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Attention deficit hyperactivity disorder (ADHD) is one of the most common
neurodevelopmental disorders among children. Working memory deficits underlie
many of the behavioural symptoms of ADHD. Alongside psychostimulant medications,
strategies to improve working memory may play an important adjuvant role in
the management of ADHD. In this study, we review the role of working memory
deficits in ADHD, the evidence surrounding working memory training strategies in the
management of the condition, and the factors affecting the success of these strategies
in alleviating ADHD symptoms. More specifically, we review several non-pharmacological
interventions that target working memory deficits in ADHD, with special emphasis on
cognitive working memory training. We conclude that the development of evidence-
based interventions such as computerised cognitive training (CCT) could provide an
alternative or adjunct to the use of psychostimulants, especially in cases where side
effects are a major issue.

Keywords: working memory training (WMT), working memory (WM), ADHD (attention deficit hyperactivity
disorder), computerised cognitive training (CCT), neurodevelopmental disorders

INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental
disorders among children (Benyakorn et al., 2016). It is a chronic disorder with a complex and
heterogeneous clinical presentation (Kofler et al., 2019), including age-inappropriate and impairing
levels of inattention, hyperactivity, and impulsivity (Franke et al., 2018).

The worldwide prevalence of ADHD among children and adolescents is 7.2% (Wolraich et al.,
2019) and among adults is between 2% and 5% (Polyzoi et al., 2018). Different etiological factors
and numerous prenatal risk factors are associated with ADHD, including maternal substance use,
stress during pregnancy, prematurity, low birth weight, and several complications of pregnancy,
labour, delivery, and infancy (Sciberras et al., 2017).
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ADHD affects children of both sexes, but males are diagnosed
with ADHDmore frequently than females, with a male to female
ratio of 2–4:1 (Wolraich et al., 2019). These differences may
be attributable to hyperactive behaviour being more apparent
in males (Wolraich et al., 2019). Conversely, females are
more prone to receive a diagnosis of the inattentive subtype
of ADHD (Magnus et al., 2021). Although the disorder is
classically thought of as a developmental disorder, most children
diagnosed with ADHD will continue to experience symptoms
during adolescence and into adulthood (Gallo and Posner,
2016). Persistent ADHD is associated with multiple negative
consequences including academic underachievement, substance
abuse, risky sexual behaviour, car accidents and injuries, unstable
peer relationships (Bélanger et al., 2018), decreased community
functioning, unemployment, and reduced income (Holbrook
et al., 2016; Danielson et al., 2018).

Additionally, ADHD may present with other comorbid
disorders including anxiety (Lopez et al., 2018), depression
(Lopez et al., 2018), autism spectrum disorders (ASD),
oppositional defiant disorder (ODD), and conduct disorder
(Franke et al., 2018). Mortality is also high in people with ADHD
(Bélanger et al., 2018).

The diagnosis of ADHD remains challenging due to a lack
of symptom specificity, a broad list of differential diagnoses,
and the presence of comorbidities (Bélanger et al., 2018). For
these reasons, a comprehensive and detailed clinical assessment
is particularly important (Bélanger et al., 2018).

According to the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5), there are three types
of ADHD: predominantly inattentive, predominantly
hyperactive/impulsive, and the combined type (Lopez
et al., 2018). A similar definition was recommended by the
International Classification of Diseases (ICD-10). There are
differences in the age of onset and the necessary number of
symptoms for diagnosis (Lopez et al., 2018). To diagnose a child
with ADHD, the child must present with six out of the nine
symptoms on the two sets of core domains (inattention and
hyperactivity/impulsivity) as described in DSM-5. In youths and
adults, only five of these symptoms are necessary for diagnosis.
The symptoms must be observed for at least 6 months and cause
substantial impairment in social, academic, and occupational
performance in two or more different settings (e.g., home and
school).

The age of onset of ADHD symptoms was raised from 7 years
(DSM-4) to 12 years (DSM-5) to allow further flexibility in
diagnosing older adolescents and adults (Wolraich et al., 2019).
The symptoms of inattention include an inability to maintain
focus on details, making imprudent mistakes, an inability to stay
focused on duties, appearing to not listen when being spoken to,
an inability to adhere to directions or arrange tasks, keeping away
from duties that need mental exertion, losing important things,

getting preoccupied with external stimuli, and being careless in
everyday activities. The symptoms of hyperactivity/impulsivity
include: squirming, feeling as if being continuously driven by
an ‘‘inward engine,’’ an inability to stay seated when required,
jumping on things, being noisy, exclaiming answers, blabbering,
an inability to wait their turn, and a tendency to hinder or
interrupt others. Because each of these symptoms has a different
underlying neurological substrate, it is possible that different
neurobiological mechanisms contribute to the clinical features of
ADHD (Table 1).

Medications are essential for the management of patients
with ADHD (Sonuga-Barke et al., 2014). Psychostimulants
are considered the first-line pharmacological treatment option
for ADHD (Lambez et al., 2020), with methylphenidate
being the most prescribed psychostimulant. Methylphenidate
can enhance cognitive function in patients with ADHD and
improve cerebral cortex activity by increasing the availability
of catecholamines, which play a critical role in cognitive
functioning (Farr et al., 2014). However, the use of stimulants
increases the risk of anorexia, weight loss, and insomnia
(Briars and Todd, 2016).

Non-pharmacological interventions have also been
investigated for improving cognitive function in ADHD
(Sharma et al., 2015). Dietary supplementation with minerals
and Omega-3 resulted in modest improvements in ADHD
behavioural symptoms and emotional lability (Sharma et al.,
2015). Meditation-based practices such as yoga and mindfulness
are commonly practised in patients with ADHD (Sharma
et al., 2015). Yoga has been found to modulate the activity of
the autonomic nervous system and induce parasympathetic
activity and thus improve anxiety and mood. It also reduces
impulsive behaviour (Sharma et al., 2015). Mindfulness
increases the density of grey matter in areas associated with
memory, emotion control, and learning (Sharma et al., 2015).
However, there are substantial differences between studies in
the methods and the targeted ADHD subtypes and deficits,
and hence these conclusions remain to be corroborated
(Sharma et al., 2015).

Another promising non-pharmacological approach is
neurofeedback (NFB; Ros et al., 2014). It improves self-control
by using a brain-computer interface and improves behavioural
symptoms of ADHD for up to 1 year after treatment (Van Doren
et al., 2019). NFB training also improves visual and auditory
short-term memory and auditory working memory (Nesayan
et al., 2019).

Cognitive-behavioural therapy (CBT) is another
non-pharmacological approach that can be implemented
on an individual or group basis, or for parental education
(Shabanpour et al., 2017). Previous studies have shown that
CBT reduces the behavioural symptoms of ADHD (Shabanpour
et al., 2017). In addition, there is evidence for other non-invasive,

TABLE 1 | Typical ADHD symptoms and underlying structures.

Symptoms Structures

Inattention The frontal cortex, cingulate, parietal lobe, limbic system, reticular activating system, basal ganglia
Hyperactivity/Impulsivity Premotor/motor areas, cerebellum, basal ganglia, cingulo-opercular regions, caudate regions, reticular activating system
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non-pharmacological interventions that can be offered to ADHD
patients such as physical exercise, transcranial direct current
stimulation (tDCS), and transcranial magnetic stimulation
(TMS) to improve the behavioural and cognitive domains of
ADHD (Lambez et al., 2020). However, there are relatively few
studies in this field (Lambez et al., 2020).

The combination of non-pharmacological and
pharmacological interventions seems promising for achieving
improved cognitive function with lower medication doses, thus
potentially reducing side effects. These non-pharmacological
interventions target cognitive domains considered central to the
cognitive deficits in ADHD, most notably working memory.
Moreover, these interventions provide benefits beyond what
is achievable through medication alone (Holmes et al., 2010;
Catalá-López et al., 2017). Thus, training exercises targeting
working memory are a promising adjunct treatment option for
people with ADHD.

In this review, we provide a review of working memory and
working memory training and their role in the management of
ADHD. We provide an overview of the mechanisms underlying
the therapeutic benefit of working memory training and identify
novel directions for research to improve ADHD treatment
protocols.

WORKING MEMORY

Working memory refers to the active mental workspace that
can briefly hold and manipulate information (Fang et al., 2016).
Working memory capacity determines the rate and level of
learning and predicts performance on mental tasks such as
reading comprehension, language acquisition, reasoning, and
problem-solving (Fang et al., 2016; Emch et al., 2019).

Working memory is a hierarchical process that connects
detailed sensory representations to specific behavioural
responses. These are linked via intermediate task-relevant
representations and action plans in a network of different brain
areas (Christophel et al., 2017).

Working memory plays a fundamental role in cognition,
allowing one to hold information ‘‘in mind.’’ Working memory
is defined by its flexibility: people are capable of storing, at least
temporarily, any information. According to Baddeley’s multi-
element model of working memory, considered the predominant
hypothetical model (Baddeley, 2007), the working memory
system includes three anatomically and functionally discrete
elements:

1. The visuospatial sketchpad, that stores visual and spatial
material with limited capacity (Emch et al., 2019).

2. The phonological loop, which has two components. The first
component, the phonological store, holds visually presented
and auditory-verbal information that can be kept active in the
second component, the articulatory loop, through subvocal
rehearsal (Emch et al., 2019).

3. The central executive, which allocates the attentional
resources for the organisation, deeper processing, and storage
of different types of information elements and is considered
the master element of working memory (Emch et al., 2019).

The episodic buffer integrates information from the phonological
loop, visuospatial sketchpad, and long-term memory (Emch
et al., 2019). The buffer is a passive system with limited
capacity, believed to be linked to long-term memory and
semantic meaning (Baddeley, 2017). Its main function is to
link information across different domains to form integrated
elements of visual, spatial, and verbal information that are
ordered in an episodic and chronological manner.

Working memory includes multiple stages: encoding,
maintenance, and retrieval, as well as some process of attention
regulation that resists interruption by irrelevant information
(Emch et al., 2019).

Encoding is the initial process of perceiving and learning
information. Working memory stores information for
immediate or long-term use (long-term memory). Encoding can
be visual (converting images and visual sensory information to
memory), elaborative (relating new information to previously
stored knowledge), semantic (processing and encoding sensory
input that has a particular meaning), acoustic (encoding auditory
inputs), or other (tactile, odours, tastes; Baddeley, 2017).

Maintenance (or storage) of information is the process of
placing the acquired information into memory. Memory can
be stored in short-term or long-term memory, with the former
being a component of working memory. Short-term memory is
only used to refer to the storage of information for a short while
and working memory refers to the components of memory that
uses the information to manipulate this information (Baddeley,
2017).

Retrieval is the mental process of recalling information that
was previously stored. There are three main types of recall: free,
cued, and serial. Free recall occurs when individuals are asked to
recall items previously presented on a list. Cued recall is when a
person receives a list of items to remember and is then offered
cues to help them recall those items during testing. Serial recall
refers to recalling events or items in the order in which they
occurred (Baddeley, 2017).

NEURAL CORRELATES OF WORKING
MEMORY

Early studies that used resting-state functional magnetic imaging
(fMRI) have shown that large-scale brain regions exhibit
high-amplitude fluctuations, which are enhanced during rest
and reduced during cognitive tasks (Konrad and Eickhoff,
2010; Castellanos and Proal, 2012). This intrinsic functional
inter-neuronal connection represents the brain’s physiological
reference and the so-called default mode network (DMN; Konrad
and Eickhoff, 2010; Castellanos and Proal, 2012). The DMN
involves the anterior medial prefrontal cortex (amPFC), the
posterior cingulate cortex (PCC), the medial temporal lobe
(MTL) subsystem, and the dorsomedial PFC (dmPFC) subsystem
(Castellanos and Proal, 2012).

The executive control network (ECN), also known as
the frontoparietal network, includes the dorsolateral PFC
(dlPFC), anterior PFC (aPFC), anterior cingulate cortex
(ACC), lateral frontal pole, lateral cerebellum, anterior insula,
caudate, and inferior parietal lobe (Konrad and Eickhoff, 2010;
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Castellanos and Proal, 2012). This circuit has been defined as the
task-positive circuit as it shows more activity during tasks than
during rest (Konrad and Eickhoff, 2010). It also directs decision
making by incorporating exterior stimuli with the corresponding
interior representations (Castellanos and Proal, 2012). The DMN
and ECN are inversely correlated as the activation of the ECN is
associated with lower activity of the DMN and vice versa (Konrad
and Eickhoff, 2010).

The dorsal attentional network includes the intraparietal
sulcus and frontal eye fields, which are essential in attention
shifting and control (Castellanos and Proal, 2012). The ventral
attentional network, also known as the salience network
(SN), involves the fronto-insular cortex (FIC), temporoparietal
junction and supramarginal gyrus (Castellanos and Proal, 2012).
The visual network includes the visual cortex and lateral
temporal region MT+, which is linked to DAN via the superior
parietal lobule and intraparietal cortex (IPC). MT+ also is
connected with frontal areas (Castellanos and Proal, 2012). The
occipital cortex, which contains most of the visual cortex regions,
interacts with DAN to hold attention and suppress attention to
the distractor (Castellanos and Proal, 2012). The motor network
involves simultaneous spontaneous low-amplitude fluctuations
between the supplementary motor cortex, primary motor cortex,
primary and secondary sensory cortex, putamen, cerebellum,
thalamus, and ventral premotor cortex (Castellanos and Proal,
2012). These fundamental networks can be investigated in
ADHD and other neurocognitive disorders (Castellanos and
Proal, 2012).

Functional neuroimaging studies have demonstrated that
working memory is related to the prefrontal cortex (PFC),
inferior and middle temporal lobes, and zones close to the IPC
(Fang et al., 2016). Similarly, these regions are linked to cognitive
function, PLL, declarative memory, and episodic processing
(Fang et al., 2016). Moreover, working memory task-based fMRI
studies have shown that information encoding and manipulation
is related to dorsolateral PFC (dlPFC). Error recognition and
execution adjustment, on the other hand, are related to activity in
the dorsal ACC (dACC), which is considered to be the attention
organiser (Chai et al., 2018). Information selection, retrieval, and
inhibition regulation are linked to neurons extending from the
ventrolateral PFC (vlPFC) to the anterior insula (Fang et al.,
2016). The left PFC and the right PFC might be primarily
associated with verbal working memory and spatial working
memory, respectively, as indicated in previous meta-analyses
(Emch et al., 2019). However, there is no common agreement
on the functional organisation of this brain region (Emch et al.,
2019).

fMRI studies have also proposed that the articulatory loop is
linked to Broca’s area, premotor cortex (BA6), supplementary
motor area, and insula on the left hemisphere. The phonological
store is linked to BA 40, relating to the inferior parietal lobule
in the left hemisphere (Emch et al., 2019). Hence these areas
are critical for all kinds of visual working memory tasks (Emch
et al., 2019). The cerebellum has been suggested to be involved
in subvocal rehearsal (Emch et al., 2019). Similarly, the basal
ganglia (BG) are essential brain structures involved in motor
control, facilitating appropriate motor behaviour and inhibiting

inappropriate motor behaviour (Emch et al., 2019). The BG
is also involved in working memory and language production
(Emch et al., 2019). Furthermore, visual working memory is
related to parts of the limbic system such as the cingulate
(Emch et al., 2019). However, the contribution of the cerebellum,
BG, and limbic system to working memory has long been
undervalued (Emch et al., 2019).

In addition, studies that used resting-state fMRI have revealed
that working memory functioning is related to resting-state
neuronal activity (Fang et al., 2016). For example, Hampson
et al. (2010), reported that working memory accuracy was
related to the coherent neuronal interconnection between
the dlPFC and medial PFC (Hampson et al., 2010; Fang
et al., 2016). However, such complex cognitive functions are
characterised by cooperation between multiple brain areas
rather than being driven by one or two regions (Fang et al.,
2016). Furthermore, the individual disparities in working
memory are related to the efficient functional connection
from dlPFC to Dacc and from the right dlPFC to the left
FIC. The high sensitivity of left FIC to inputs from dlPFC
assists in efficient manipulation of information and hence
improvedworkingmemory functioning during workingmemory
tasks (Fang et al., 2016).

Moreover, diffusion MRI in healthy individuals has also
demonstrated that working memory capacity is linked to a
corticocortical pathway between the frontal and parietal regions.
In addition, the updating of working memory information
included a subcortical neural pathway linking between frontal
and parietal regions through the thalamus and BG (Ekman et al.,
2016). Moreover, working memory capacity is directly correlated
to the integrity of white matter in frontal and parietal regions on
diffusion MRI (Ekman et al., 2016).

COGNITIVE DEFICITS IN ADHD

Although many cognitive targets have been investigated
in ADHD (see Table 2), this review focuses on working
memory. Working memory deficits are an important potential
endophenotype of ADHD (Kasper et al., 2012; Chacko et al.,
2013). The earliest model of the neuropsychological correlate of
ADHD was the prefrontal-striatal-cerebellar model (Castellanos
and Proal, 2012).

Animal Studies
Animal models of ADHD show good predictive validity that
allows the assessment and development of new therapeutic
interventions. For example, they have shown polymorphism in
several genes related to catecholaminergic neurotransmission.
These include the dopamine transporter (DAT), dopamine
D4 receptor (DRD4), and dopamine beta-hydroxylase genes.
A lack of DAT results in decreased release of dopamine
from the nerve terminal, which is accompanied by a fivefold
increase in the concentration of extracellular dopamine.
On the presynaptic side, mRNA and D1 and D2 receptor
protein levels in the BG decrease. Compounds such as
amphetamine, methylphenidate, and cocaine have a direct action
on DATs and inhibit hyperactivity (Rahi and Kumar, 2021).
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TABLE 2 | Examples of commonly investigated cognitive tests in ADHD.

References Age range (years) Neuropsychological outcomes Academic abilities

Klingberg et al. (2005) 7–12 DS→verbal working memory
BS→visual working memory
Stroop test→inhibition
Conner’s Parent Rating Scale and
DSM-IV→ADHD core symptoms

None

Holmes et al. (2010) 9–10 AWMA→working memory WART→reading
WOND→mathematical
reasoning

Johnstone et al. (2010) 8–12 CS→verbal working memory
GO NO GO, RT→inhibition
Add ball task→attention

None

Gray et al. (2012) 12–17 DSB→verbal working memory
SS from CANTAB→visual working memory
D2 test total →attention

WART

Green et al. (2012) 7–14 WISC-VI→verbal working memory and
processing speed

None

Pan et al. (2016) 6–12 Stroop word colour→inhibition None

Abbreviation: DS, digit span; BS, board span; AWMA, automated working memory assessment; WART, wide range achievement test; WOND, Weschler objective numerical dimensions;
BRIEF, Behavior rating inventory of executive function; DSB, digit span backwards; SS, spatial span; CANTAB, Cambridge Neuropsychological Test Automated Battery; CS, counting
span; RT, reaction time; WISC-VI, Weschler intelligence scale for children 4th edition.

While studies with transgenic mice have provided valuable
information on the neurobiological factors underlying ADHD,
no single gene or transgenic animal model represents the
entire ADHD spectrum. Therefore, complex gene-gene
as well gene-environment interactions must also be taken
into account.

Human Studies
Recent studies propose that working memory deficits occur in
approximately 80–85% of children with ADHD when evaluated
with cognitive tasks (Coghill et al., 2014; Karalunas et al., 2017;
Kofler et al., 2018a, 2020). Studies have also shown that children
with ADHD have more working memory deficits than typically
developing children (Kasper et al., 2012). Several studies have
shown that children diagnosed with ADHD are impaired in all
workingmemory elements, with themost significant impairment
found in the central executive, resulting in an inability to focus on
a task (Kofler et al., 2010).

Working memory deficits have been linked with inattention
(Kofler et al., 2010), hyperactivity (Hudec et al., 2015), and
impulsivity (Raiker et al., 2012). They have been associated with
ADHD-related impairment in academics (Friedman et al., 2018),
organisational (Kofler et al., 2018b), social (Bunford et al., 2015),
and family life (Kofler et al., 2017). Longitudinal studies show
that less severe working memory deficits are associated with
lower symptom severity (Halperin et al., 2008; van Lieshout et al.,
2016; Salari et al., 2017), and reductions in ADHD symptoms
with age seem to be limited to a subset of children who show
improvements in working memory over time (Karalunas et al.,
2017). These studies highlight the significant influence that
working memory has on the symptomatology of many children
with ADHD and have motivated a recent surge in studies aiming
to enhance working memory in children with ADHD (Kofler
et al., 2018a).

NEURAL CORRELATES OF ADHD

Functional neuroimaging studies using specific or multiple
cognitive tasks in ADHD patients have found widespread
multiregional dysfunctions. These include the lateral PFC and
its connection to the BG, medio- and orbitofrontal regions,
and the cingulate cortex. In addition, dissociation in neural
connectivity in the frontoparietal, fronto-limbic and fronto-
cerebellar networks have also been observed.

A meta-analysis of fMRI studies that were conducted on
ADHD patients (n = 111) and controls (n = 113), revealed
a reduction in neural activity in superior and middle PFC
in both hemispheres, as well as the medial frontal cortex
and ACC in the left hemisphere. A recent functional MRI
study investigated more than 100 children and adults with
ADHD using a visual-spatial working memory task. It showed
two separate effects according to working memory demand:
enhancement of neural activity in the inferior prefrontal
cortex (IFC) under high working memory demand and a
reduction in neural activity in IFC under low working memory
demand (Rubia, 2018).

WORKING MEMORY TRAINING

Working memory training aims to improve working memory
through a series of tasks that help the trainee engage and
practice this cognitive function. Prevalent are computerised
cognitive training (CCT) interventions, which can provide
training in a wide range of cognitive tasks (e.g., working
memory, attention, inhibitory control) in multiple training
sessions over several weeks, often in a game format design
(Table 3). The duration and number of sessions differ according
to each specific implemented program (Veloso et al., 2019).
CCT is described as adaptive when the level of task difficulty
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TABLE 3 | Common cognitive interventions.

Cognitive Test Target

Cogmed Visuospatial and spatioverbal working memory

REMINDER Memory Storage and recall strategy

Captain’s Log Attention, working memory, visuomemory function

CogniPlus Attention, working memory, visuomotor function,
long-term memory

Locu Tour

Pay Attention! Attention

RehaCom Attention, memory, executive functions

TABLE 4 | CCT Products.

CCT Products Website

Cogmed Working https://www.cogmed.com/
Memory Training
BrainTrain https://www.braintrain.com/
Braingame Brian http://en.gamingandtraining.nl/description-

braingame-brian/
CogniPlus https://www.schuhfried.com/cogniplus/
Activate https://www.additudemag.com/treatment/activate/
Project: Evo https://projectevo.org/
Attention Pay -
Persian Software -
Lumosity https://www.lumosity.com/en/
Captain’s Log https://www.braintrain.com/captains-log-

mindpower-builder/

is automatically adapted to the user’s performance, and
the training sessions can be accomplished in any preferred
setting (e.g., a clinic, home, or school; Sonuga-Barke et al.,
2014).

Available CCT products that include working memory
training are listed in Table 4 and include the Cogmed Working
Memory Training (Klingberg et al., 2005; Beck et al., 2010;
Green et al., 2012; Chacko et al., 2013; Egeland et al., 2013;
Hovik et al., 2013; van Dongen-Boomsma et al., 2014; van der
Donk et al., 2015; Bigorra et al., 2016), BrainTrain (Steiner
et al., 2014), Braingame Brian (van der Oord et al., 2014),
CogniPlus (Minder et al., 2018), Activate (Sinnari et al., 2019),
Project: Evo (Davis et al., 2018), Attention Pay (van der
Donk et al., 2015), Persian software (Azami et al., 2016),
Lumosity (Azami et al., 2016), and Captain’s log (Rabiner et al.,
2010). These products have similar goals but differ in the
extent to which they include elements like acquiring points,
providing feedback, representing skill progression, accumulating
rewards, and framing the training within a narrative context
(Oldrati et al., 2020).

The Cogmed Working Memory Training program (CWMT,
Pearson, UK) has become the most popular and widely studied
CCT program, and it has both supporters and detractors
(Shinaver et al., 2014; Sonuga-Barke et al., 2014). The program
consists of sessions of working memory tasks in the form of
simple games on a computer or tablet. The training sessions take
around 45–50 min to complete, 5 days per week, over 5 weeks,
with weekly rewards. The complexity of the tasks is automatically
adjusted based on the person’s performance.

EFFECTS OF WORKING MEMORY
TRAINING

In this section, we discuss the evidence for the efficacy of working
memory training in the general population, which helps us
understand its potential role in ADHD management. Figure 1
provides an overview of the potential mechanisms to improve
working memory.

Two general mechanisms explain the effects of working
memory training (von Bastian and Oberauer, 2014). The first
is increased working memory capacity, which enables people to
hold more items in their working memory, and the second is
increased efficiency in using available working memory capacity.

At the behavioural level, an increase in working memory
capacity results in performance improvements in tasks on which
the person was not trained, but that share some variance with
the training tasks (Klingberg, 2010). Given that working memory
capacity significantly correlates with several cognitive abilities,
these improvements should manifest in several measures which
are independent of the precise materials and structure of the tasks
(Schmiedek et al., 2010). In general, two terms are used to define
the transfer of training: (1) near-transfer which refers to gains in
abilities directly related to the training task; and (2) far-transfer,
which are gains in different but related abilities.

Meiran, Dreisbach, and von Bastian noted in 2019 that while
meta-analyses assessing the existence of far-transfer benefits of
working memory training have found negative (Melby-Lervåg
et al., 2016), limited or short-lived positive results (Au et al.,
2015), performance gains on similar tasks are substantial, and
trainees typically performing above average after training. For
example, in one study, young adults could recall twice as many
items from a list as the average healthy adult after 20 sessions of
working memory training (von Bastian and Oberauer, 2014).

Understanding the neural correlates of training-induced
improvements would help guide and monitor training strategies.
However, this is challenging given the existence of many parallel
behavioural changes that occur during working memory training
(Klingberg, 2010). There are, however, studies that show a
positive correlation between workingmemory capacity and brain
activity in different task-relevant areas. For example, inter-
individual differences in working memory capacity positively
correlate with activity in the IPC (Gray et al., 2003; Todd
and Marois, 2004; Vogel and Machizawa, 2004; Lee et al.,
2006; McNab and Klingberg, 2008) and increases in working
memory capacity during childhood are positively correlated with
brain activity in the prefrontal cortex and intraparietal sulcus
(Klingberg et al., 2002; Kwon et al., 2002; Ciesielski et al., 2006;
Crone et al., 2006; Scherf et al., 2006; Olesen et al., 2007). On
the other hand, the decline in working memory during ageing
is associated with decreased activity in certain prefrontal areas
(Rajah and D’Esposito, 2005; Persson and Nyberg, 2006).

To assess the effects of working memory training on the
brain, most neuroimaging studies have relied on recording
changes in the activity of brain regions during working memory
task performance before and after training (Constantinidis
and Klingberg, 2016). Working memory training is associated
with changes in the neuronal activity of brain regions that
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FIGURE 1 | (A) Proposed mechanism of cognitive ability enhancement using working memory training, as explained by von Bastian et al. (2013). (B) An
association-test map displaying brain regions that were consistently reported in 1091 studies investigating working memory. Working memory training engages
executive and dorsal attentional networks. This involves brain regions like dorsolateral prefrontal cortex (DLPFC), anterior cingulate (AC), inferior frontal gyrus (IFG),
and parietal regions. Map prepared using Neurosynth meta-analysis of the term working memory (Yarkoni et al., 2011). Similar neural networks show decreased
signals in attention deficit hyperactivity disorder (ADHD) patients performing working memory tasks.

are activated during working memory tasks before training
(Constantinidis and Klingberg, 2016). This finding suggests
that improvements in task performance during working
memory training reflect improved working memory capacity
(Constantinidis and Klingberg, 2016).

Earlier research with healthy adults using fMRI suggests that
working memory training has a direct effect on the prefrontal
cortex, posterior parietal cortex, and dopamine receptor binding.
Studies have shown that working memory training results in
enhanced neuronal activity in the prefrontal cortex and the
posterior parietal cortex, which are areas linked to working
memory processing (Green et al., 2012). Working memory
training also increases the density of D1 receptors in these brain
regions (Green et al., 2012) and increases activity in the striatum
(Constantinidis and Klingberg, 2016). Although this change in
striatal activity is not consistent, it is predictive of working
memory capacity changes during development (Constantinidis
and Klingberg, 2016).

Several studies of the brain’s functional connectivity have
shown that stronger functional connectivity between frontal and
parietal cortices plays a significant role in working memory
improvement with training (Constantinidis and Klingberg,
2016). A study using TMS of the parietal cortex during training
on higher-demand working memory tasks revealed stronger
functional connectivity between the frontal cortex and the
parietal cortex, and between the parietal cortex and the occipital
cortex (Constantinidis and Klingberg, 2016). Furthermore,
a magnetoencephalography study of functional connectivity
changes during, before, and after working memory training
found increased connectivity between frontal, parietal and lateral
occipital cortex, which was associated with working memory
improvements (Constantinidis and Klingberg, 2016).

An increase in synaptic connection and myelin density
in axons connecting the involved regions might be the
mechanism underlying training-related functional connectivity
changes (Constantinidis and Klingberg, 2016). As previously

mentioned, dopamine plays an important role during working
memory training (Constantinidis and Klingberg, 2016). Positron
emission tomography studies in humans and other animals
have shown that working memory training results in changes
in the release of dopamine as well as the density of dopamine
receptors (Constantinidis and Klingberg, 2016). Changes in
striatal dopamine release might also enable cortical plasticity
(Constantinidis and Klingberg, 2016).

WORKING MEMORY TRAINING IN ADHD

Several studies have provided evidence for the efficacy of working
memory training in ADHD. A meta-analysis of 54 studies
investigating a range of CCT programs (including most of the
ones mentioned above) showed that they were associated with
improvements in working memory, as well as other elements
of executive functioning, in people with ADHD (Veloso et al.,
2019). Importantly, themajority of studies involving longitudinal
follow-up showed that these improvements were maintained
over time.

The reason CWMT attracts more attention compared to
most other CCT programs likely stems from the fact that its
effectiveness has been established by several studies (Simons
et al., 2016). Furthermore, studies investigating the effects
of CWMT tend to have a better experimental design, often
including active controls. These randomised controlled trials of
CWMT provide strong evidence that it enhances performance
on other working memory tasks that have similar processing
demands. While other CCT programs have been shown to
improve working memory, evidence for this from randomised
controlled trials is often lacking. Furthermore, when randomised
controlled trials of these interventions are conducted, they are
often compared with passive control groups (Simons et al., 2016).
Due to its widespread use, popularity, and strong evidence for
its efficacy, the following section will focus on studies utilising
CWMT.
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Several studies have found significant clinical effects on
executive functions in ADHD individuals following CWMT
intervention (Table 5). Klingberg et al. (2005) conducted the
first randomised controlled trial of CWMT in 53 children with
ADHD who were randomised to either adaptive (adjusted to
the user’s performance) or non-adaptive CWMT (not adjusted
to the user’s performance) This research showed that adaptive
CWMT resulted in significant improvement of workingmemory,
inhibition control, complex reasoning, and a reduction in
ADHD symptoms on the parent-rating scale; these effects were
maintained at a post-training 3 months follow-up. Gray et al.
(2012) evaluated the impact of CWMT on working memory in
a sample of 60 youth who were diagnosed with ADHD and
learning disability. The main finding was that CWMT improved
visuospatial working memory and visual working memory, and
also led to gains in attention, math, and reading.

Consistent with the findings of previous studies, Holmes
et al. (2010) found that CWMT produced significant clinical
effects in a sample of 25 children with ADHD, who were assessed
before and after training as well as on and off medication. The
researchers concluded that, although medication significantly
improved visuospatial working memory, CWMT led to
significant gains on multiple memory tasks such as visuospatial
working memory, visual working memory, visuospatial
short term memory, and verbal short term memory. The

improvements lasted for at least 6 months after training and
were larger than the effect of the medication alone.

In a different study, Beck et al. (2010) found that children
with ADHD who underwent CWMT showed an improvement
in working memory and a reduction in inattention along with an
increase in positive behaviours compared to age-typical children
in the wait-list group. These improvements were still noticed by
their parents 4 months later. However, the study reported no
positive effects on hyperactivity/impulsivity symptoms rated by
their patients and teachers (Beck et al., 2010). Similarly, Green
et al. (2012) reported that adaptive-CWMT in ADHD children
led to significant gains in working memory tasks, but there was
no effect on ADHD symptoms rated by the parents (Gray et al.,
2012).

There is some evidence regarding the beneficial effects of
CWMT on fluid intelligence, which may play a significant role
in educational achievement (Kaufman et al., 2009). Bergman
Nutley et al. (2011) found significant improvements on measures
of fluid intelligence in children who trained on a non-verbal
reasoning task. This finding was also replicated on working
memory training tasks other than CogMed (i.e., N-Back), and
lasted for at least 3 months post-training (Jaeggi et al., 2011).
Söderqvist and Bergman Nutley (2015) reported that CWMT in
typical learners led to higher academic achievement in math and
reading 2 years after training.

TABLE 5 | Evidence for the efficacy of Working Memory Training (WMT) in ADHD.

Study Study design Sample Outcome

Veloso et al. (2019) Systematic review 22 studies children and
adolescents with ADHD

13/18 studies found improvements in executive function
with cognitive training.
17/22 studies found positive transfer effects on ADHD
symptoms, academic achievement, social skills, etc.
7/9 studies found that treatment effects were maintained
over time.

Klingberg et al. (2005) Randomised
controlled trial

53 children with ADHD Adaptive CWMT improved working memory, inhibition
control, complex reasoning, and ADHD symptoms on the
parent-rating scale.
Effects were maintained post-training at 3 months
follow-up.

Gray et al. (2012) Randomised
controlled trial

60 youth with ADHD
(12–17 years old)

Compared to math training, CWMT improved visuospatial
working memory and visual working memory, attention,
math, and reading.

Holmes et al. (2010) Intervention study
of CWMT with and
without ADHD
medication

25 children with ADHD Medication improved visuospatial working memory and
CWMT improved visuospatial working memory, visual
working memory, visuospatial short-term memory, and
verbal short-term memory.
The effects lasted for at least 6 months after training and
were larger than the effects of medication used alone.

Beck et al. (2010) Nonrandomised
controlled trial

52 children and
adolescents with ADHD

Improved working memory and reduction in inattention
along with an increase in positive behaviours.
Effects were still noticed by parents 4 months later.

Green et al. (2012) Randomised
controlled trial

26 children with ADHD Improved working memory.

Rapport et al. (2013) Meta-analysis 25 studies of children
with ADHD

No evidence that cognitive training improves cognitive,
behavioural, or academic abilities.

Melby-Lervåg and
Hulme (2013)

Meta-analysis 23 studies of children
and adults with ADHD
and typically developing
children and adults

Working memory training produces short-term gains in
working memory skills.
The gains do not persist for long periods and do not
generalise to other skills.
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Other studies have found less promising results with regards
to CWMT outcomes. These studies concluded that, although
CWMT led to improvements in certain aspects of working
memory and executive function, these improvements failed to
generalise to academic achievement (Chacko et al., 2013; Bigorra
et al., 2016). Similarly, a previous meta-analysis that examined
the effectiveness of cognitive training in children with ADHD
concluded that there is no significant effect of training on
the cognitive, behavioural, and/or academic abilities of these
children (Rapport et al., 2013). However, the researchers stated
that their findings might be due to methodological limitations
across the reviewed studies. In line with the previous meta-
analysis, Melby-Lervåg and Hulme (2013) reported that working
memory training resulted in short-term gains in working
memory skills, but these gains do not generalise to other skills
or persist for long periods.

With regards to the transfer effects of cognitive training,
it has been theorised that training-based improvements in
working memory capacity and attention generalise to other
functioning domains. However, the results across the literature
are inconsistent (Sala et al., 2019). CWMT has shown
near-transfer effects in children diagnosed with ADHD,
poor working memory, and/or attention deficits (Rossignoli-
Palomeque et al., 2018). Far-transfer effects were reported on
measures of reasoning and inhibition (Klingberg et al., 2005)
and executive function (Holmes et al., 2010; Bigorra et al., 2016).
Far-transfer effects were also reported on ADHD symptoms
(Beck et al., 2010; Bigorra et al., 2016) as well as on academic
abilities such as math (Holmes et al., 2010; Dahlin, 2013; Egeland
et al., 2013) and reading (Egeland et al., 2013). The effects of
training on near-transfer were short-lived, and on far-transfer
ranged from 4 to 8 months (Rossignoli-Palomeque et al., 2018).

The inconsistent results regarding the effectiveness of
cognitive training on improving ADHD cognition and behaviour
may reflect differences in training strategy (exact training
protocols, trained populations, concomitant treatment, etc). The
heterogeneity of training strategies used in previous studies may
itself reflect a lack of understanding of the mechanisms that
underlie the response (or lack thereof) to cognitive interventions.

FACTORS POTENTIALLY INFLUENCING
THE EFFECT OF WORKING MEMORY
TRAINING

Several factors are known to influence the outcomes of CCT
interventions, including characteristics of the training plan (such
as the intensity, duration, adaptivity of the training task), as
well as individual differences in age, cognitive abilities, biological
factors, personality factors, motivational factors, and emotional
factors (von Bastian and Oberauer, 2014; Barkus, 2020; Dentz
et al., 2020). Awareness of the role of these factors may help
optimise CCT strategies in the future.

Characteristics of the Training Plan
Most commercially available CCT programs target a mix of
different cognitive skills. While this was thought to lead to more
transfer effects than targeting single skills, empirical evidence for

this – in the form of comprehensive direct comparisons between
these strategies – is lacking. The little evidence that is available in
this regard suggests that programs that provide intensive practise
of one aspect of a cognitive function like working memory are
probably more effective at achieving transfer effects than those
that involve multiple cognitive skills (von Bastian et al., 2013).

There is considerable heterogeneity in the CCT literature
regarding the number and duration of training sessions (Luis-
Ruiz et al., 2020; Wiest et al., 2020; Grinberg et al., 2021).
Importantly, few studies have attempted to directly determine
the optimal length and intensity of CCT. Nonetheless, several
studies have shown that the effect of such interventions is
dose-dependent, meaning the length and intensity of these
programs influence outcomes (Jaeggi et al., 2008; Alloway et al.,
2013). Although many commercially available CCT products
implement this, the influence of adapting to the individual
trainee’s performance to maintain a level of difficulty that is
challenging on performance gains is also controversial (von
Bastian and Oberauer, 2014).

Characteristics of the Trainee
Several factors potentially contribute to the relatively high
between-person variability in performance gains and transfer
effects following working memory training. Working memory
training programs tend to generally be more effective in
younger than older individuals, with evidence suggesting that
the relationship between age and training is linear throughout
the lifespan (Wass et al., 2012; Melby-Lervåg and Hulme,
2013). Characteristics such as intrinsic motivation (finding
enjoyment or satisfaction in engaging in a particular behaviour)
are known to correlate with working memory performance
(Brose et al., 2010; Duckworth et al., 2011). Whether or not
such characteristics directly influence the performance gains
following CCT interventions has not yet been established. On the
other hand, personality traits like neuroticism (related to higher
excitability and emotional responsiveness) are associated with
lower performance gains after workingmemory training (Studer-
Luethi et al., 2012).

Twin studies show an estimated heritability of working
memory capacity of around 50% (Ando et al., 2001).
As previously mentioned, the importance of dopamine
in this context is evidenced by the finding that working
memory training increases dopaminergic receptor density
and dopaminergic pathway activity (Green et al., 2012;
Constantinidis and Klingberg, 2016). In addition, working
memory performance appears to be significantly influenced
by dopamine-relevant genes (Bäckman and Nyberg, 2013).
Carriers of the DAT1 9/10-repeat allele benefit more from
working memory training compared to carriers of the DAT1
10-repeat allele (Brehmer et al., 2012). This difference may be
explained by the fact that 10-repeat carriers have increased gene
expression, which leads to a higher level of dopamine reuptake,
and, consequently, fewer active dopaminergic pathways available
(Swanson et al., 2000).

Another genetic factor that contributes to the availability
of dopamine is the allelic variations in the LIM homeobox
transcription factor 1 alpha (LMX1A; Nakatani et al., 2010).
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A study conducted by Colzato et al. (2011) showed that
two single nucleotide polymorphisms (SNP) that influence the
number of dopamine neurons in the midbrain have a significant
relationship with verbal working memory training.

Finally, brain-derived neurotrophic factor (BDNF), which
is involved in hippocampal plasticity, may also have a role
in working memory training (Loprinzi and Frith, 2019).
One example of this is the Val66 Met SNP in the BDNF
gene. In comparison to Val homozygotes, carriers with the
Met allele perform poorer in certain memory tasks (Hariri
et al., 2003) and have reduced hippocampal volume (Bueller
et al., 2006). A comparison of Val/Val homozygotes with
carriers of the Met allele (Colzato et al., 2011) showed that,
while both groups improved during CCT, only the Val/Val
homozygous individuals showed far-transfer to a divided
attention task.

DISCUSSION

ADHD has a complex and heterogeneous disorder and a one-
size-fits-it-all treatment approach is likely to provide limited
results in many cases. The present study provides a review of
the neurocognitivemechanisms that underlie changes in working
memory and how these mechanisms may influence the response
to working memory training.

Cognitive training programs that target working memory are
a potentially useful therapeutic option in ADHD. Response to
working memory training may reflect changes in the neuronal

activity of brain regions that are activated during working
memory tasks before training (Constantinidis and Klingberg,
2016) and multiple factors may explain individual differences in
response (Ando et al., 2001), such as the settings of the training
regime and several individual factors.

Given that working memory capacity significantly correlates
with several cognitive abilities, improvements in working
memory capacity should manifest in several measures which
are independent of the materials and structure of the tasks
(Schmiedek et al., 2010; Rosenberg et al., 2020). The possibility
of achieving near-transfer and far-transfer following working
memory training arguably adds additional support in favour of
researching and improving working memory training programs
for ADHD.

Although pharmacological interventions such as stimulants
provide a substantial improvement in ADHD cognitive
symptoms, this comes at the cost of a higher risk of side
effects. Cognitive training provides additional benefits above
and beyond those of pharmacological interventions in
ADHD, though additional studies of higher methodological
quality comparing these two treatment strategies are
necessary.
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