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Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset,
neurodevelopmental disorder, whereas major depressive disorder (MDD) is a mood
disorder that typically emerges in adulthood. Accumulating evidence suggests that
these seemingly unrelated psychiatric disorders, whose symptoms even appear
antithetical [e.g., psychomotor retardation in depression vs. hyperactivity (psychomotor
acceleration) in ADHD], are in fact associated with each other. Thus, individuals with
ADHD exhibit high comorbidity with MDD later in life. Moreover, genetic studies have
shown substantial overlaps of susceptibility genes between ADHD and MDD. Here,
we propose a novel and testable hypothesis that the habenula, the epithalamic brain
region important for the regulation of monoamine transmission, may be involved in
both ADHD and MDD. The hypothesis suggests that an initially hypoactive habenula
during childhood in individuals with ADHD may undergo compensatory changes during
development, priming the habenula to be hyperactive in response to stress exposure
and thereby increasing vulnerability to MDD in adulthood. Moreover, we propose a new
perspective on habenular deficits in psychiatric disorders that consider the habenula a
neural substrate that could explain multiple psychiatric disorders.
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INTRODUCTION

The current diagnostic manuals of psychiatric disorders, such as the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5) (Americal Psychiatric Association [APA],
2013) and International Classification of Diseases, 11th Edition (ICD-11) (World Health
Organization [WHO], 2018), classify psychiatric disorders into categories as distinct entities.
However, patients who have one category of a psychiatric disorder are often diagnosed with other
comorbid disorders in other categories. Such observations raise the possibility that psychiatric
disorders may be dimensional rather than categorical. Thus, a few or perhaps a single factor, such as
a general psychopathological factor, i.e., the p-factor, may explain all psychiatric conditions (Wright
et al., 2013; Caspi et al., 2014; Kotov et al., 2017; Caspi and Moffitt, 2018).

Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental
disorder (Biederman and Faraone, 2005). In contrast, major depressive disorder (MDD) is a mood
disorder that typically emerges in adulthood (Kupfer et al., 2012). Accumulating evidence suggests
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that both disorders may involve deficits in the habenula. The
habenula is a set of epithalamic nuclei consisting of the medial
and lateral parts that receive inputs and integrate information
from limbic structures and the basal ganglia. The habenula in
turn sends outputs to midbrain nuclei where dopamine (DA)
and serotonin (5-HT) neurons are located (Hikosaka et al., 2008;
Boulos et al., 2017; Fakhoury, 2017; Hu et al., 2020). Relationships
between ADHD and MDD, which are distinct categories of
disorders and seemingly unrelated to each other, would be worth
considering in relation to the roles of the habenula in the
regulation of mesocorticolimbic DA and 5-HT transmission in
the context of a dimensional model.

In this article, we first briefly summarize the literature
demonstrating correlations between ADHD and MDD, followed
by a discussion of the effects of habenular deficits in these
disorders based primarily on animal models. Then, we further
propose that investigations examining habenular dysfunction not
in the context of a unitary, categorized disorder but as a common
factor underlying multiple psychiatric conditions would be a
thriving future direction.

ADHD AND MDD COMORBIDITY

ADHD comprises the core symptoms of hyperactivity,
impulsivity, and attention deficit that is classified into three
types, depending on which symptoms are prominent: inattentive,
hyperactive/impulsive, and combined types (Biederman
and Faraone, 2005). MDD is a mood disorder involving
depressed mood and loss of pleasure and interest (Kupfer
et al., 2012). MDD typically occurs in adulthood, although
nowadays a significant number of children and adolescents
are also diagnosed with MDD (Luby, 2009; Maughan et al.,
2013).

Some MDD symptoms could be antithetical to those of
ADHD. For instance, psychomotor retardation (Bennabi et al.,
2013) in MDD could be considered the opposite of hyperactivity
as psychomotor acceleration in ADHD. Rumination (Figueroa
et al., 2019) is the focused and persistent thoughts of negative
content causing emotional distress, whereas ADHD subjects
exhibit excessive spontaneous mind wandering (Bozhilova et al.,
2018). Moreover, abnormally augmented behavioral inhibition
has been reported as a risk factor for MDD (Kasch et al., 2002;
Gladstone and Parker, 2006). In contrast, impulsivity is a core
symptom of ADHD.

There are other interesting coincidences between ADHD
and MDD. Both disorders involve sleep disturbances, such as
insomnia (Konofal et al., 2010; Hvolby, 2015; Pandi-Perumal
et al., 2020), although hypersomnia is also often observed
in MDD (Lopez et al., 2017). Circadian rhythms are also
compromised in ADHD (Kooij and Bijlenga, 2013; Wynchank
et al., 2016; Lunsford-Avery and Kollins, 2018). In MDD,
symptom severity fluctuates within a day and even across
seasons, with more severe symptoms in the winter (Germain
and Kupfer, 2008; Boyce and Barriball, 2010). Numerous studies
have demonstrated that the habenula plays critical roles in the
regulation of both sleep and circadian rhythms (Valjakka et al.,

1998; Salaberry and Mendoza, 2015; Bano-Otalora and Piggins,
2017; Mendoza, 2017; Aizawa and Zhu, 2019).

Subjects with ADHD are frequently diagnosed with other
comorbid disorders, such as autism spectrum disorder, mood
and anxiety disorder, drug addiction, and personality disorder
(Katzman et al., 2017; Gnanavel et al., 2019). Epidemiological
surveys in the United States have reported that, although the
prevalence of MDD in typically developing children is only
approximately 1%, it approaches approximately 15% among
children with ADHD (Larson et al., 2011). The prevalence of
MDD in adult ADHD subjects is twice as high (19%) as that in
subjects without ADHD (8%) (Kessler et al., 2006). Longitudinal
and meta-analysis studies have also demonstrated that childhood
ADHD increases the risk of MDD during adolescence and young
adulthood with an odds ratio of approximately 1.2–1.3 (Meinzer
et al., 2014; Bron et al., 2016; Riglin et al., 2020).

Various mediators have been suggested regarding the
comorbidity of ADHD and MDD. These include psychosocial
factors, such as parent management (Ostrander and Herman,
2006), peer problems (Powell et al., 2020), academic attainment
(Powell et al., 2020), emotion regulation (Seymour et al.,
2012), anxiety (Roy et al., 2014), and disruptive behaviors (Roy
et al., 2014). Neuroimaging studies have also reported neuronal
mediators, such as decreased left hippocampal volume, and
impairments in intrinsic functional connectivity between the
hippocampus and orbitofrontal cortex (Posner et al., 2014) and
between the anterior cingulate cortex and dorsolateral prefrontal
cortex (PFC) (Whitfield-Gabrieli et al., 2020).

GENETIC CORRELATIONS BETWEEN
ADHD AND MDD

Recent genetic studies have substantiated associations between
ADHD and MDD. In a genome-wide association study (GWAS)
with ADHD subjects, Ebejer et al. (2013) identified the strongest
association with the gene for GPR139. GPR139 is an orphan
G-protein coupled receptor whose role has been suggested to be
a sensor of L-tryptophan and L-phenylalanine (Liu et al., 2015;
Vedel et al., 2020). GPR139 has also been suggested to be relevant
in MDD (Vedel et al., 2020). GPR139 signaling in the habenula
was recently found to play an important role in fear learning in
zebrafish (Roy et al., 2021).

Direct evidence of the associations between ADHD and MDD
comes from GWAS meta-analyses examining genetic correlations
with several different psychiatric disorders. A GWAS meta-
analysis with ADHD subjects by Demontis et al. identified
12 genome-wide significant loci that were modestly, but
significantly, correlated with depressive symptoms and MDD
(rg = 0.42) (Demontis et al., 2019). A similar meta-analysis of
GWASs with an even larger sample size of MDD patients by
Wray et al. identified 44 loci that were correlated with ADHD at
a similar strength (rg = 0.42) (Wray et al., 2018). Thus, similar
strengths in the associations between ADHD and MDD have
been observed in analyses using different cohorts, suggesting
that the association between these disorders is highly consistent.
Two GWAS meta-analyses by the Cross-Disorder Group of the

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 699691

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-699691 June 18, 2021 Time: 17:53 # 3

Lee and Goto Habenula in ADHD and Depression

Psychiatric Genomics Consortium that examined associations in
five and eight psychiatric disorders have demonstrated genetic
correlations of similar strengths between ADHD and MDD
to those reported in other meta-analysis studies, along with
identification of associations of single nucleotide polymorphisms
(SNPs) on chromosomes 3p21 and 10q24 and CACNB2,
the gene encoding a voltage-gated L-type calcium channel,
suggesting that L-type calcium channels could be a candidate
molecule linking MDD and ADHD (Cross-Disorder Group of
the Psychiatric Genomics Consortium, 2013, 2019). A GWAS
meta-analysis by Powell et al. also compared ADHD and MDD,
identifying 14 SNPs with concordant directions of effect for both
disorders, with the estimated genetic correlation being rg = 0.52
(Powell et al., 2021).

Collectively, these GWASs have demonstrated modest, but
highly consistent, SNP-based genetic correlations between
ADHD and MDD, consolidating the associations between
these disorders.

HABENULA IN ADHD AND MDD

Extensive research has been conducted to reveal the molecular
and cellular mechanisms in the habenula that influence cognitive
and affective functions as well as dysfunction implicated in
psychiatric disorders. There are many comprehensive reviews
that have summarized these studies (Hikosaka et al., 2008; Boulos
et al., 2017; Fakhoury, 2017; Hu et al., 2020), such that here
we refer only briefly to some findings about habenular deficits
relevant to the pathophysiology of MDD and ADHD.

Using animal models of MDD, hyperactivity in the lateral
nucleus of the habenula has consistently been demonstrated
(Browne et al., 2018; Yang et al., 2018; Aizawa and Zhu, 2019;
Gold and Kadriu, 2019). Specific patterns of acute and chronic
electrical stimulation (Li et al., 2011; Meng et al., 2011; Tchenio
et al., 2017) or pharmacological inhibition (Winter et al., 2011)
of the habenula attenuate MDD-like behaviors in animal models.
This is further supported by a recent case report study showing
improvement of symptoms with deep brain stimulation of the
habenula in treatment-resistant MDD patients (Wang et al.,
2020). In contrast, human neuroimaging and postmortem studies
have been inconsistent. Some studies have reported larger, and
others found smaller, volumes of the habenula in MDD patients
than in healthy subjects (Ranft et al., 2010; Savitz et al., 2011;
Carceller-Sindreu et al., 2015; Schmidt et al., 2017). Functional
imaging studies have demonstrated higher or lower than normal
habenular activation in MDD patients (Roiser et al., 2009;
Furman and Gotlib, 2016; Lawson et al., 2017). Such inconsistent
findings are not surprising, given the heterogeneous nature of
symptoms across MDD patients (Kupfer et al., 2012). Thus, there
are huge gaps between animal model studies and the realm of
human psychiatric conditions, and findings with animal models
are unlikely to be directly translatable into human situations
(Lee and Goto, 2013; Planchez et al., 2019; Baker et al., 2020;
Stanford, 2020).

Compared with MDD and other psychiatric disorders, such
as schizophrenia and drug addiction (Lecourtier and Kelly, 2005;

Heldt and Ressler, 2006; Lecourtier et al., 2006; Velasquez et al.,
2014; Boulos et al., 2017; Fakhoury, 2017; Mathuru, 2018; Li
et al., 2019; Mathis and Kenny, 2019; Hu et al., 2020), research
examining habenular deficits in ADHD pathophysiology are
scarce. When we investigated the effects of neonatal habenular
lesions (NHLs) in rats, there were unexpected findings with
NHLs causing an assortment of behavioral alterations resembling
ADHD symptoms. Thus, rats with NHLs exhibit spontaneous
hyperlocomotion, more impulsive choices in decision-making
tasks, and shorter attention spans in object exploration, all of
which were ameliorated by amphetamine (Lee and Goto, 2011).
Moreover, these behavioral alterations dynamically changed
through development, with hyperlocomotion and impulsivity
apparent only in childhood, whereas attention deficits persisted
up until adulthood. Such developmental patterns are consistent
with the waxing and waning of ADHD symptoms over
development (Biederman and Faraone, 2005; Spencer et al.,
2007). This novel aspect of the NHL model distinguished it
from other conventional animal models of ADHD, such as
spontaneously hypertensive rats (Russell, 2011).

NHLs also cause an assortment of neural alterations, such
as a smaller PFC volume (Lee and Goto, 2011) and abnormally
augmented amygdala–PFC connectivity (Kim et al., 2021), which
are also consistent with those found in ADHD individuals
(Plessen et al., 2006; Shaw et al., 2007; Batty et al., 2010; Posner
et al., 2011; Batty et al., 2015; Van Dessel et al., 2018). We further
found that tissue concentrations of DA and 5-HT were balanced
in mesocorticolimbic regions of normal rats, but these levels were
disrupted in NHL rats, suggesting that imbalances between DA
and 5-HT may be more important than alterations in DA or 5-
HT levels alone in NHL-induced behavioral alterations (Lee et al.,
2021). There has been only one human neuroimaging study that
investigated habenular deficits in ADHD subjects to date (Arfuso
et al., 2019). This study demonstrated that intrinsic functional
connectivity between the habenula and putamen was impaired in
ADHD subjects. Additional human studies are needed to identify
habenular deficits in ADHD.

Although a neonatal “lesion” gives an impression of
damage in the habenula, NHLs result in smaller nuclear
sizes of both medial and lateral habenula than those of
normal rats, which could be due to the manipulation during
early brain development. This raises a couple of issues to
be further examined. First, since both medial and lateral
nuclei of the habenula are affected by NHL, it has remained
elusive whether and in what way neonatal manipulations
of either the medial or lateral nucleus alone would yield
distinct alterations. For instance, ADHD symptoms are
grouped into hyperactive-impulsive dominant, inattention
dominant, and mixed types (Biederman and Faraone,
2005). NHLs affecting both the medial and lateral nuclei
induce behavioral alterations consistent with the mixed
types. Thus, a selective neonatal lesion to either the medial
or lateral nucleus may induce hyperactive-impulsive or
inattention dominant types of alterations. Another issue is
whether animals with smaller habenular nuclei as naturally
occurring individual variations may also exhibit more
hyperactive, impulsive, and inattentive traits than those of
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larger habenular nuclei. On the other hand, smaller habenular
nuclei caused by NHL may produce a condition equivalent
to the hypoactive state of the habenula, such that volume size
itself may not be the important factor. This is supported by
inconsistent findings regarding anatomical and functional
habenular changes in MDD patients (Roiser et al., 2009;
Ranft et al., 2010; Savitz et al., 2011; Carceller-Sindreu
et al., 2015; Furman and Gotlib, 2016; Lawson et al., 2017;
Schmidt et al., 2017).

Taken together, a hypothesis has emerged that may explain
the pathophysiology of comorbid ADHD and MDD (Figure 1).
In particular, hypoactivity of the habenula early in development
may initially produce ADHD-like behaviors with molecular
alterations, such as differences in GPR139 and L-type calcium
channels as suggested in GWASs. As the brain develops and
matures into adulthood, such hypoactive habenula undergoes
compensatory changes that subsequently increases vulnerability
to MDD by priming the habenula for hyperactivation on
exposure to stress.

HABENULA AS A NEURONAL
P-FACTOR?

In addition to ADHD and MDD, habenular deficits have
been implicated in other psychiatric disorders. As is the case
with MDD, although a relatively large number of animal
model studies have provided support for habenular deficits in
schizophrenia (Lecourtier and Kelly, 2005; Heldt and Ressler,
2006; Lecourtier et al., 2006; Boulos et al., 2017; Fakhoury,
2017; Li et al., 2019; Hu et al., 2020) and drug addiction

FIGURE 1 | A diagram illustrating the hypothesis. In terms of habenular
function in relation to its activity (i.e., an inverted U-shaped relationship),
ADHD and MDD may be antithetical. A dysfunctional level of hypoactivity in
the habenula may induce an assortment of symptoms relevant to ADHD,
whereas hyperactivity of the habenula may cause those relevant to MDD.
A transition from hypoactivity to hyperactivity, but not vice versa, may take
place over the course of brain development from childhood to adulthood, as
compensation. Such a process may involve several molecules, such as
GPR139 and L-type calcium channels.

(Velasquez et al., 2014; Boulos et al., 2017; Fakhoury, 2017;
Mathuru, 2018; Mathis and Kenny, 2019; Hu et al., 2020), there
has been little or inconsistent evidence regarding habenular
deficits in human patients with these disorders (Shepard et al.,
2006; Ranft et al., 2010; Boulos et al., 2017; Fakhoury, 2017;
Zhang et al., 2017; Schafer et al., 2018; Germann et al., 2020;
Hu et al., 2020).

Implications of habenular deficits in such an assortment
of psychiatric disorders are not surprising, given the function
of the habenula (Hikosaka et al., 2008). Thus, the lateral
habenular nucleus regulates DA and 5-HT neuron activities
in the midbrain nuclei directly and indirectly, respectively,
through the rostrotegmental nucleus. Moreover, the medial
habenular nucleus regulates the DA and 5-HT systems indirectly
through the interpeduncular nucleus. DA and 5-HT are in turn
neurochemical substances whose alterations are implicated in
most, if not all, psychiatric disorders (Esposito et al., 2008).
However, such a notion raises concern about how habenular
deficits should be considered in the categorical model of
psychiatric disorders.

A current diagnosis of psychiatric disorders is based on the
categorical model (Americal Psychiatric Association [APA], 2013;
World Health Organization [WHO], 2018). In this model, each
disorder has unique symptoms and causes that are independent
from other disorders. Accordingly, most studies investigating
the neural mechanisms of psychiatric disorders, including those
related to habenular deficits, follow this model and attempt to
elucidate a pattern of deficits unique to a single psychiatric
disorder. Such a categorical model does not comply with the idea
that deficits of a single brain area, such as the habenula, could be
involved in multiple disorders.

As an alternative to the categorical model, the dimensional
model has been considered, especially in childhood psychiatry
(Achenbach and Edelbrock, 1981; Sourander and Helstela, 2005;
Wright et al., 2013; Willner et al., 2016; Kotov et al., 2017). In this
model, two factors, internalizing and externalizing dimensions,
are considered to underlie different psychiatric disorders.
The internalizing dimension explains anxious and depressive
symptoms, whereas the externalizing dimension explains
aggressive, antisocial, and hyperactive-impulsive symptoms. It
is interesting to note that the symptoms in the internalizing
and externalizing dimensions are often discussed in relation
to the functions of 5-HT and DA transmission, respectively.
Thus, although this is highly speculative, DA/5-HT imbalance
may explain internalizing and externalizing dimensions (e.g.,
imbalance toward DA- and 5-HT-predominant conditions lead
to externalizing and internalizing symptoms, respectively).

Although it has been suggested that patients are more
likely to have comorbidities of psychiatric disorders within
the same dimension, correlations have also been observed
between externalizing and internalizing symptoms (Wright
et al., 2013; Willner et al., 2016), which corresponds to the
relationship between ADHD and MDD, as ADHD is related
to the externalizing dimension, whereas MDD is related to
the internalizing dimension. Thus, a one-step higher and
more generalized factor that is inclusive of both internalizing
and externalizing dimensions may be required to explain
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the ADHD and MDD relationships. Such a latent factor
has recently been proposed that is mutually involved in the
diagnoses of all the different psychiatric disorders, which is
denoted as a general psychopathological factor or p-factor
(Caspi et al., 2014; Caspi and Moffitt, 2018). The presence
of the p-factor is supported by the number of studies,
including investigations that have demonstrated substantial
genetic overlaps between different psychiatric disorders (Cross-
Disorder Group of the Psychiatric Genomics Consortium,
2013, 2019; Golovina et al., 2020). The habenula, which links
externalizing and internalizing dimensions, along with its
involvement in other psychiatric disorders, could therefore
be a promising candidate for a neuronal substrate of
the p-factor.

Future investigations that clarify the impacts of habenula
deficits in psychiatric disorders may be fertile in the context
of general psychopathological factors, such as how habenular
deficits can explain the comorbidity of multiple disorders,
rather than being associated with deficits in a particular
psychiatric disorder.

CONCLUSION

We have proposed a hypothesis that habenular hypoactivity
early in development may produce ADHD-like behaviors.
The habenula may subsequently go through compensatory
changes across development that leads to hyperactivity
with an increased vulnerability to stress and MDD. Thus,
the habenula may be a crucial brain region linking
ADHD and MDD. Moreover, the roles of the habenula
could be generalized across multiple psychiatric disorders

beyond ADHD and MDD as a neural substrate of
the p-factor.
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