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In this paper, we introduce an active inference model of ant colony foraging behavior,

and implement the model in a series of in silico experiments. Active inference is a

multiscale approach to behavioral modeling that is being applied across settings in

theoretical biology and ethology. The ant colony is a classic case system in the function

of distributed systems in terms of stigmergic decision-making and information sharing.

Here we specify and simulate a Markov decision process (MDP) model for ant colony

foraging. We investigate a well-known paradigm from laboratory ant colony behavioral

experiments, the alternating T-maze paradigm, to illustrate the ability of the model to

recover basic colony phenomena such as trail formation after food location discovery. We

conclude by outlining how the active inference ant colony foraging behavioral model can

be extended and situated within a nestedmultiscale framework and systems approaches

to biology more generally.

Keywords: ants, foraging, active inference, behavioral modeling, collective behavior, T-maze, eco-evo-devo,

stigmergy

INTRODUCTION

Bayesian Multiscale Modeling and Stigmergy in the Eusocial
Insects
Systems biology starts from the recognition that biological function occurs in nested multiscale
systems (i.e., the metabolic loop, the neural circuit, and the social group) (Noble et al., 2019).
Biological phenomena are intrinsically multiscale because biological systems exist and influence
events over several spatial and temporal scales, from microscale events within cells, to mesoscale
phenomena, such as the adaptive behavior of single organisms, to macroscale phenomena like
evolution by natural selection and ecological niche construction (Saunders and Voth, 2013;
Roberts, 2014; Bellomo et al., 2015; Ramstead et al., 2019a). Eco-evo-devo is the new synthesis
in biology that combines theories, methods, and insights from the study of ecology, evolution,
and development (Abouheif et al., 2014; Sultan et al., 2017; Jablonka and Noble, 2019). Collective
behavioral algorithms span scales of biological organization and explain the function and resilience
of complex biological systems (Hills et al., 2015; Gordon, 2016; Feinerman and Korman, 2017).
Studies of collective behavior within the Eco-evo-devo framework emphasize ecological context,
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subunit sensitivity to interactions, and emergent properties of
groups (Bradbury and Vehrencamp, 2014; Friedman et al., 2020a;
Gordon, 2020). The study of multiscale optimization in natural
systems explores how interactions among system subunits results
in system function, flexibility, and even optimality (Gordon,
2010; Friston et al., 2015; Rossi et al., 2018; Moses et al., 2019;
Friedman et al., 2020a; Kuchling et al., 2020; Ramstead et al.,
2020).

The eusocial insects [species beyond the point of no return
of obligate colony living, such as ants, honey bees, termites,
some wasps, etc. (Boomsma and Gawne, 2018; Friedman
et al., 2020a)] have provided inspiration for developments in
various fields, such as unconventional computing, autonomous
robot swarms, disaster response strategies, and the regulation
of physiology and behavior (Theraulaz and Bonabeau, 1999;
Friedman et al., 2020a). In particular, collective foraging behavior,
the set of processes by which resources are acquired by animal
groups, are of special interest because it maps onto questions
of computational tractability, economics, logistics, resource
discovery, and information sharing amidst uncertainty (Wilson
and Hölldobler, 1988; Lanan, 2014; Baddeley et al., 2019). Models
of collective behavior can apply to groups of non-eusocial animals
such as schools of fish. However in the case of the obligately
eusocial animals, selection has acted over millions of years to
shape their collective decision-making to be truly organismal
(Wheeler, 1911), rather than based upon e.g., population-
type game theory mechanisms and dynamics. Colony foraging
processes are regulated via the complex interplay of ambient
environmental conditions, interactions among nestmates, and
nestmate variation in tissue-specific physiological variables
(Abouheif et al., 2014; Warner et al., 2019; Friedman et al.,
2020a,b). Collective foraging strategies in ants are variable across
species, reflecting generalist or specialist approaches that exploit
statistical regularities of various ecosystem niches (Lanan, 2014;
Gordon, 2016, 2019).

While in many situations the regulation of ant colony foraging
activity takes place through tactile interactions among nestmates
(Greene et al., 2013; Razin et al., 2013), of particular interest
for the present paper is the case of stigmergic regulation
of colony foraging. Stigmergy is the phenomenon whereby
accumulated traces left in the environment by agents are used
to direct the behavior of their conspecifics (Heylighen, 2016).
In ecological settings, pheromones produced by the insects are
perceived in mixtures, in combination with other biotic and
abiotic scents (Attygalle and Morgan, 1985). However it is
also the case that single components of trail pheromones in
isolation are able to induce nuanced behaviors such as attraction,
repulsion, or initiation of action sequences. Sensitivity to trail
pheromones and other cues aremodulated by neurophysiological
differences among nestmates and colonies (Mizunami et al., 2010;
Muscedere et al., 2012; Rittschof et al., 2019). The evolution
of stigmergic processes can be non-linear, as small changes
in ecological context or to nestmate sensitivity can result in
novel colony-level outcomes (Invernizzi and Ruxton, 2019).
How colonies are able to use stigmergic regulation to generate
adaptive collective behavior amidst uncertainty is a fundamental
motivator of this work.

Recent work has framed the ant colony as a “Bayesian
superorganism,” in that the colony engages in a form of collective
decision-making via a stochastic sampling of environmental
gradients by nestmates that can be modeled as a form of
Bayesian inference (Hunt et al., 2016, 2020a,b; Baddeley et al.,
2019). This colony-level behavior is Bayesian because colony
foraging decisions (e.g., about where to forage for food) can
be cast in terms of Bayesian inference, as the computation
of Bayesian posterior beliefs from prior beliefs about the base
rates of occurrence of relevant factors in the niche and sensory
evidence about what the current situation is. In the case of
the colony, this Bayesian estimation is implemented through
chemical stigmergy and tactile interactions among nestmates
within a situated niche. Colonies that fail to forage sufficiently (or
over-forage and risk desiccation/predation) will quickly fail, in a
process analogous to Bayesian model comparison and reduction
at the population level.

The Bayesian framework has been applied extensively to
foraging and non-foraging behavioral paradigms in multicellular
organisms, and also in the brain (Friston et al., 2014;
Ramstead et al., 2019b; Russell-Buckland et al., 2019). The
multiscale Bayesian framework maps well onto the eusocial
insect colony, since eusocial colonies are the unit of function
that is shaped by natural selection (reflecting changes to the
multiscale or multilevel inferential scheme) (Wheeler, 1911).
Functional similarities between ant colonies and Bayesian
inference schemes also include ability to engage in long-term self-
organization, self-assembling, and planning, by implementing
highly nested cybernetic architectures (dense heterarchies;
Wilson and Hölldobler, 1988; Fernandes et al., 2014; Friston
et al., 2018; Friedman and Søvik, 2019; Friedman et al., 2020a).
By integrating the “Bayesian ant colony” perspective (Hunt
et al., 2020a) with stigmergic regulation and the scale-free
formalism of active inference (Fields and Glazebrook, 2020) we
provide an integrated framework for behavioral, ecological, and
evolutionary modeling in ants (Ramstead et al., 2019a). Such
an integrated approach could facilitate the transfer of modeling
insights from ant colonies to human-designed systems. Akin to
other recent modeling work in active inference in areas such as
machine learning and human interoception (Sajid et al., 2019;
Smith et al., 2020), a goal of the work here is to demonstrate
areas of resonance between an active inference perspective on the
ant colony and other previous approaches [e.g., the long history
of ant colony simulations and optimization techniques (Blum,
2005; Dorigo and Stützle, 2019), and especially recent Bayesian
work such as (Hunt et al., 2020a)]. With this mapping in hand,
ant colony modeling could benefit from parallel developments
of the active inference framework into areas such as nested
multiscale modeling, learning and memory, ensemble learning,
and robotics.

An Active Inference Model of an Ant Colony
In this paper, we develop and implement a Bayesian simulation
model derived from the active inference framework that captures
some of the underlying dynamics and emergent phenomena of
ant colony foraging behavior. In our model, we focus on the
stigmergic outcomes of foragers using a single trail pheromone
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molecule. Assuming that each agent (nestmate) only has limited
access to incoming information, how can a group of active
inference agents solve complex group foraging problems?

The active inference framework naturally lends itself to
modeling behavior of different systems across scales. Generally,
what changes across models available in the literature are
agent action affordances (e.g., visual scanning vs. physical
movement), the semantics of the prior beliefs (i.e., what it is
about, the type of generative processes/models used), and the
hyper parameterization (i.e., the prior distribution over beliefs).
From the point of view of the dynamics (i.e., the message
passing and update equations) all active inference models are the
same. Here we present the first Active Inference type model of
stigmergy, and the first Active Inference model focusing on insect
behavior. Our simulation adapts the inferential architecture
developed by Constant and colleagues (Constant et al., 2020) to
the setting of ant colony foraging. The Constant et al. model
studied the “visual foraging” of a single agent while it scanned
patterned artifacts. The novelties and distinguishing features of
our work are several-fold. First, we adapted into a different
sensory modality (chemosensation rather than visual). Second,
we considered a multi-agent simulation rather than modeling
the foraging activity of single agents. Lastly, we introduced the
ability of homeward-bound ants to deposit trail pheromone (an
affordance inaccessible to visual foragers), and thus brought the
model into the stigmergic context that is natural for the ant
colony system.

Relative to other agent based simulations of ants, the
advantage of the presented simulation is its interoperability
with other models of similar type, and the fact that many
environmental and biophysical manipulations can be performed
using the same base model (see code repository for this paper
and other contemporary work using similar active inference
model structures). Thus unlike custom ant-specific models coded
in various languages, having an abstraction for ant colony
function based on active inference agents can be transposed into
different contexts. The biological reality of ant colony foragers
is that they have evolved various features such as learning,
neuromodulation of sensitivity to pheromones, the ability to
leave multi-component pheromone trails, the ability to maintain
a given colony size, regulate colony foraging, etc. Even though
the proof of principle on offer does not model these features
explicitly, all these features could be explored under a future
active inference model. We come back to this point in the
discussion section.

In the model presented here, foraging ants move around in
a defined area that includes a nest location and a food resource
location. The forager actively infers a single sensory (gustatory)
outcome: an idealized attractant trail pheromone (Saad et al.,
2018; Friedman et al., 2020a). This pheromone trail cue, modeled
as a preferred state in active inference framework, is discretized
into 10 levels (reflecting differential concentration/deposition of
the idealized pheromone). The sensory outcomes that represent
pheromone trails are biologically grounded in the oily glandular
compounds of varying volatility that are deposited on surfaces
by ants while inside and outside the nest (Leonhardt et al., 2016;
Stökl and Steiger, 2017). Over 168 trail pheromones have been

identified in the literature (Cerdá et al., 2014) and they likely act
in redundant or combinatorial ways.

The T-maze choice test and related Y-maze paradigm
(Oberhauser et al., 2019) are classical laboratory paradigms for
studying the decision-guided behavior of foraging in various
systems, including mammals (Iodice et al., 2017), solitary insects
(Jiang et al., 2016), and ants (Czaczkes et al., 2013, 2015a;
Czaczkes and Heinze, 2015; Saar et al., 2017). The T-maze test
variant known as the T-maze alternation test involves switching
the location of a food source or reward cue between arms of the
T-maze, with some specific pattern through time. In mammals,
alternating T-maze tests have been used to investigate topics
such as learning, memory, decision-making, and preference
(Deacon and Rawlins, 2006; Shoji et al., 2012). As for T-mazes
in ants, Czaczkes wrote that “T- and Y-mazes are powerful tools
for studying the behavioral ecology and cognition of animals,
especially ants” (Czaczkes, 2018), motivating the use of the T-
maze paradigm here. The alternating T-maze paradigm allows
exploration of the interplay between the individuated cognition
of nestmates and the shared, stigmergic, distributed cognition of
the colony (via pheromone deposition here in this model).

To assess colony foraging behavior in a well-studied
laboratory paradigm, we simulate our in silico ant colonies as
central-place foragers in a T-maze behavioral paradigm. We
conclude with a discussion of how one could build upon the
proposed simulation to inquire about the evolution of multiscale
foraging processes in ant colonies and other Bayesian agents, to
understand how these complex systems solve various challenging
problems with limited and local information.

METHODS

The Foraging Task
In our model, foragers leave the nest and engage in random
movement, biased by the concentration of a locally-detectable
attractant trail pheromone. On the way out of the nest, the
unladen forager does not lay down any trail pheromone. Once
a forager discovers the food resource (detects the scent of
food), it begins depositing trail pheromone as it navigates back
to the nest entrance. This usage of attractive trail pheromone
by incoming successful foragers is inspired by the ecological
context of foraging in the Formica red wood ants: “Evidence is
presented that the cause of directional recruitment in F. rufa
group ants is a scent trail laid from the bait toward the nest,
while ‘centripetal’ recruitment, due to orienting signals provided
by scouts returning to the bait from the nest, is of negligible
importance” (Rosengren and Fortelius, 1987). This strategy of
depositing attractant trail pheromone only on the way home after
a successful foraging trip, is in contrast with aggressive explorers
such as the Argentine ant, which can lay down attractant trail
pheromone on the outbound and thus recruit rapidly (Flanagan
et al., 2013). In addition to the single attractant trail pheromone
used here, this model of colony foraging includes a food scent
[e.g., the scent of a seed (Gordon, 1983; Greene et al., 2013)], and
a “home” scent [reflecting the unique pheromone profile of the
nest and nearby soil (Johnson et al., 2011; Huber and Knaden,
2018)].
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The basic challenge faced by the ants in our simulation
is to locate the food resource patch, which alternates every
500 time steps in the simulation (representing a transiently-
available, patchy resource) over 2,000 steps. The colony must
rediscover the food location (on the other side of the T-
maze) when its location changes. We add a decay parameter
to the attractant trail pheromone, such that at each time step,
the density of the pheromone at the visited locations decays
with a small probability (0.01% in the simulations presented
here). Biologically, this can be viewed as the gradual decay or
evaporation of lipid pheromones (which range from volatile
to wax-like). Informationally, this decay rate can be thoughts
of an environmental perturbation or drift that counteracts the
reinforcing effect of stigmergic convergence.

In our simulation, after discovering the food, inbound foragers
begin a random walk that is biased toward higher concentrations
of trail pheromone and also biased toward the direction of
the nest entrance. The biological plausibility of this inbound
turn is well-supported by a variety of mechanisms used in
ants to navigate home from foraging trips, including the path
integration of steps (Heinze et al., 2018), location of sun and
moon in the sky (Wehner and Müller, 2006; Freas et al., 2017,
2019a), magnetoreception (Freas et al., 2019b), recognition of
remembered visual scenes (Baddeley et al., 2012; Zeil et al.,
2014), interactions with nestmates on the trail, non-pheromonal
olfactory cues (Steck, 2012), the geometry of the trail network
(Collett and Waxman, 2005; Czaczkes et al., 2015b), and so on.
Because successful foragers deposit trail pheromone on their
inbound trip, they act to reinforce extant pheromone trails.

In this paper we show results from simulations with several
different numbers of foragers (10, 30, 50, 70), however with the
provided code one can adjust this to any value. We performed
simulations of 2,000 time steps (this value also can be set to
any number), meaning that each ant carried out 2,000 steps of
action and inference. We considered two summary measures as
colony-level phenotypes.

First a colony foraging performance metric which is simply
the number of round trips between nest and food location over
the 2,000 time steps. The more round trips that are completed
per unit time, the better task performance is, in the sense that
successful foraging was accomplished more often. As the location
of the food resources shifts several times during the simulation (at
three times: 500th time step, 1,000th time step, and 1,500th time
step), successful colony foraging here represents an ability to both
discover and exploit resources that are dynamically changing
through time.

Second a swarm coherence metric was calculated as a distance
measure among ants at each time step as:

Distance Coeff =
1

Nants

Nants∑

i=1

dis(anti, antj) for j = 1, . . . , Nants

The distance coefficient quantifies the average distance between
all ants at any given time point, where dis is the Euclidean
distance between two ants, i.e.,

√
, with xn and yn denoting the

x and y position of ant n. The goal of this simple swarm distance
metric was to capture some possible signatures of collective phase

transitions (for example assuming even mixing on the north-
south axis of the map, a reduced distance metric would imply
that all ants were on the same arm of the T-maze, while increased
values would suggest distribution on both arms).

An Active Inference Model for Ant Colony
Foraging
Active inference is a Bayesian theory of behavior that accounts
for perception, learning, decision-making, and the selection
of contextually appropriate actions, which are all cast as a
form of approximate Bayesian (or variational) inference. In this
framework, perception is modeled as the formation of posterior
state estimates, which are arrived at by combining priors and
likelihoods, that is, the prior beliefs had by an agent about the
base rate of occurrence of states and the likelihood of making
this or that observation given this or that states; learning is
cast as the process of updating of priors, likelihoods, and other
model parameters; and decision-making and action are cast as
processes that compare the evidence for various models about
future states and observations under possible courses of action
(see Appendix).

$17 The simulation uses a Markov decision process (MDP)
formulation of active inference; for details, see the code and
(Friston et al., 2016). Here, it is important to understand that the
MDP corresponds to the decision process of a single simulated
ant forager, not the colony as an entity. Indeed, the MDP
corresponds to the sort of cognitive inferential process that
a nestmate ant would have to undergo in order to select a
course of action or policy. The Bayesian generative model is
a joint probability density over hidden states and observations
that decomposes into several factors (Figure 1). These are
(i) the likelihood of observations, denoted A, which specifies
the probability of observations given hiddens states; (ii) the
transition probability matrix, B, which harnesses the probability
of state transitions, i.e., the probability of transitioning from one
state to the next, given some action. C is a preference parameter
that foragers have for denser pheromone traces, i.e., the agent
prefers to move in the direction of the locally-densest pheromone
trail. The prior over initial states after each cycle of inference is
denoted D. Finally, prior preferences for data C enter into the
computation of the expected free-energy, G, which is a vector
of values that corresponds to the free energy expected under a
given course of action or policy through time (normalized by a
softmax function).

Variational inference is a method for approximate Bayesian
inference and depends on two distributions: the variational
distribution and the generative model. The variational
distribution is a distribution over all unknown variables (states
and policy) in the model and represents the agent’s beliefs about
the current state of the world. The generative model describes
an agent’s “model” of the world, and specifies a mapping
from hidden states to observations. Variational inference then
looks to invert this mapping and recover the mapping from
observations to hidden states (see Appendix and code for more
details on the equations used in the variational approach used
in this paper). Here we use the active inference model in an
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FIGURE 1 | Overview of the foraging paradigm and simulation presented in this paper. (A) In this paper we used a T-maze foraging paradigm. Foraging nestmates

issue from the Nest location in blue at the bottom of the T-maze and the food switches location between the arms of the T-maze during the simulation. The gray shaded

area is where ants can forage within. (B) During the simulation, described in the order of the labeling of the figure: (1) All agents (simulated ants) start at the same nest

location. (2) Their task is to reach a food resource on the map, which is on one arm of a T-maze. (3) While unladen (e.g., heading out on a foraging trip), the ant does

not deposit pheromone, and moves toward locally increased density of pheromone. After encountering the food, the ant leaves a pheromone trail on its way back

toward the nest, again moving toward locally increased density of pheromone. (4) Crucially, ants only have sensory access to their immediate surroundings and do not

know where the food resource is located on the map. All they can sense is what surrounds them immediately and its current location, as well as outcomes associated

with each of these states. (C) Expanded table of Parameters and Equations. For each ant, at each time step, there are 10 possible observations, which correspond to

10 levels of pheromone density (which range from 1 to 10). Each ant can select policies that transition between surrounding locations (which are modeled as hidden

states that the agent has to infer based on sensory cues). This means that the generative model of each ant is made of a likelihood and a prior that are limited to the

representations of these nine locations. The policies available to the ant correspond to transitions from the current location to one of nine possible locations (i.e., same

location, up, right, down, left, top-left, top-right, bottom-left, and bottom-right), and evolves over one time step. (5) The environment in which the ant navigates is a 40

× 40 matrix, with each location corresponding to an index from 1 to 1,600 that allows us to respecify the likelihood matrix of the ant after each step (see Appendix).

Each location in the environment generates a given outcome, which can change based on whether the ant passed over that location and left a pheromone trail. There

is no modulation of the likelihood precision in our simulation, which means that each ant always has an unbiased sensory access to its surroundings.

instrumental capacity [e.g., as a statistical apparatus that is useful
for addressing questions about the world (Bruineberg et al.,
2020)] rather than in a realist fashion to say what ants are “really
doing” given our observations (Gordon, 1992).

The generative model of each ant consists of a single
hierarchical level (Figure 1). The hidden states correspond to
eight possible locations that surround the ant at any given time,
plus the ant’s current location. The possible observations (o) of
the ant are the intensity of pheromone, ranging from 1 to 10.
This pheromone intensity reflects the hidden underlying actual
pheromone density at each location (s). The likelihood parameter
(“A”) parameter maps all possible sensory outcomes (10) to
all accessible locations at each given time. The state transition
probabilities are coded as the transition parameters (Bπ,t),
which encodes all possible transitions among all possible states,
conditioned on policies (π, sequences of actions). Effectively, this
means that there are nine transitions matrices, for nine possible
policies that allow the ant to go in all directions. The likelihood
and the transitions are fixed in all simulations. We use this
generative model and an initial state distribution D to generate
sequences of potential future outcomes and hidden states and
potential 1-time step policies (sequences of action). Policies are
scored in terms of their expected free energy (denoted G). The
expected free energy of each available policy is evaluated (here the
accessible cells), and the policy with the least expected free energy
is selected by the agent. Preferences are encoded in a vector C
that specifies a desired probability distribution over outcomes. To

generate the different phenotypes of Supplementary Files 6, 7,
we change the values in the preference vector. In this context,
flat priors simply mean that the agent has no preferences for any
particular observation, i.e., it believes all observations are as likely
and thus as preferable. In contrast, we use strict priors to refer
to the case where there is a monotonic increase in probability as
a function of pheromone level, i.e., higher levels of pheromone
have higher probability, and are thus more preferable. As per
the instrumentalist reading above (Bruineberg et al., 2020), these
model parameters are variables within a modeling framework,
not hypothesized or proposed to be specific neural or cellular
features of real ants.

Note that themodel on offer differs from some active inference
MDP models in that the agent—here, the ant nestmate—does
not have an internal representation of the complete structure of
the environment (i.e., a map with associated sensory outcomes).
Here, the ant can only represent the pheromone gradient which
surrounds it locally and instantaneously. Specifically in our grid
automata model, the forager can detect one location around
its current location in the map, in each direction (up, down,
left, right, top-right, top-left, bottom-right, and bottom-left).
These local pheromone deposits make up the hidden states. For
real ant foragers, the perception horizon for chemosensation
is limited by the reach of their antennae (ants cannot detect
smells “at a distance,” only smell what is immediately local).
Additionally the ant can only take steps in their immediate
direction (cannot teleport).
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To limit the perception and inference horizon of the ant
in a biologically realistic way, we added to the standard active
inference methods a recently-developed “reallocation matrix”
(see theAppendix). To ensure that the ant only was in possession
of local access to its sensory environment (i.e., the 10 levels of
pheromone density), we utilized a likelihood remapping strategy
that respecifies the entry of the likelihood matrix after each
time step (see Supplementary Figure 1). Likelihood remapping
allows the agent to perform state inference and navigation by
bypassing the full representation of the generative process (i.e.,
environment). This is in contrast to standard active inference
approaches which typically require the agent to be given a correct
global understanding of the scene. To achieve this locality, the
“A” matrix becomes state-dependent so that it only provides
information about outcomes in the proximity of the state the
agent is in. The reallocation matrix itself corresponds to the size
of the environment (here 40 × 40, or 1,600 locations), and maps
each possible observation to its location in the environment. In
that sense, the reallocation matrix can be viewed as a likelihood
matrix for the environment – [P(pheromone | location)], (see
Appendix), or generative process from which we manually
sample to specify the likelihood of the ant at each time step.
Crucially, once the ant selects an action, it then moves in the
environment, and based onwhere the ant is at that step, we remap
the likelihood of the ant for the next cycle of policy selection.
Pheromone trails are then “deposited” in the reallocation matrix
to change the distribution of outcomes (i.e., pheromones) in
the environment, thereby allowing for stigmergic interaction
between all ants via the reallocation matrix.

To summarize the computational activity of each forager at
each timestep, pseudocode is provided here (see Code for full
details). The active inference model as implemented here does
not presuppose or imply any specific neurocognitive architecture
for any specific ant species. At each timestep of the simulation,
the agent:

1) Senses environment (local pheromone density)
2) Optimizes beliefs with regard to Variational Free Energy

(VFE, Appendix Equation 3)
3) Optimizes beliefs about action with regard to Expected Free

Energy (EFE, Appendix Equation 4)
4) Samples action from beliefs about action (performs

action selection)
5) Agent performs action (movement) and updates the

environment (deposits pheromone, if laden with seed)

Our unimodal (gustatory) model here does not take advantage
of forager visual capacity or interactions, and only is based
upon the stigmergic principle of pheromone deposition. Future
models could include ant bodily state, development, memory,
and intermodal integration. The reallocation matrix allows us to
remap the likelihood matrix of the generative model of the ant
based on its movement in the environment (it is a movement
policy matrix). The purpose of the reallocation matrix here is to
allow such a remapping of the likelihood of the ant, which is just
a 3x3 portion of the reallocation matrix relative to where the ant
is at a given time step. In other words, this reallocation matrix is
what transforms the global computational representation of the

foraging arena, into a locally-accessible space around each ant,
guaranteeing that the relevant information used by each ant is
really only local.

Stochasticity in decision-making at the nestmate and colony
level may facilitate adaptive behavior in ants (Deneubourg
et al., 1983). In our model, stochasticity enters into the picture
at the model step where policies (movement directions) are
sampled from the distribution over all policies based upon
their relative expected free energy. Thus, in the absence of any
spatial pheromone gradient (or in the case of a flat preference
for pheromone density), the ant forager diffuses according to
Brownian motion on a grid (e.g., equally likely to go any
direction). If an argmax were used rather than a sampling-based
approach, this model at each time would be fully deterministic
(but even in this case it would not entail the colony outcomes
being easily predictable due to complex stigmergic dynamics).
Additional kinds of stochasticity could be implemented at various
steps in the model, for example by having imprecise sensory
input. Interactions among ants and other parameters guiding
search behavior could be added as well (interactions, momentum,
celestial radiation, other odor cues, etc.), this model seeks to
frame the gustatory components of ant colony stigmergy in terms
of actively inferring agents.

RESULTS

The simulation ran successfully: ant colonies consisting of
foragers with no internal map of the T-maze were able to forage
successfully given a set of simple behavior rules (nestmates
pursue locally increased pheromone density using an Active
Inference model, and lay down pheromone when returning
home). Figure 2 shows screenshots for the 70 ants colony at
a few timepoints, displaying the colony at stages of searching,
exploiting, and switching. For animated .gif ’s of simulations of
different colony sizes, see Supplementary Files 1–7 and the code
availability statement.

Colony Foraging Performance
Colony-level phenotypes are summary measurements of
emergent properties in that these phenotypes do not apply
to separate nestmates (though they are enacted by nestmates;
Feinerman and Korman, 2017; Gordon, 2019; Friedman et al.,
2020a). For example each nestmate has bodily phenotypes (such
as morphology and tissue-specific gene expression patterns),
but colony phenotypes are those that only exist at the colony
level (e.g., total foraging performance, average inter-nestmate
distance), Figure 3 shows two measures of colony foraging
phenotype: the total number of foraging round trips completed
though time, as well as a swarm coherence metric (see Methods
section The Foraging Task for equations defining the swarm
coherence metric).

First, as a measure of colony foraging performance, we
recorded the number of successful foraging trips, i.e., round trips
from nest to food location patch to nest performed by each ant
in each simulation through time. We found that colony size
influences the number of round trips taken per-nestmate over
the simulation’s duration (Figure 3). The influence of colony size
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FIGURE 2 | Pheromone trails of the colony with 70 nestmates over 2,000 timesteps and three food location switches. The sequence of images starts on the top right

and reads from right to left (1st row), from left to right (2nd row), from right to left (3rd row), and from left to right (4th row). We chose a representative simulation and

did not tune the parameters to discover optimal decision making. See Supplementary Files 6, 7 for example simulation outputs and to see the switching behavior

(pheromone density locking onto one arm, then gradually locking onto the other arm) that is observed in the case of strict priors but not flat priors.

FIGURE 3 | Round trips and distance coefficient. (A) The number of completed round trips (Y axis) through time (X axis) for different numbers of nestmates in the

simulation (traces of different color as per legend) for a representative trace run of each colony size. (B) Swarm distance coefficient (Y axis, see section The Foraging

Task for equation) plotted through time (X axis) for different numbers of nestmates in the simulation (traces of different color as per legend) for the same representative

runs.

on round trips appears to be non-linear in that the colonies of
different size are not simply scalings of one another. However we
do not draw any generalizations from this specific trend, since
we did not explore variation in critical model parameters such as
T-maze size, pheromone deposition rates.

Additionally our model did not include fundamental types
of information relevant for real foragers, such as the pattern
of interactions among nestmates, smells other than attractant
pheromone, or the location of celestial lights. Across all colony
sizes explored in our simulations, foragers were consistently able
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to locate the target resource at the distal end of the T-maze
and recruit nestmates using stigmergic pheromone deposition.
Research on colony foraging metrics has been carried out in
many ant species globally, and in the laboratory many behavioral
paradigms have been used. Here we only made basic summary
measures of colony foraging performance (Figure 3), with an eye
toward the kind of measurements that could be quantitatively
explored in future simulations and empirically inferred from ants
in the lab and field.

Swarm Coherence
Another colony-level phenotype or summary measurement is
the degree of coherence among nestmates. This can be thought
of as the “stigmergic tightness” of the system, in that tightly-
regulated stigmergic systems might show lower average inter-
agent distances, while looser systems would have higher inter-
agent distances. For representative simulations, Figure 3B shows
the change in the distance coefficient between ants, at each time
step, over 2,000 time steps, for each colony size (10, 30, 50,
70). For each colony size, the colony quickly converges onto
a characteristic range for the distance metric (Figure 3B e.g.,
∼100 for colony size of 10 and ∼900 for a colony of 70).
By looking at swarm coherence metrics through time, it could
be possible to identify phase transitions and regimes of meta-
stability for swarms.

Here we also found that colony size influenced swarm
cohesion metrics, and will explore this space in a more
statistically- and ecologically-informed fashion in future work.
Specifically one could ask how distance- and trajectory similarity-
based measures of stigmergy might capture characteristic or
functional attributes of colony behavior, or the manner in which
various environmental challenges (e.g., food location switches
frequencies and maze shapes) in such a characteristic summary
distance metric. Swarm coherence metrics might also be defined
not in terms of inter-agent distance, but rather the correlation,
mutual information, or degree of stereotypy among trajectories.

DISCUSSION

Here we have presented an active inference framework to
consider some aspects of the multiscale and emergent dynamics
of an ant colony. Active inference may be informative in
the study of ant colonies at three distinct temporal scales:
nestmate behavior (emergent among tissues of a nestmate
and interactions with the biotic/abiotic environment), colony
development (emergent among nestmates and their interactions
with the niche), and the evolution of populations (emergent
among colonies within an ecology). In this work, we have
focused on the connection between the first two levels of
analysis, specifically focusing on the case of stigmergic colony
foraging, using a modification of previous active inference
computational implementations. We utilized a partially Markov
decision making process model based upon previous work, with
several ant-specific modifications (Methods, Figure 1).

We found that colonies of active inference foragers were
able to discover and stigmergically exploit food resources in a
simple T-maze (Figure 2). Foragers engaged in a local search

for directions with more deposited pheromone, and added
pheromone to tiles as they returned to the central nest. In this
work we explored a few metrics of colony performance such
as overall colony number of round trips, and swarm coherence
metrics (Figure 3). We did not perform extensive parameter
sweeps (e.g., to optimize performance or draw generalizable
conclusions across dimensions of variability). Our model lacks
several important features that influence colony foraging activity
in realistic settings (such as tactile interactions and physiological
heterogeneity among nestmates). There are three levels of
dynamics of ant colonies that could be simulated in the future.

Nestmate Scale: Behavior and
Development
The first scale of analysis to consider in the ant colony case is
that of perception, learning, and decision-making under active
inference for ant nestmates (i.e., a nestmate behavioral model).
This is the scale that we explored here in this series of simulations.
We limited our simulation work to perception and a rudimentary
form of hyperlocal decision-making (nestmates only do inference
on the next timestep and immediate spatial surroundings).
In so doing, we did not take advantage of the full scope of
active inference. Active inference can model phenomena such
as curiosity, novelty, affect, and valence biases in terms of how
they arise from estimates of world states and variabilities (Parr
and Friston, 2017). In the context of ant navigation and foraging
behavior, learning such kinds of statistical regularities might
have to do with learning of affordances (available actions) and
statistical regularities in the terrain [e.g., a bifurcating node on a
tree trunk might afford the nestmate the possibility of moving
to one side or the other (Chandrasekhar et al., 2018)]. In a
completely flat environment such as the one we simulated, there
is no uncertainty in transitions from one location to the next
(all local steps can be taken). However, learning volatility may
be important for adaptive navigation and might be an interesting
manipulation to augment our existing simulation setup in future
experiments. Models at this level of simulation could also include
neurologically-plausible implementation in terms of the mid-
sized neural architectures in some insect brain regions (Cope
et al., 2017; Müller et al., 2018).

Learning under active inference is another feature that we did
not explore here and that may be interesting to simulate in ant
colonies, especially the learning of precision parameters that have
been previously associated with dopaminergic neuromodulation
(Friston et al., 2014). Across eusocial insect species, brain
dopamine titers appear to be higher in foragers than inside
workers (Friedman and Gordon, 2016; Kamhi et al., 2017),
and pharmacological increases in dopamine signaling stimulate
foraging behavior (Barron et al., 2010; Søvik et al., 2014;
Friedman et al., 2018). Other neurotransmitters such as tyramine
and serotonin are also important for regulating nestmate foraging
activity, perhaps by modulating sensitivity to sensory cues
(Muscedere et al., 2012; Scheiner et al., 2017). Thus it could
be the case that with insects as with vertebrates, dopamine
and related neurotransmitters play key roles in modulating the
precision of state estimation, thus regulating a wide variety of
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goal-seeking and decision-making behaviors (Barron et al., 2010;
van Lieshout et al., 2020). Full neurocomputational models exist
for navigation and multisensory integration in foragers (Cope
et al., 2017; Goldschmidt et al., 2017) and would be interesting
to integrate with agent based active inference models of the type
presented here.

Under the classical behavioral framing of ant foraging
behavior, the “reward” is defined as the target food resource (e.g.,
seed, sugar water), and the pheromone trail is considered as a
semiotic cue that guides the forager toward the target. Under the
active inference framework, the reward (preferred observation)
plays a more semiotic role (in engaging a switch in the foragers
behavior from outward to inward bound) while the pheromone
trail density plays the role of a reward (in that it is what is being
pursed locally by the forager). In terms of observations about the
pheromone trail, and the target resource is a cue that engages a
switch in course of action (i.e., selecting a course that is outward
bound vs. inward bound). Acting as a function of reward, here,
just means selecting the action that provides the most evidence
that the agent is generating preferred observations [for details
see Friston et al. (2009) and Costa et al. (2020)]. This means
that what motivates the active inference forager to move toward
the target that is adaptive for the colony (e.g., some tasty seed)
is a preference for pheromone trail density, i.e., it accomplishes
foraging by pursuing high levels of pheromone. Heuristically, in
each cycle of policy selection, the simulated ant selects an action
that brings it where it believes pheromones concentration will be
densest. The idea is that because other successful nestmates have
left pheromone traces as they returned from the food resource,
for an outbound forager, performing policy selection based on
pheromone preferences will increase the success of finding a trail
that connects the nest entrance to the resource. When the food
location changes (as it does every 500 timesteps in the simulation
we present here), pheromone trails connecting the nest entrance
to the now-vacant food source will decay, but the trunk of
this trail will be reinforced once the food is discovered on the
other arm. Thus the nestmate pursuit of high local pheromone
density, coupled to an adaptive policy of “add pheromone
only when successful and returning home,” is sufficient to
enable effective colony search. In evolutionary intergenerational
simulations, this forager preference distribution could be tuned,
and colonies with successful forager preferences would have
increased survival and reproduction. Ant nestmates may carry
out foraging behavior using similar neural elements involved in
the regulation of foraging in solitary insects (Barron et al., 2010;
Landayan et al., 2018), as well as novel regulatory components
due to the distinctly different case of the eusocial nestmate
forager life history in terms of inputs, regulation, and outcomes
(Friedman et al., 2020a).

Colony Scale: Stigmergy and Extended
Cognition
The second level of dynamics here, not addressed in our
simulation, is the learning of nestmates and development of
colonies. The colony as an organism itself has developmental
phases that go beyond the timescale of behavior (Wheeler,

1911). Such colony-level development includes changes in size
and worker task or morphological specialization. Additionally
colony-level development can encompass niche construction
phenomena such as nest architecture. This timescale is not
simulated here, but is a topic for future work.

The representation of the environment leveraged to solve the
T-maze problem—i.e., the “map”—is not one that is entertained
by nestmate brains, but rather one that is carved out of the
environment and leveraged implicitly by each ant as they each
forage alone, together as a colony, leaving cues that nestmates
can use adaptively. In active inference terms, the ants are
endowed only with an extended generative model (Constant et al.,
2019a). An extended generative model is one where some of
the model parameters are encoded not by the agent engaging
in inference itself, but by the physical environment in which
it lives. This form of self-organized behavior is common in
social animals, such as human beings. For example, traffic signals
can be viewed as mechanisms that allows agents to offload the
processing of information related to their peers’ driving behavior
onto the structure of the environment; agents no longer have
to anticipate the behavior of peers (or at least, much less so),
and only have to follow the cues provided by traffic signals,
which indicate what is appropriate behavior in a given situation
(Constant et al., 2019b; Veissière et al., 2019). In the present
study, these active inferants can only represent information in
their immediate surrounding, for example, pheromone patches
with more or less density. They rely on information encoded
in the environment itself (i.e., pheromone trails) to guide their
behavior. Importantly, the agents are not learning a world-
centric map-like representation of where the food is. In this
modeling framework, foragers are acting probabilistically, given
their preferences and beliefs about their local environment or
peripersonal space.

The model presented here only uses a single attractant
pheromone and this could be expanded through different sensory
inputs to consider mixtures of chemicals. Ecologically, in cases
where it would be advantageous for a nestmate to visit a
location where previous nestmates have been, the use of an
attractive pheromone is found (Butler et al., 1969; Lanan,
2014; Feinerman and Korman, 2017), while in situations where
it would be disadvantageous for nestmates to visit locations
where other nestmates have recently been, chemical cues are
commonly repulsive (such as alarm pheromones; Wilms and
Eltz, 2008; Hunt et al., 2020a). The model could include a
repulsive pheromone as well as an attractant, and foragers
could have complex or learned preferences related to how
they differentially weigh the pursuit of attractant gradient
vs. the evacuation from repulsive gradients. Additionally,
variation among colonies in collective behavior may arise from
patterns of physiological variation among nestmates of the
same or different developmental stage (Gordon, 2019; Lemanski
et al., 2019; Friedman et al., 2020a). By performing statistical
analysis on the variation among nestmates in interactions and
foraging activity, the model could explore the role of nestmate
variation in response threshold (Yamanaka et al., 2019) in
colony performance and variation among colonies in behavior
(Friedman et al., 2020b).
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In ecological settings, ant colony behavior is regulated
through multi-component pheromone gradients as well as
dynamic interactions among nestmates. Collective behavior is
an ecologically important feature of ant colonies and a target
of selection. Only foragers were included in this model, future
derivations could include worker developmental trajectories and
colony-level task allocation processes (Friedman et al., 2020a;
Hayakawa et al., 2020). Nestmate-level behavioral heuristics
are important for colony efficiency (Gordon et al., 2019;
Kamhi et al., 2019; Arganda et al., 2020), as are truly colony-
level processes (e.g., dynamic interaction patterns and nest
architectures (Gordon, 2010; Pinter-Wollman et al., 2018;
Lemanski et al., 2019) are in tight feedback with nestmate-level
development and task allocation. Our model could be extended
to study the role of these processes in the evolution of colony
behavior, since the proposed simulation involved only agent-
environment stigmergic interaction. These interactions among
nestmates could be investigated using this setup by adding in an
effect of spatial encounters among ants (i.e, collective behavior
based on a shared physical environment or substrate; Razin et al.,
2013; Davidson et al., 2016).

In ants, the extent of neurophysiological variation among
nestmates (in e.g., sensitivity to interactions or response
threshold) may contribute to variation among colonies in
behavioral outcomes (Lubertazzi et al., 2013; Lemanski et al.,
2019; Friedman et al., 2020b). In this simulation, all ant
nestmates had identical sensitivity to the pheromonal cue.
Future simulations could implement nestmate-specific sensitivity
parameters, which for example could change in response to
development or sensory experience. A benefit of the Markov
decision is that it does not presuppose any specific neural
or cognitive mechanism within the nestmate brain. The key
specifications of the model are in terms of what can be sensed
(a single attractant pheromone in this case) and what actions
are possible [here only walking, as per other models (Wilensky,
1997)]. Using recently developed immersive technologies for ants
[such as the “Antarium” (Kócsi et al., 2020)], it could be possible
to combine observation in natural settings, simulations, and
laboratory experiments to understand neuroethological aspects
of ant foraging.

In this model we considered a single ecological regime
(e.g., the food location was dynamic, but we only explored
one rate of food movement). We did not, for instance,
manipulate several key parameters of the model that might
have influenced the number of round trips between the food
location patch and the nest. Also of note is that eusocial
insect foragers are able to communicate information to each
other regarding foraging resources through interactions and
chemical stigmergy. This means that foragers are able to
distinguish and integrate various internal and external factors
related to bodily physiology (Silberman et al., 2016) and
memory (Stroeymeyt et al., 2011; Oberhauser et al., 2019).
In other words, while in the model presented here each
nestmate was functionally similar and memoryless, future
models could have functional and developmental variation
among nestmates, for example to address questions related

to how foragers manage the tradeoff between shared/private
information and distant/recent experiences. Such scenarios
can be specified based on the proposed simulation, and
manipulations can be empirically validated. Along the lines
of complex systems modeling approaches such as cadCAD
(2020), digital twin simulations of ant behavioral experiments
would allow determination of statistical power, pre-registration
of experiments, and detection of relevant experimental parameter
ranges for empirical implementation.

Population Scale: Evolution and Ecology
The third time scale of dynamics of the ant colonies,
also not addressed directly by this model, is evolution: the
intergenerational process which acts at the level of a population of
colonies. Selection shapes nestmate-level behavioral parameters
by shaping neuromodulatory physiology and other features of
sensorimotor processing (Gordon, 2014, 2016). In this casting,
natural selection is akin to the process of Bayesian model
comparison or reduction, an efficient technique for model
comparison (Alhorn et al., 2019; Smith et al., 2019). Selection
favors colonies where nestmates enact models that, under
ecological challenges faced by similar models (colonies) in
the population, are more adaptive (Wilson and Hölldobler,
1988; Gordon, 2014; Boomsma and Gawne, 2018; Friedman
et al., 2020a). This adaptive optima for foraging is related to
many other tasks and traits, and optimizing it does not mean
maximal foraging rate. The most adaptive tradeoff on a complex
multidimensional fitness landscape includes the costs of e.g.,
desiccation, predation, and false alarms. It is especially interesting
if selective processes are able to shape colony- and nestmate-
level learning rates (e.g., learning volatility), because it allows one
to compare models that are adapting to different environmental
niches over multiple timescales.

CONCLUDING REMARK

The active inference framework provides a template for future
work on foraging behavior, to incorporate temporal variability,
learning and memory, multiple types of pheromone, abiotic
factors, interaction patterns among nestmates at different
developmental stages, and population-level processes. Based
on the proposed model, future research could explore several
key axes of ecological variability (e.g., patchiness of resources)
and recover some of the classic findings of laboratory and
field behavioral observations in insects. The ant colony has
long been an inspiration for agent based models and robotics,
as well as computational algorithms (Rossi et al., 2018;
Dorigo and Stützle, 2019). With the introduction of active
inference into this space, it could be possible to bridge
from these engineering fields, to more abstract areas such as
information processing in networks, cybernetics, and collective
graphical models (Sheldon and Dietterich, 2011; Baluška and
Levin, 2016; Fekete, 2019). The Hymenopteran eusocial insects
(ants, some bees and wasps) are highly biodiverse, have an
increasing number of species with sequenced genomes, and
have databases of ecological and trait data (e.g., Parr et al.,
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2017; Elsik et al., 2018; Friedman et al., 2020a). Additionally
the Hymenoptera present with several independent originations
of fully eusocial living, as well as numerous elaborations
(such as agriculture, polymorphic workers, symbioses, etc.).
Hymenoptera are thus a promising group of species in which
to study multiscale ecological relationships using the active
inference framework.
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