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Lumbar disc herniation (LDH) with radicular pain is a common and complicated
musculoskeletal disorder. Our previous study showed that LDH-induced methylglyoxal
(MG) accumulation contributed to radicular pain. The underlying mechanisms through
which MG accumulates are poorly understood. In the present study, we found that both
MG and tumor necrosis factor-alpha (TNF-A) levels in the herniated disc of patients with
radicular pain were significantly increased, and the activity of Glyoxalase 1 (GLO1), the
rate-limiting enzyme that metabolizes MG, was decreased. In rats, the LDH model was
mimicked by implantation of autologous nucleus pulposus (NP) to the left lumbar five
spinal nerve root. The mechanical allodynia was observed in LDH rats. Besides, MG
and TNF-A levels were increased, and GLO1 activity was significantly decreased in the
implanted NP. In cultured rat NP cells, stimulation with the inflammatory mediator TNF-
A reduced GLO1 activity and expression. These results suggested that TNF-A-induced
GLO1 activity decrease contributed to MG accumulation in the herniated disc of patients
with radicular pain.
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INTRODUCTION

Lumbar radicular pain after intervertebral disc herniation is one of the most prevalent causes of
physical disability. It is caused not solely by mechanical compression of the nerve root but also by
the release of many inflammatory molecules (Takahashi et al., 1996; Ahn et al., 2002; Scuderi et al.,
2006; Pedersen et al., 2015). Clinical data indicate that 20–76% of nerve root compression due to
a disc herniation is painless, and some cases with slight disc herniation suffer severe pain (Takada
et al., 2001; Djuric et al., 2020). Therefore, a chemical factor may play an important role in radicular
leg pain, following lumbar disc herniation (Andrade et al., 2013; Hasvik et al., 2019; Wang et al.,
2020). Experimental studies indicate that inflammatory molecules are released from leaked nucleus
pulposus (NP) and attracted immune cells, which include tumor necrosis factor-alpha (TNF-A),
interleukin-6 (IL-6), interleukin-8 (IL-8), metalloproteinases, cyclooxygenase-2, nitric oxide, and
so on (Andrade et al., 2011; Pedersen et al., 2015; Djuric et al., 2020).

The intervertebral disc is the largest avascular and immune-privileged tissue in our body.
Oxygen and glucose diffused into the disc can be exhausted when nucleus pulposus material
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degenerates or herniates into the epidural space (Guehring et al.,
2009). Therefore, glycolysis has been enhanced as the main
source of energy for disc cells. Methylglyoxal (MG), as the
reactive glycolytic by-product, has serious toxicological effects
when it is excessively accumulated. Increased MG was found
in cerebrospinal fluid of patients with Alzheimer’s disease, and
this was associated with poorer cognitive function and lower
brain volume (Angeloni et al., 2014). The levels of plasma MG in
patients who experienced diabetic pain were significantly higher
than those in patients with diabetes without pain (Bierhaus
et al., 2012). Previous data from our group suggest patients
who suffered from a lumbar disc herniation (LDH)-induced pain
had elevated plasma methylglyoxal (MG) levels and increased
MG in dorsal root ganglions (DRG)-induced radicular pain in
a rat model of lumbar disc herniation (Liu et al., 2017). It is
well-known that the glyoxalase system is the main enzyme that
metabolizes MG, especially GLO1, as the rate-limiting step of
this series of reactions uses L-glutathione (GSH) as a cofactor
(Gaffney et al., 2020). Previous studies have shown that GLO1
levels and activity can be altered in disease states, including
diabetes, cardiomyopathy, and endothelial dysfunction (Jack
et al., 2012; Skapare et al., 2013; Hanssen et al., 2014; Yumnam
et al., 2020). Therefore, both GLO1 and GSH are key factors in
maintaining MG at low tolerable levels, preventing protein and
cell dysfunction. However, we still do not know where MG is
released from and how it increases in patients with LDH with
radicular pain. Herein, we hypothesize that, when NP material
herniates into the epidural space, inflammation factors including
TNF-A are released, which decreases GLO1 activity and increases
the MG level in a herniated disc.

MATERIALS AND METHODS

Patients and Volunteers
This study was approved by the Ethics Committee at Henan
Provincial People’s Hospital, Zhengzhou University. Thirty
patients were prospectively enrolled at the Spinal Surgery
Department and included 20 patients with LDH, suffering from
radicular leg pain for less than 3 months and 10 patients
with scoliosis or lumbar burst fracture as the control without
leg painful symptomatology or degenerative disc disease. The
LDH patient group had a mean age of 43 years and consisted
of 11 men and 9 women. The control patient group had a
mean age of 36 years and consisted of seven men and three
women. Patients with LDH had assessed the intensity of leg
pain on a 0–10 (0, no pain; 10, worst pain) visual analog scale
(VAS) 1 day before discectomy. Patients with LDH were divided
into two groups according to their preoperative pain scores
(VAS ≤ 3 as mild pain group; VAS ≥ 4 as severe pain group).
Intraoperative-collected herniated disc (HD) tissues, obtained
during discectomy in patients with LDH and during orthopedic
surgery in control patients, were collected. Immediately upon
collection, tissues were divided into two parts. One part was flash
frozen in liquid nitrogen and stored at −80◦C for further use,
and the other part was fixed in 4% formaldehyde solution for
histopathological assessment.

Animals and Surgery
Male Sprague Dawley rats (200–220 g) were obtained from the
Institute of Experimental Animals of Zhengzhou University. All
rats were housed in a temperature- and humidity-controlled
environment on a 12/12-h light/dark cycle and provided with
food and water ad libitum. All experimental procedures were
approved by the Institutional Animal Care Committee of
Zhengzhou University and were carried out in accordance with
the guidelines of the National Institutes of Health Guide for
the care and use of laboratory animals. Efforts were made
to minimize animal suffering and to reduce the number
of animals used.

Surgery for the lumbar disc herniation model was performed
as previously described by Anzai et al. (2002) and Liu et al. (2017).
In brief, rats were anesthetized intraperitoneally with sodium
pentobarbital (50 mg/kg), and laminectomies were performed
in which the left L5 nerve roots and corresponding dorsal root
ganglion (DRG) were exposed. Autologous NP harvested from
the coccygeal intervertebral disc was applied to the left L5 nerve
roots just proximal to the corresponding DRG. The surgical
procedure in the sham group was identical to the LDH group
except for the application of NP to the left L5 nerve roots. TNF-
A inhibitor (500 µg Etanercept) was injected into the implanted
NP after the application of NP to the left L5 nerve roots. The
dose of Etanercept was determined based on the results from
previous experiments (Horii et al., 2011; Inage et al., 2016).
Special care was taken to prevent infection and minimize the
influence of inflammation.

Behavioral Test
The 50% withdrawal threshold was assessed using von Frey
hairs as described previously (Chaplan et al., 1994). Briefly, each
rat was loosely restrained beneath a plastic box on a metal
mesh for at least 15 min one time daily for 3 separate days,
and mechanical allodynia in the LDH and sham groups were
examined 1 day before surgery. Following 7 days of recovery,
the test was performed weekly until 4 weeks postoperatively.
Mechanical allodynia was assessed by the hind paw withdrawal
threshold in response to probing with a series of von Frey
filaments (bending force from 0.55 to 20.30 g) for 6 s or until
the rat withdrew. A nociceptive response was defined as a brisk
paw withdrawal or flinching of the paw, following von Frey
filament application. Each test was repeated two to three times at
approximately 2 min intervals, and the average value of von Frey
filament force was determined as the force to evoke a withdrawal
response. The experimenter who conducted the behavioral test
was blinded to all treatments.

Western Blot
The herniated disc tissue was collected and immediately stored
at −80◦C until use. The tissue was homogenized on ice. Protein
samples were separated by gel electrophoresis (SDS-PAGE) and
transferred onto a PVDF membrane. The blots were incubated
with a primary antibody against GLO1 (1:200, ABCAM,
United States) and β-actin (1:2,000, Cell Signaling Technology,
United States) overnight at 4◦C according to the instructions
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FIGURE 1 | Lumbar-herniated disc (LDH)–induced radicular pain and methylglyoxal (MG) accumulation in herniated disc. (A) MG levels were evaluated in herniated
disc of the patients or volunteers (One-way ANOVA: F = 143.679, p < 0.001; post hoc Dunnett: ∗∗p < 0.001, volunteers with no pain vs. patients with severe pain.
##p < 0.001 patients with mild pain vs. patients with severe pain, n = 10). (B) The analysis of linear correlation between visual analog scale (VAS) and the herniated
disc MG level in patients. (C) The paw withdrawal threshold of rats was significantly decreased following NP implantation (Two-way ANOVA: F = 3.893, p = 0.004.
Post hoc Tukey; sham vs. LDH + Saline at 7, 14, 21, 28 days: ∗∗p < 0.001. Lumbar-herniated disc (LDH) + Etanercept vs. LDH + Saline at 7, 14, and 21 days:
##p < 0.001, at 28 days: ##p = 0.002. n = 6). (D) The MG level of exposed NP was examined at different time points following NP implantation (One-way ANOVA:
F = 37.061, p < 0.001. Post hoc Dunnett: sham vs. LDH + Saline at 14 and 21 days: ∗∗p < 0.001, at 7 days: ∗∗p = 0.005, at 28 days: ∗∗p = 0.007. One-way
ANOVA, LDH + Etanercept vs. LDH + Saline: F = 29.944, ##p < 0.001 at 7 days; F = 71.625, ##p < 0.001 at 14 days; F = 54.421, ##p < 0.001 at 21 days;
F = 5.464, ##p = 0.042 at 28 days. n = 6).

of the manufacturer. The blots were then incubated with a
secondary antibody. ECL (Pierce, United States) was used to
detect the immune complex. After exposure for 2 min, the bands
were achieved under Chemiluminescence and Fluorescence
Imaging System (G:BOX XT4, Syngene, United Kingdom). The
bands were quantified with a computer-assisted imaging analysis
system (NIH Image J).

Culture of Nucleus Pulposus Cells
Nucleus pulposus cells were collected from the lumbar disc of
10 male Sprague-Dawley rats (3 months old). All experimental
procedures described below were reviewed and approved by
the Ethics Committee at Henan Provincial Peoples’ Hospital,
Zhengzhou University, China. In brief, the rats were killed by
an intraperitoneal overdose injection of 10% chloral hydrate, and
the NP tissue was collected from the coccygeal intervertebral disc

under aseptic conditions. After cutting the tissues into 1 × 1 mm3

sections, 0.2% type 2 collagenase (Sigma-Aldrich, St. Louis, MO,
United States) was added and digested for 4 h. After washing with
phosphate-buffered saline (PBS) and centrifuging for 5 min at
1,500 g, the isolated cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) and
antibiotics (100 U/ml penicillin and 100 U/ml streptomycins) at
37◦C in a 5% CO2 incubator. The total number of cells was less
than 1,000. NP cells from the second passage were treated with
different doses of TNF-A.

Glyoxalase 1 (GLO1) Activity Assays
Nucleus pulposus material was dissected on dry ice and stored
at −80◦C until use. The samples were homogenized, and the
supernatant was collected for further assays. The total protein
concentration was determined using the BCA Protein Assay Kit
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(Pierce, United States). GLO1 activity was measured as described
by Hovatta et al. (2005) and the Glyoxalase 1 Assay Kit (Sigma-
Aldrich, United States) according to the instructions of the
manufacturer. The GLO1 activity rate was calculated by the
absorbance at 240 nm.

Reduced/Oxidized Glutathione
(GSH/GSSG) Ratio Detection Assays
The GSH/GSSG ratio was measured by using the described
method with a minor modification (Baig et al., 2020). Briefly,
NP material was dissected on dry ice and stored at −80◦C
until use. The samples were homogenized in 1.5 ml of a cold
homogenization buffer for 1 min, and the supernatant was
collected for further assays. GSH and GSSG were quantified
on a fluorescent microplate reader at an excitation/emission
wavelength set to 490/520 nm. Absolute amounts of GSH and
GSSG were determined using GSH and GSSG standard curves.

Methylglyoxal (MG) Determination by
HPLC
The concentration of methylglyoxal was determined by HPLC
using a simple derivatization procedure (Liu et al., 2017).
Briefly, NP material was homogenized on dry ice, and the
supernatant sample was supplemented with internal standard 5-
methylquinoxaline (5-MQ) and the o-phenylenediamine (o-PD)
at room temperature for 4 h. Perchlorate (PCA) was added to the
derived sample and incubated on ice for 10 min. Methylglyoxal
(2-MQ) and the quinoxaline internal standard (5-MQ) were
measured using the conditions below. The analysis conditions
were applied as follows: detector wavelength, 315 nm; mobile
phase flow rate, 1. ml/min; typical sample size, 15 µl; and column
temperature, 20◦C. Duplicate injections of each sample were
made. Samples were calibrated by comparison with a 2-MQ
standard. The average retention times of 2-MQ and 5-MQ were
3.76 and 7.55 min, respectively.

Statistical Analysis
All results are statistically confirmed SPSS 13.0 (SPSS,
United States) and expressed as mean ± SEM. Statistical
differences between the two groups were analyzed by one-way
ANOVA. One-way or two-way ANOVA with repeated measures
followed by Tukey, Dunnett, or Bonferroni post hoc test was
carried out to compare differences between more than two
groups. The criterion for statistical significance was p < 0.05.
Complete statistical analysis is detailed in figure legends.

RESULTS

Increased Methylglyoxal Levels in
Herniated Disc Contribute to Radicular
Pain Induced by Lumbar Disc Herniation
In the present study, we first found that the methylglyoxal levels
of the herniated disc were significantly increased in the patients
who suffered from the radicular leg pain accompanied by LDH
compared with the patients with no-leg pain (Figure 1A). The

analysis of Pearson correlation showed a strong positive linear
correlation between VAS scores and a herniated disc MG level in
patients with LDH (Figure 1B). To further investigate the causal
relationship between MG- and LDH-induced radicular pain, the
mechanical withdrawal threshold and the MG level in exposed
NP tissues were examined in a rat NP implantation-induced
LDH model. These animals exhibited significant mechanical
allodynia on Days 7, 14, 21, and 28 after NP implantation
(Figure 1C). Meanwhile, the MG level in exposed NP tissues was
also significantly increased compared with that in the native NP
tissue (Figure 1D). Note that the time course of increased MG
was consistent with that of mechanical allodynia.

GLO1 Activity Decrease Contributes to
Excessive Accumulation of
Methylglyoxal in the Herniated Disc
It is well known that the glyoxalase system in the cytoplasm
is the main enzyme that metabolizes methylglyoxal and Glo1
as the rate-limiting enzyme and uses L-glutathione (GSH) as
a cofactor (Gaffney et al., 2020). In the present study, we
found that GLO1 activity of HD decreased in the patients
who suffered from the LDH-induced radicular pain compared
to the patients with no-leg pain (Figure 2A). The analysis of
Pearson correlation showed a strong negative linear correlation
between VAS scores and herniated disc GLO1 activity in
patients with LDH (Figure 2B). In comparison with the patients
with no-leg pain, immunoblotting and immunohistochemistry
showed GLO1 expression decreased significantly in patients with
radicular pain (Figures 2C,D). However, for GSH, there was
no significant difference between patients with LDH-induced
radicular pain and patients with no-leg pain (Figure 2E).
Moreover, both GLO1 activity and expression decreased in the
rats with NP implantation compared with that in the native NP
tissue (Figures 2F,G).

TNF-A Induced Methylglyoxal
Accumulation Through Reducing GLO1
Activity in the Herniated Disc and
Cultured Nucleus Pulposus Cell
Research showed that stimulation with the inflammatory
mediator TNF-A reduced GLO1 activity in human U937
monocytes (Hanssen et al., 2014). In the present study, we
found that TNF-A level increased in the patients who suffered
from the radicular leg pain, accompanied by LDH compared
to the patients with no-leg pain (Figure 3A). Meanwhile,
the analysis of Pearson correlation showed a strong negative
linear correlation between TNF-A and GLO1 activity in HD
(Figure 3B). To further investigate the relation between TNF-
A and GLO1 activity, the primary NP cells were cultured. The
GLO1 activity and expression of NP cells exposed to TNF-A were
decreased significantly compared with that in the control group
(Figures 3C,D). Furthermore, etanercept treatment (500 µg), a
known TNF-A inhibitor, significantly inhibited the mechanical
allodynia induced by NP implantation in the LDH rat model
(Figure 1C). Meanwhile, etanercept treatment (500 µg) also
significantly attenuated the decrease of GLO1 activity and
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FIGURE 2 | Glyoxalase 1 (GLO1) activity decrease contributes to excessively accumulation of MG in herniated disc. (A) GLO1 activity was evaluated in herniated
disc of the patients or volunteers (one-way ANOVA: F = 51.276, p < 0.001; post hoc Bonferroni: ∗∗p < 0.001, volunteers with no pain vs. patients with severe pain.
##p = 0.003 patients with mild pain vs. patients with severe pain, n = 10). (B) The analysis of linear correlation between VAS and herniated disc GLO1 activity in
patients. (C,D) Representative immunoblotting and immunohistochemistry showed the downregulation of GLO1 in herniated disc of patients. (E) GSH/GSSG was
evaluated in herniated disc of the patients or volunteers (One-way ANOVA: F = 0.062, $ p = 0.94 > 0.05. n = 10). (F) The GLO1 activity of exposed NP was
evaluated at different time points, following NP implantation (one-way ANOVA: F = 13.986, p < 0.001. Post hoc Bonferroni: sham vs. LDH + Saline at 14 days and
21 days: ∗∗p < 0.001, at 7 days: ∗∗p = 0.003, at 28 days: ∗∗p = 0.001. One-way ANOVA, LDH + Etanercept vs. LDH + Saline: F = 8.116, ##p = 0.017 at 7 days;
F = 12.039, ##p = 0.006 at 14 days; F = 17.944, ##p = 0.002 at 21 days; F = 8.866, ##p = 0.014 at 28 days. n = 6). (G) Representative immunoblotting showed
the downregulation of GLO1 in exposed NP of rats on Day 14 after NP implantation.

expression and the increase of MG in the implanted NP of LDH
rat (Figures 1D, 2F,G).

DISCUSSION

Previous studies have shown that MG, as a reactive byproduct
of several metabolic pathways in cells, has been linked to
painful neuropathies (Bierhaus et al., 2012; Ciobanu et al., 2016;
Barragan-Iglesias et al., 2019). Our previous study also showed
that MG accumulation contributed to radicular leg pain in
patients with LDH and the NP implantation-induced LDH rat
model (Liu et al., 2017). But, it is still unknown that where
MG is released from and how it increases. In the present study,
we found that the MG level in HD of patients who suffered
radicular leg pain was significantly higher than that in the patients
with no-leg pain. In addition, the MG level in herniated disc
positively correlated with a leg VAS score in patients with LDH.
Moreover, this phenomenon was verified in the NP implantation-
induced LDH rat model. Hence, it is reasoned that MG may be
released from the HD.

It is well-known that the glyoxalase system is the main
enzyme that metabolizes MG to D-lactate, which is composed
of two enzymes, glyoxalase 1 (GLO1) and GLO2. GLO1 is
the rate-limiting step of this series of reactions, which uses
L-glutathione (GSH) as a cofactor (Gaffney et al., 2020).
GLO1 levels and activity can be altered in disease states,
including diabetes, cardiomyopathy, and endothelial dysfunction
(Jack et al., 2012; Skapare et al., 2013; Hanssen et al., 2014;
Yumnam et al., 2020). Therefore, both GLO1 and GSH are key
factors in maintaining MG at low tolerable levels, preventing
protein and cell dysfunction. A recent study comparing the
expression of GLO1 in various inbred mouse strains showed a
negative correlation between GLO1 expression and mechanical
hyperalgesia, implying that GLO1 might be linked to painful
neuropathies (Jack et al., 2012). In the present study, we found
that GLO1 activity and expression decreased significantly in the
herniated disc of patients with radicular leg pain compared to that
in patients with no-leg pain, and there was no difference between
groups for GSH. We further found that the increased MG level in
HD of patients and exposed NP of the rat model was concurrent
with the decreases of GLO1 activity and expression. Therefore,
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FIGURE 3 | Tumor necrosis factor-alpha (TNF-A)-reduced GLO1 activity and expression in herniated disc and cultured nucleus pulposus cell. (A) TNF-A levels were
evaluated in herniated disc of the patients or volunteers (One-way ANOVA: F = 100.443, p < 0.001; post hoc Bonferroni: ∗∗p < 0.001, volunteer with no pain vs.
patients with severe pain. ##p < 0.001, patients with mild pain vs. patients with severe pain, n = 10). (B) The analysis of linear correlation between TNF-A levels and
GLO1 activity in herniated disc of patients. (C,D) Both GLO1 activity and expression of NP cells were decreased by different doses of TNF-A (One-way ANOVA:
F = 58.312, p < 0.001; post hoc Bonferroni: control vs. 10 ng/ml TNF-A: $ p = 0.446; control vs. 50 ng/ml TNF-A: ∗∗p = 0.001; control vs. 100 ng/ml TNF-A:
∗∗p < 0.001).

GLO1 activity decrease may contribute to MG accumulation in
a herniated disc.

When the immune-privileged nucleus pulposus migrates out
of the normal intervertebral space, an inflammation reaction
occurs (Shamji et al., 2010; Takada et al., 2012; Djuric et al.,
2020). Various cytokines have been reported in disc biopsy
samples from patients with LDH and experimental models
(Takahashi et al., 1996; Shamji et al., 2010; Hiyama et al.,
2021); among these, TNF-A levels in herniated nucleus pulposus
correlate with preoperative pain in patients with LDH (Genevay
et al., 2008; Andrade et al., 2016). Rat models showed that
the application of a TNF-A inhibitor (etanercept) after disc
puncture could decrease mechanical allodynia and downregulate
the neuroinflammation factors (Horii et al., 2011). Therefore,

we could speculate that an early vicious cycle created by TNF-
A-producing pain is perpetuated by different players. Recently,
studies have shown that treatment with inflammatory cytokines,
such as TNF decreased GLO1 activity in U937 monocytes, which
suggested that inflammatory response may be involved in the
onset and maintenance of MG excessive accumulation (Hanssen
et al., 2014). So, it is possible to reason that TNF-A secreted from
herniated nucleus pulposus cells or immune cells reduced the
GLO1 activity, which leads to the MG excessive accumulation.
In our data, TNF-A expression negatively correlated with GLO1
activity in herniated nucleus pulposus from patients with LDH
and exposed NP of the rat model. In cultured nucleus pulposus
cells, TNF-A treatment decreased GLO1 activity and increased
the accumulation of MG.
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Taken together, our study supplies unique data, showing
an association between TNF-A and GLO1/MG in a herniated
disc. When nucleus pulposus herniates, TNF-A produced
from herniated tissue or inflammatory cells may reduce
GLO1 expression and activity in herniated nucleus pulposus,
which increases the accumulation of MG, eventually inducing
radicular pain. However, the TNF-A/GLO1/MG pathway-
involved mechanisms underlying radicular pain in the LDH need
further investigation.
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