
and spatial steering of information—both sense-data and
motor commands.

It appears that in many ways, the neuroanatomy and
physiology of the thalamus may be consistent with a
blackboard/aggregator function, including spatial segregation
and steering of sense data and processed sense data. The match
appears to be good, and it can lead to suggestions for further
experimentation and modeling, providing informed predictions
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FIGURE 4 | A proposal for how the thalamus may aggregate votes from
cortical knowledge sources, and then post results back to those knowledge
sources, in two successive phases. Note that in the frontal cortex there is no
layer 4, but instead, thalamic relay neurons synapse directly onto pyramidal
cells in L2/3.

for detailed tests and models of a thalamic blackboard/spatial
steering function.

In the context of the interactions between the thalamus and
the cortex, several additional observations are consistent with
the idea that the thalamus operates as a blackboard whereby
hypotheses from cortical knowledge sources are aggregated,
exchanging information in an aggregator cycle (Worden, 2020b)
between the thalamus and cortex:

• Cortex and thalamus oscillate on the same alpha cycle
(Lörincz et al., 2009; Hughes et al., 2011).
• Cortical columns appear to oscillate between superficial
layers ‘‘on’’ while deep layers ‘‘off’’ (Lörincz et al., 2015;
Pluta et al., 2015; Naka and Adesnik, 2016).
• Layer 6 corticothalamic neurons provide modulatory input
to thalamic relay neurons that project to the same column
(Reichova and Sherman, 2004; Thomson, 2010; Sherman,
2017).
• Relay neurons only burst if they get this modulatory input
(Jahnsen and Llinás, 1984; Hughes et al., 1999; Sherman,
2001; Guillery and Sherman, 2002).

The alpha cycle may be a mechanism by which cortical
knowledge sources communicate with the thalamic blackboard.
It has been proposed that entire thalamocortical networks
oscillate between a ‘‘knowledge source phase’’ and an
‘‘aggregator phase’’ (Worden, 2020b). In this interpretation,

the deep layers of cortical columns, specifically layer 6, post
hypotheses to the thalamic blackboard on the ‘‘knowledge
source phase.’’ Once these hypotheses are integrated, the
results of this process are posted back to cortical columns
during the ‘‘aggregator phase.’’ This is shown in Figure 4.
Hypotheses that are consistent with bottoms-up input will
be reinforced as only relay neurons with both modulatory
and driving input will burst fire (Jahnsen and Llinás, 1984;
Hughes et al., 1999; Sherman, 2001; Guillery and Sherman,
2002). This proposal of thalamus function has remarkable
consistencies with various theories of cortical columns which
have attributed a ‘‘voting’’ process to the modulatory input
from layer 6 corticothalamic neurons to thalamic relay neurons
(Grossberg and Versace, 2008; Bennett, 2020).

If knowledge sources post ‘‘what is where’’ to the thalamic
blackboard, then this suggests that a given knowledge source
either: (a) contains representations of different locations in space
(e.g., a nose detector that can detect noses in multiple locations
in space) or (b) a given feature (e.g., ‘‘nose’’) is duplicated
across multiple knowledge sources, each with separate spatial
receptive fields (e.g., multiple nose detectors, for detecting noses
in different locations in the visual field). Interestingly, recent
theories of cortical columns corroborate both ideas whereby a
given column contains spatial representations, and features are
duplicated across columns. Specifically, Hawkins’ ‘‘Thousand
Brains Theory’’ of intelligence (Hawkins et al., 2019) proposes
that each cortical column generates a complete model of the
world. He suggests that each column builds a complete 3D map
of objects/features across a broad receptive field, as opposed to
only representing a specific feature at a specific location. Hawkins
goes on to propose that ‘‘grid-like’’ cells within each cortical
column represent a location in space, which he suggests exists
in layer 6. The thalamic blackboard proposal can be interpreted
as an application of Hawkins’ theory, whereby these redundant
and overlapping models of the world can be integrated and
disambiguated with each other through oscillatory phases with
the thalamus.

This is an unsettled topic in which proposals are still fluid.
In contrast to Hawkins’ proposals, we note the suggestion in
Worden (2020b) that cortical knowledge sources need only store
and manipulate small relative displacements between features of
an object, reducing their need for high spatial precision.

Cortical columns or modules have also been interpreted
as simply factors of the Bayesian beliefs held by a system
(Parr et al., 2020). It is commonly assumed that posterior
beliefs are independent of each other, and hence factorizable,
this is known as the ‘‘mean-field approximation’’ that renders
Bayesian inference tractable in the form of variational Bayes or
approximate Bayesian inference. This kind of inference could
plausibly be implemented in the brain, as described above
(Parr et al., 2020).

THALAMIC NEURO-ANATOMY TO
ENABLE CORTICAL LEARNING

In this section, we discuss how thalamocortical neuroanatomy
might support the second key function of the thalamus proposed
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in this article—which is to train direct cortico-cortical pathways,
to do itself out of a job.

As shown in computational models of variational inference,
computing the posterior requires a separate optimization for
each data point to compute the best fit variational posterior (Kim
et al., 2018). In other words, an inference can be computationally
expensive and slow as it scales linearly with the amount of
data. A computational technique called ‘‘amortized inference’’
dramatically improves the speed of inference by instead training
a neural network to learn the mapping between observations and
variational parameters (Gershman and Goodman, 2014; Marino
et al., 2018). In other words, learning to infer. This process
‘‘amortizes’’ (or distributes) the computational cost of inference
over many observations, as opposed to redoing this optimization
each time. Through this lens, thalamocortical networks can
be thought of as training corticocortical networks to infer on
their own.

To describe this process, we consider the involvement of the
MD nucleus in a typical movement planning task, which is to
reach out and grasp a piece of fruit. In considering this task, it is
worth recalling the analogy of the recording SatNav—which for
the first use of a route, does complex spatial planning; and for
later uses, simply replays the recording.

Note that any movement planning task has a natural
hierarchical structure—where the hierarchy is a (time∗limb)
hierarchy. To grasp a piece of fruit, the task has four stages:

1. Arm move: Move the arm so that the hand is in the right place.
2. Hand grasp: Pick the fruit.
3. Hand to mouth: Move the fruit to the mouth.
4. Eat fruit: Chew.

Each step must be started approximately when the previous
step has been completed—so the steps form a natural hierarchy
(of depth 1) in time. A more realistic deeper hierarchy could
involve sub-steps within steps, and parallel movements for within
a step different body parts, such as fingers. The full movement
involves the arm, hand, fingers, and mouth—so will involve
several distinct regions of the cortex (suppose that cortical
modules A, B, C, D carry out steps 1, 2, 3, 4 of the sequence).
This is consistent with the extensive thalamocortical connections
of the MD nucleus.

The hierarchical structure breaks the task down into steps that
may be learned at different times. In this case, both the ‘‘hand
grasp’’ and ‘‘eat fruit’’ steps would have been learned previously
(i.e., recorded by cortical modules B andD), and the new learning
task is just to replay B and D when needed, to ‘‘string them
together’’ with novel arm movements from modules A and C.
A hierarchical breakdown of the learning task is usually essential
to narrow down the space of learnable patterns, to make learning
feasible from small numbers of learning examples.

The first time that the novel arm movement (1) is made,
cortical module A records it. On completion of (1), the previously
learned grasping movement (2) is re-played by a cortical module
B. This replay sequence is initially coordinated through cortico-
thalamo-cortical (CTC) pathways. Each time the sequence is
replayed successfully, there are plastic changes in the direct
cortico-cortical links so that they can soon take over the job—it

becomes habitual—and the CTC pathways are no longer needed.
The movement becomes a top-down sequential cascade of
cortical modules, each one replaying its learned sequence of
movements (possibly by triggering sub-movements) and then
triggering the next cortical module (Haruno et al., 2003; George
and Hawkins, 2009; Maisto et al., 2015; Rikhye et al., 2019).

RELATIONS TO EXISTING WORK

There is a huge body of experimental work on thalamic
neuroanatomy and neurophysiology to which this article is
indebted, and which has not been fully referenced. For work
before 2007, we have relied on the definitive books by Sherman
and Guillery (2006) and Jones (2007) and references therein.

Since the ideas of this article about spatial segregation and
steering of sense data are mainly applicable to higher-order
thalamic nuclei such as the MD nucleus and the pulvinar, we
have focused on articles directly relevant to them, including
Shipp (2003), Sherman andGuillery (2013),Mitchell et al. (2014),
Mitchell (2015), and Usrey and Sherman (2019). Similarly, work
on thalamocortical connectivity (Behrens et al., 2003) has been
used for insights into the connectivity of higher-order thalamic
nuclei such as the pulvinar.

Beyond that, this article has been influenced by works that
abstract general architectural or computational principles about
the thalamus, such as Sherman (2016), Nakajima and Halassa
(2017), and Halassa and Sherman (2019). The thalamic circuit
motifs explored by (Halassa and Sherman, 2019) are particularly
relevant—for instance, motifs involving triadic synapses, or other
motifs that can be mapped onto the thalamus-as-blackboard
concept in ways that remain to be explored.

The blackboard notion has been investigated by several
authors, notably Baars (1988), Mumford (1991), O’Reilly et al.
(2017, 2020), and Dehghani and Wimmer (2018). This article
links these ideas to Bayesian inference, notably the Free Energy
Principle of Friston (2003).

The computational model of O’Reilly et al. (2017, 2020) is
relevant to this article, since it shares several important features,
yet has key differences. Like the model of this article, their
model hinges on the pulvinar in a blackboard role, and on a
cortico-pulvinar alpha rhythm. However, the two models use
these ingredients for different purposes. The main difference
is that the model of O’Reilly and colleagues is largely a model
of learning. Learning is typically a process that takes place
over longer timescales (days or weeks); whereas this article
also addresses a more basic, pre-learning question: how does
the thalamus contribute to immediate spatial cognition on
sub-second timescales?

While O’Reilly and colleagues interpret the 10 Hz cortico-
pulvinar alpha rhythm as supporting a predictive learning
process, predicting over the next fraction of a second, but driving
synaptic changes which take place over days or weeks, in this
article the same 10 Hz rhythm defines a phase for spatial steering
of processed sense-data. Steering sense-data is a pre-learning
process, operating at time scales of tens to 150ms, and it provides
the input data for cortical knowledge sources such as shape
from shading, stereopsis, or shape from motion, which need
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involve no learning. Spatial steering is required for perceiving
the 3-D shapes of irregular rocks or terrain or plants, simply for
locomotion, before any question arises of learning how to classify
objects by their shapes—as in the O’Reilly model. Therefore
the two models both depend on cortico-pulvinar alpha rhythms
but propose different interpretations of what those rhythms do.
These proposals may even co-exist. This may pave the way for
productive experimental studies.

Although this article has concentrated on spatial cognition
as the main example to exhibit the type of orchestration,
gating, and steering implied by thalamic architecture, another
key theme is that of balancing prior preferences (rewards as
encoded by the agent) and exploratory drive. In the context
of decision-making, planning as inference, and learning to
infer, the thalamus can be seen as a purveyor of precision.
More specifically, the MD nucleus would have the vitally
important role of assigning appropriate precisions to simulated
future consequences of particular behaviors and evaluating these
according to the agent’s prior preferences. This hypothesis is
in line with research in neuroanatomical connectivity between
the PFC and the MD (Funahashi, 2013), and its putative
consequences in both working memory and how it is used
by thalamic nuclei. A basic idea formulated using the Active
inference framework would be that there is a comparison in
natural units (nats) between the log probability of information
gain given a particular prior preference and the log prior
preference itself, thus allowing the agent to decide whether to
explore or exploit (Parr and Friston, 2018; Da Costa et al., 2020).
This aspect of goal-directed behavior, and the role MD nucleus
plays in reward evaluation as well as in the explore-exploit trade-
off—remains to be explored. There are links to the role of the
paraventricular thalamus in the risk-reward trade-off, discussed
in this article.

Part of the territory of this article has been explored in more
computational detail, with less emphasis on thalamic neuro-
anatomy and with greater emphasis on the scaling, speed, and
precision achievable by a blackboard/aggregator architecture, in
(Worden, 2020b). Some key results in that article, relevant to this
article, are:

1. In terms of required cortical connectivity and its energy costs,
the hub-and-spoke architecture of a blackboard is much more
efficient than a fully distributed cortico-cortical architecture.

2. The required spatial steering of hypotheses (for instance, in
hierarchical pattern recognition) must be steering in absolute
positions relative to the animal—not just relative positions
within an object. This places a high requirement on the
precisions underlying signal steering.

3. Spatial steering involves the accurate computation of spatial
displacements; this is 3-vector subtraction, and it can
be done with high precision and fast in a distributed
Fourier representation.

4. The spatial steering function and its implied neuromodulation
is more efficiently done in the central blackboard/aggregator,
than separately in each cortical knowledge source. The
latter approach would require massive replication of the
steering functionality.

This article has said little about the issue of object constancy
in an allocentric frame of reference, and how an aggregator
architecture might exploit that important prior probability. The
lack of local recurrent excitatory connections in the thalamus,
preventing local persistence by positive feedback, seems to
underline that problem. Worden (2020a) investigates a radical
solution—that as well as neural synaptic connectivity, there is
a physical wave excitation in the thalamus, which serves as a
short-term memory for spatial information in a Fourier-like
representation. The considerations of this article, about the
neural implementation of the aggregator function, apply whether
or not that more radical suggestion of a wave excitation in the
thalamus is correct.

Finally, the preservation of the thalamic architecture across
mammalian species, and many others (Sherman and Guillery,
2006; Jones, 2007) seems to point to an early evolutionary
origin and a universal functional role. It is worth noting
that a requirement for precise spatial steering of sense-data
has existed since the first compound eyes evolved, with
up to 10,000 receptors, in the Cambrian period (Parker,
2003). There would be little point for a Cambrian animal
to have a high-resolution vision if its brain cannot precisely
steer the signal to specialized processors. Precise spatial
steering and Bayesian likelihood aggregation have been
strong requirements on brains, and those requirements
have been met by animal brains, for more than 500
million years.

CONCLUSION

This article has described a promising alignment between two
different approaches in the study of the brain:

1. Bayesian inference, as formalized in the Free Energy
Principle, as a framework to understand active inference
and scene construction as the aggregation of multiple
knowledge sources.

2. The distinctive neuro-anatomy and neuro-physiology of the
thalamus, whose functional anatomy is ideally suited to
instantiate this aggregation.

This article speaks on an important issue: because of
functional segregation in the brain, there must be an
underlying architecture and computational mechanism to
bring together different types of information from dynamic
coalitions of knowledge sources, which have to be weighted
according to their precisions—in light of (approximate)
Bayesian inference. We propose that this is what the
thalamus is there for. The implicit modularity of cortical
representations calls upon a factorization (i.e., a mean-field
approximation) that is inherent in any form of (approximate)
Bayesian inference.

Active Bayesian inference and the Free Energy Principle are
now firmly established as an apt explanation for many aspects
of cognition. There is little doubt that they should apply to one
core requirement on animal brains, which is to understand the
forms and locations of objects around the animal from moment
to moment, based on multi-sense-data.
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For this, active inference entails a set of hypotheses about
‘‘what is where’’ around the animal; and various attributes (e.g.,
‘‘what’’ and ‘‘where’’) are processed by a wide range of cortical
modules. The thalamus is well placed to unite these, acting as
a blackboard/aggregator for hypotheses about spatial forms and
positions of things in peripersonal space.

The requisite neuronal message passing and belief
updating align well with many distinctive features of thalamic
neuroanatomy and physiology, including:

• Quasi-independent thalamic relay cells.
• Thalamo-cortical rhythms.
• Diffuse cortical connectivity of higher-order
thalamic nuclei.
• Inhibitory interneurons in the thalamus.
• The regular three-dimensional shape of the thalamus,
preserved across many species.
• Olfaction bypasses the thalamus, as it does little to
constrain spatial locations. Driver and modulator pathways.
Triadic synapses.

Each of these features of the thalamus is consistent with a
generative model that plays the role of a spatial aggregator. The
alignment between the thalamus and the blackboard/aggregator
model is promising at this stage. Much remains to be done to test
it and validate it. If the alignment has validity, then further testing
of it will involve a twin-track program:

1. Theoretical and computational investigations of the
Blackboardmodel—to explore its viability, neural architecture
requirements, scaling, and performance.

2. An empirical investigation of thalamic neuroanatomy and
physiology, testing whether it is compatible with Bayesian
belief updating of the sort described above.

If this is done, no doubt many of the specific proposals in
this article will prove to be wrong, or need modification; but
the pursuit and cross-fertilization of these twin tracks will be a
productive way to increase our understanding of the thalamus
(Donoho et al., 2005).

The most important proposal in this article is to suggest
that the passive idea of ‘‘the thalamus as a relay’’ is no longer
sufficient. The ‘‘relay’’ notion often emerges as a straightforward
interpretation of experiments, but it fails to address the
complexities of neuronal representation and processing not
yet revealed by those experiments. As an expression of what
the thalamus does, it is too weak. We should supplement
the passive ‘‘relay’’ notion with more active notions, such as
thalamic steering via precisions entailed by processed sense-data
between cortical modules, and the aggregation of Bayesian
beliefs—recognizing that precise spatial steering is difficult,
essential, and worth doing centrally.
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