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Coping strategies, the first line of defense against adversities, develop through
experience. There is consistent evidence that both genotype and sex contribute to
the development of dysfunctional coping, leading to maladaptive outcomes of adverse
experiences or to adaptive coping that fosters rapid recovery even from severe
stress. However, how these factors interact to influence the development of individual
coping strategies is just starting to be investigated. In the following review, we will
consider evidence that experience, sex, and genotype influence the brain circuits and
neurobiological processes involved in coping with adversities and discuss recent results
pointing to the specific effects of the interaction between early experiences, genotype,
and stress in the development of functional and dysfunctional coping styles.

Keywords: dopamine, early stress, gene expression, helplessness, norepinephrine, medial prefrontal cortex,
reward, sex differences

INTRODUCTION

Stress is the main non-genetic source of psychopathology. Therefore, the identification of
mechanisms capable of moderating the pathogenic effects of stress is a major goal of clinical
and preclinical research. Resilience, the resistance to environmental challenges shown by some
individuals, has been the focus of research for the last two decades (Charney, 2004; Southwick et al.,
2005; Maier and Watkins, 2010; Daskalakis et al., 2013; Ashokan et al., 2016; Fallon et al., 2020).
Indeed, the pathogenic potential of stress experiences does not depend solely on their severity:
a large proportion of individuals exposed to traumatic experiences do not develop pathological
outcomes (Charney, 2004) and events appraised as positive by most people can be pathogenic
stressors for others.

Thus, either bereavement or marriage is a potentially pathogenic experience (Paykel, 1997).
Humans appraise psychogenic stressors as overwhelming, i.e., demanding beyond their

actual means (Folkman et al., 1986; Lazarus, 1993) and this appraisal is accompanied by
very high levels of emotional arousal as well as by a stereotypic pattern of physiological
responses such as the release of corticotropin-releasing hormone, adrenocorticotropic

Abbreviations: BLA, basolateral Amygdala; DA, dopamine; DR, dorsal Raphe nuclei; ELE, early life experiences; GABA,
γ-aminobutyric acid; LC, locus coeruleus; mPFC, medial pre-frontal Cortex; NAc, nucleus accumbens; NE, norepinephrine;
VTA, ventral Tegmental Area; 5HT, serotonin.
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hormone, and corticosterone/cortisol (Vermetten and Bremner,
2002; Bonne et al., 2004; McEwen and Gianaros, 2011).
Both emotional and physiological responses are shared with
non-human animals and support the organism’s ability to
sustain the challenging experiences. The stress responses have
both protective and damaging effects. In the short run, they
are essential for adaptation, maintenance of homeostasis, and
survival (allostasis). Yet, over longer time intervals, they exact
a cost (allostatic load) that can accelerate disease processes
(McEwen and Gianaros, 2011). Therefore, once activated, these
responses must be terminated as soon as possible. Coping
develops from action-oriented and intrapsychic efforts to
manage stressors and terminate or moderate stress responses.

When adverse experiences are novel and insensitive to
species-typical or previously acquired defensive responses,
novel coping strategies are developed through interaction with
the stressor, and those appraised as capable of reducing
emotional arousal are acquired to be implemented in subsequent
encounters with the same or similar stressors (Cabib et al., 2012;
Cabib and Puglisi-Allegra, 2012).

Adaptive coping strategies are fitted for the specific
characteristic of the stressful experience encountered. However,
general categories are recognized in both human and non-human
animals. Strategies aimed at eliminating the source of stress,
also by escaping/avoiding it, are generally defined as problem-
focused or active, whereas those aimed at containing/moderating
emotional arousal are defined as passive or emotion-focused. A
further distinction is made between reactive and proactive coping
strategies: i.e., responses that are directly elicited by the presence
of the stressors and those that are elicited by the expectation of a
stressful experience (Folkman et al., 1986; Taylor and Stanton,
2007; Coppens et al., 2010; Cabib and Puglisi-Allegra, 2012;
Helmreich et al., 2012; Gandhi et al., 2017; Molendijk and de
Kloet, 2019; Cabib et al., 2020).

Although the characteristics of dysfunctional coping
strategies are still a matter of debate, they have been
involved in the development, persistence, and relapse of
mental disturbances (Moritz et al., 2016; Sinha et al., 2016;
Gandhi et al., 2017; Haskell et al., 2020). Animal models of
stress-induced behavioral disturbances are overwhelmingly
based on passive coping strategies (Molendijk and de Kloet,
2019; Cabib et al., 2020). Nonetheless, because different
coping strategies are effective in different stressful situations,
flexible coping is to be considered the healthiest strategy at
the individual level (Austenfeld and Stanton, 2004; Coppens
et al., 2010; Kent et al., 2017). On the other hand, findings
of research in human and non-human subjects support
the existence of true coping styles, i.e., a trait-like bias
toward the use of a specific coping strategy (Coppens et al.,
2010; Fortgang et al., 2016; Santarnecchi et al., 2018; Cabib
et al., 2020). Individual coping styles depend on genetic
predisposition (Kendler et al., 1991; Koolhaas et al., 1999;
Daskalakis et al., 2013; Fortgang et al., 2016) and it has been
proposed that individual variance of this phenotype supports
population fitness in variable environments, a hypothesis
tested by selection studies in mice from wild populations
(Koolhaas et al., 1999).

Although determinant, genetic predisposition interacts with
individual experience through the lifetime and this interaction
can exert a strong influence on individual coping strategies
(Moffitt et al., 2006; Daskalakis et al., 2013; Cabib et al., 2019).
Moreover, there is increasing evidence for sex-specific adaptation
to stress experiences by human and non-human animals (Maeng
and Shors, 2013; Kent et al., 2017; Pooley et al., 2018). Finally,
certain coping styles, such as proactive coping, are associated
with low flexibility and impulsivity in mice (Coppens et al.,
2010). These considerations foster the hypothesis that individual
coping styles are the results of the interaction between genotype,
stress experiences, and sex. A corollary of this hypothesis is that
this interaction can foster dysfunctional coping styles leading
to psychopathology. As a consequence, the neurobiological
mechanisms mediating the development of dysfunctional coping
could be strongly involved in psychopathogenesis. The aim of
the present review is to discuss evidences from the literature
supporting this hypothesis and its corollaries.

This review will discuss results obtained by studies on the
effects of experience on the development of coping strategies and
on the neurobiological mediators of these effects, focusing on
those studies that tested the moderator influence of genotype,
sex, or both. To this aim, the review is organized in four
sections: a general introduction and four sections each examining
findings from studies on experiences known to contribute to the
development and stabilization of coping strategies. The studies
reported were chosen because they offered data on the effects of
genotype, sex, or their interaction.

COPING WITH STRESS

In humans coping develops from action-oriented and
intrapsychic efforts to terminate or moderate emotional
and physiological stress responses, thus preventing allostatic
load, a most serious health threat (McEwen, 2007). In human
research, coping responses are grouped in two broad categories:
problem-focused responses target the source of stress and
emotion-focused responses directly target emotional arousal
(Folkman et al., 1986; Lazarus, 1993). In animal studies,
these categories loosely correspond to so-called active and
passive coping strategies. The success of coping strategies
depends on the stressor. Thus, when stressors are susceptible
to action (avoidable/escapable), problem-focused or active
coping strategies are most successful. However, when stress is
promoted by problems or events devoid of solution, inescapable,
or insensitive to the subject’s action (unavoidable/inescapable
stressors), the only effective strategies are those aimed at
regulating emotional arousal (Austenfeld and Stanton, 2004;
Maier and Watkins, 2010; Cabib and Puglisi-Allegra, 2012).
Indeed, many reviews of clinical and preclinical data support
the adaptive role of passive coping (de Kloet and Molendijk,
2016; Gandhi et al., 2017; Haskell et al., 2020), whereas active
avoidance strategies are overexpressed in generalized anxiety
disorder, social anxiety disorder, panic, and phobias as well
as obsessive-compulsive and post-traumatic stress disorders
(Haskell et al., 2020).
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Focusing on rodent studies, the Forced Swimming Test (FST),
also known as the Porsolt’s test from the name of the researcher
who developed it, allows evaluating the progressive adaptation
of coping response to a novel uncontrollable/inescapable stress.
Indeed, during a first FST experience (10 min for mice 15 min
for rats) animals show initial expression of vigorous attempts
at escaping from a water tank (reactive coping) by swimming
around and struggling to climb the container’s walls. These
responses decrease over time whereas episodes of immobility
(only small movements required to keep the head above water)
increase in frequency and duration. Immobility expressed in
FST has been used as a measure of depressive-like behavior;
nonetheless, there is increasing consensus on the view that this
behavioral response is an adaptive passive coping strategy in FST
(Cabib et al., 2012; Andolina et al., 2013; Campus et al., 2015;
de Kloet and Molendijk, 2016). Indeed, the immobility response
prevents useless and risky loss of energy, thus it is acquired and
consolidated as long-termmemory to be immediately adopted on
subsequent encounters with the stressor (Mitchell and Meaney,
1991; Colelli et al., 2014; Reul, 2014).

Experiments performed in rats and mice indicate that
enhanced norepinephrine (NE) in the medial pre-frontal cortex
(mpFC) supports attempts at active coping in the face of novel
stressors by enhancing dopamine (DA) release in the nucleus
accumbens shell (NAcSh); whereas a reduction of NE and an
increase of DA transmission in mpFC supports the shift toward
passive coping in uncontrollable/inescapable stressful conditions
by reducing DA availability in the NAcSh (Figure 1). Indeed,
mice and rats experiencing a novel uncontrollable/inescapable
stressful experience show an immediate increase of DA in the
NAc, followed by a decrease below basal or control levels that
lasts as long as the experience (Pascucci et al., 2007; Cabib
and Puglisi-Allegra, 2012; Latagliata et al., 2014; Di Segni et al.,
2016). Manipulations that prevent stress-induced enhancement
of NE in mpFC prevent the increase of DA in NAcSh. Instead,
manipulations that prevent stress-induced enhancement of DA
release in mpFC selectively prevent reduction of DA availability
in the NAcSh as well as the development of immobility in
the FST (Ventura et al., 2001; Pascucci et al., 2007; Latagliata
et al., 2014). The involvement of DA transmission within the
corticolimbic system in modulating the expression of passive
coping has been subsequently confirmed by optogenetic studies
(Chaudhury et al., 2013; Tye et al., 2013; Wenzel et al., 2018;
Weele et al., 2019).

A genotype-specific bias toward the expression of passive or
active coping responses in the FST has been observed in both
rats and mice. Thus, rats selectively bred for rapid acquisition
of active avoidance behavior (Roman High Avoidance, RHA)
show persistent active coping in the FST in comparison with rats
that are slow active avoidance learners (Roman Low Avoidance:
RLA; Giorgi et al., 2005, 2007, 2019; Serra et al., 2018). Moreover,
male mice genetically selected for short attack latency (SAL) are
characterized by prolonged active coping in the FST whereas
long-attack latency (LAL) mice showmore passive coping in FST
and are slower avoidance learners (Koolhaas et al., 1999; Coppens
et al., 2010; de Boer et al., 2016). Finally, mice of the DBA/2
(D2) inbred strain show less immobility in the FST than mice

of the standard C57BL/6 (B6) strain and outperform B6 mice in
protocols involving active avoidance or escape learning (Bovet
et al., 1969; Falls et al., 1997; Ventura et al., 2002; Brennan, 2004;
Di Segni et al., 2016).

The relationship between good avoidance/escape learning
and an active coping style could indicate that neurobiological
mechanisms responsible for superior active avoidance learning
bias organisms toward the use of active coping strategies. Indeed,
acquisition of active defensive responses (i.e., active avoidance,
escape) competes with the expression of passive (i.e., freezing,
helplessness) defensive strategies (Boeke et al., 2017; Piantadosi
et al., 2018; Wenzel et al., 2018). In line with this hypothesis,
B6mice outperformmice of the D2 strain in conditioned freezing
(Tipps et al., 2014).

Data on sex differences in coping with FST by rats are
conflicting also because in this species behavioral measures
are collected on a 5 min test performed 24 h after a first
15 min experience (Drossopoulou et al., 2004). On the other
hand, the strain-specific bias toward rapid development of a
passive coping response by B6 mice characterizes both female
and male mice of this inbred strain when compared with
female and male mice of the D2 strains, indicating that this
genotype-dependent phenotype is not sex-specific. Moreover,
both female and male B6 mice show a rapid increase of
mPFC DA and a rapid inhibition of NAc DA when exposed
to uncontrollable/unavoidable stressors; whereas female and
male D2 mice are characterized by much slower DA responses
(Ventura et al., 2002; Di Segni et al., 2016).

Depletion of mpFC DA by local infusion of
6-hydroxydopamine (6OHDA) prevents FST-induced inhibition
of mesoaccumbens DA as well as induction of immobility
in B6 male mice and a chronic antidepressant treatment
moderates FST-induced enhancement of mpFC DA, inhibition
of mesoaccumbens DA as well as immobility in male mice of
this strain (Ventura et al., 2004). These findings offer strong
support to the hypothesis that genotype-dependent variations
of mpFC DA response to stress moderate the development of
passive coping strategies in inescapable/unavoidable stressful
conditions. The shift of mesoaccumbens DA from enhanced to
inhibited release during adaptation to a novel inescapable
stressor suggests major involvement of a change in the
motivational state in the shift from active to passive coping
(Cabib and Puglisi-Allegra, 2012). Indeed, NAc DA has been
involved in supporting pursuit of highly valued goals despite
costs (i.e., time, work, and risk; Salamone et al., 2007; Hauber
and Sommer, 2009; Iodice et al., 2017) and in sustaining high
rate of response (Niv et al., 2006). Moreover, manipulations that
interfere with NAc DA transmission, such as depletion, or local
infusion of antagonists, selectively decrease operant response for
food while increasing chow intake in rats (Salamone et al., 2007).

Finally, the control exerted by mpFC on mesoaccumbens
DA suggests that the shift from high motivational arousal
(required to support attempts at active coping) to the
motivational blunting (that fosters helplessness) is the outcome
of appraisal of the experience as inescapable. Moreover, because
mpFC NE transmission is responsible for the increase in the
mesoaccumbens DA supporting active coping, this brain area
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could translate appraisal of a stressful situation into appropriate
responses. In line with this view, mpFC can restrain the
expression of passive coping and hormonal stress response by
activating GABAergic outputs of the anteroventral bed nuclei
of the stria terminalis toward the periaqueductal gray and
the paraventricular hypothalamic nucleus, respectively (Johnson
et al., 2019).

In summary, in a novel stressful situation the development of
an active or passive coping strategy is dependent on the impact of
the active responses on the stressor appraised by mpFC, and by
mesocorticolimbic catecholaminergic transmission.

DEVELOPING STABLE COPING
STRATEGIES

Individual coping styles can result from the acquisition and
consolidation of coping responses through a history of stress
(Cabib et al., 2020). Mice and rats with experience of FST show
a virtually immediate expression of immobility on subsequent
encounters with the stressor and this behavioral response is
prevented by manipulations performed immediately following
the first FST experience (West, 1990; Colelli et al., 2014;
Campus et al., 2015; de Kloet and Molendijk, 2016; Molendijk
and de Kloet, 2019). These findings support the view that
the immobility response can be an acquired coping strategy
that is consolidated as a long-term memory to be expressed
on subsequent encounters with the same or similar stressors.
Although male mice of both the B6 and D2 strain acquire
and consolidate the immobility response in FST, they do so
by engaging brain circuits that are only partially overlapping.
Indeed, although mice from both strains require a functioning
infralimbic cortex (IL) to consolidate memory of the immobility
response, B6 mice also require an intact hippocampus whereas
D2 mice require a functioning left dorsolateral striatum (Colelli
et al., 2014; Campus et al., 2015). This observation further
supports the view that coping strategies are acquired and
stabilized as long-term memory because the hippocampus is
the preferred learning system for mice of the B6 strain but not
for mice of the D2 strain (Gerlai, 1998a,b; Ammassari-Teule
et al., 2000; Baarendse et al., 2008). Interestingly, in both B6 and
D2mice inactivation of the IL immediately after the extinction of
an active coping strategy acquired in a watermaze leads to relapse
of the extinguished response on the next day, suggesting that
acquisition of passive coping in FST involves an extinction-like
learning process (Campus et al., 2015).

On the other hand, Learned Helplessness (LH), the
generalized but temporary impairment of active coping
responses in novel stressful situations, does not seem to involve
learning (Maier and Seligman, 2016). LH develops following
the experience of stressors that cannot be escaped or controlled.
The unique role of the controllability is tested by a protocol
involving a rat that experiences trains of shocks at random
intervals that can be temporarily interrupted by an operant
response: Escapable Stress (ES) and a Yoked one receiving
the same amount of shock at the same time being unable
to control it, Inescapable Stress (IS; Maier and Seligman,
1976; MacLennan and Maier, 1983; Maier and Watkins,

2005; Baratta et al., 2007; Maier, 2015). IS-exposed rats also
develop extinction-resistant conditioned freezing following
associative training performed 1 week after stress exposure.
Conversely, a previous ES experience potently interferes with
subsequent fear conditioning, decreases conditioned freezing
expressed in extinction and prevents spontaneous recovery
of the extinguished response. Finally, previous ES experience
immunizes against the effects of subsequent defeat (Amat
et al., 2010; Maier, 2015). Thus, the ability to control a stressful
experience determines the development and acquisition of
specific coping responses in subsequent encounters with novel
stressors.

Controllability does not prevent nor moderate the
hypothalamus-pituitary-adrenal (HPA) response to stress
(Maier et al., 1986; Prince and Anisman, 1990; Helmreich et al.,
2012). Instead, evidence collected by Maier and coworkers
indicate that: (1) a corticostriatal circuit connecting mPFC
to posterior dorsomedial striatum (DMS) is involved in the
appraisal of a stressful experience as controllable/escapable;
(2) appraisal of ES inhibits dorsal raphe nucleus (DRN) 5-HT
neurons through excitatory inputs from the mpFC to intrinsic
GABAergic neurons, leading to a rapid reduction of 5-HT
release induced by the shock experience (Maier and Seligman,
2016); and (3) the learned helplessness syndrome is due to
desensitization of DRN 5-HT1A inhibitory auto-receptors
(Maier, 2015).

Both sex and genotype moderate the behavioral and neural
effects of stress controllability. Thus, the proactive effects of
control over stress experience are not observable in female rats
(Worley et al., 2020). Indeed, although females express the
escape response (wheel turning) during ES training as males do,
they subsequently show the exaggerated freezing and reduced
social exploration that characterize IS-exposed male rats (Baratta
et al., 2018, 2019; Fallon et al., 2020). In line with the lack of
behavioral effects, ES training does not activate frontocortical
neurons responsible for inhibition for the DRN (Baratta et al.,
2018) and does not foster circuit-specific plasticity (Baratta et al.,
2019) in female rats. Mice of the B6 but not D2 strain develop
LH (Shanks and Anisman, 1988). B6 mice are characterized by
higher 5-HT1A receptor in PFC and lower GABAb receptors
in the basolateral amygdala (BLA) than D2 mice (Popova
et al., 1998; Andolina et al., 2014), and when exposed to a
novel inescapable/uncontrollable stress they display higher 5-HT
outflow in mPFC and higher GABA outflow in the BLA than
D2 mice (Andolina et al., 2014).

It should be pointed out, however, that mice of the D2 strain
are not resistant to uncontrollable stress but develop a strain-
specific dysfunctional adaptation. Indeed, the experience of an
uncontrollable/inescapable shock fosters impaired intracranial
self-stimulation (anhedonia) and social avoidance in mice of the
D2 strain only (Zacharko et al., 1987; Szklarczyk et al., 2012).

In summary, stress coping strategies are strongly influenced
by the outcome of previous stress experiences and different
mechanisms are responsible for this influence. Thus: (1) learning
and extinction learning stabilize active and passive coping
strategies, respectively, as responses to similar stressors;
(2) previous experience with an uncontrollable stressor fosters
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FIGURE 1 | Schematic representation of complex interaction of environmental and individual factors influencing stress coping. Critical experiences in early life,
genetic constitutive characteristics, and sex-based differences contribute to coping strategies (i.e., active/passive) mediated by different neurotransmitters balance
within mesocorticolimbic circuit and afferent structures.

a bias toward the expression of passive coping strategies to deal
with novel stressors, whereas; and (3) the experience of control
over inescapable stress fosters a bias toward the expression of
active coping. However, the development of these biases depends
on sex- and genotype-specific engagement of cortico-limbic
brain circuits and serotoninergic/GABAergic modulation of
these circuits (Figure 1).

ADAPTING TO ENVIRONMENTAL
CHANGES

Single severe stressful experiences (acute stressors) reproduce
traumas: life and/or health-endangering aversive experiences, in
animal models. Traumatic events are the only stressors that can
be directly related to a behavioral disturbance (Post-Traumatic
Stress Disease: PTSD) in humans. However, a number of far less
impressive experiences and even events that most would define
as positive and rewarding, known as ‘‘life events’’, have been
associated with the development of physiological and mental
disturbances. The severity of these ‘‘life events’’ is measured
by stress scales: death of the spouse is most stressful, scoring
100/100 for severity, but marriage scores 50/100 and outstanding
achievement 28/100 (Holmes and Rahe, 1967; Monat et al., 1972;

Scully et al., 2000). Although life events are discrete experiences,
they cause substantial changes and require lasting readjustment
of individual’s life; moreover, compelling evidence indicates that
a series of moderate life events experienced within a brief period
of time (1 or 2 years) are most associated with physical and
mental health problems (Monat et al., 1972; Scully et al., 2000).
Thus, in non-human subjects, life events are best modeled by
chronic or repeated stress experiences.

In restricted feeding protocols, food is removed from
the home cage and made available only in specific periods
of the day (scheduled feeding). In rodents, this condition
reproduces an empty food reserve, thus eliciting the active
coping response of foraging. When this protocol is used to
motivate learning, it offers foraging-like experiences and, because
food is generally made available within the cage after the
training session, trained animals experience successful coping.
In the absence of training, however, the protocol models
a chronic uncontrollable/inescapable stressful experience that
fosters compulsive wheel running and enhances behavioral
responses to drugs of abuse (behavioral sensitization).

Indeed, food-restricted female rodents can run during the
limited hours of food access further reducing feeding, a behavior
called activity-based anorexia (ABA). There is evidence that
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ABA is supported by mesocorticolimbic dysfunctions typically
associated with addiction-like neuroplasticity (Broft et al., 2015;
Carr, 2020; Milton et al., 2020) and is genotype-specific.
Thus, food-restricted female mice of the helplessness-resistant
D2 strain but not female mice of the B6 strain develop
extreme ABA (Gelegen et al., 2007). It should be pointed out,
however, that strong ABA has been reported in adolescent female
B6 mice (Wable et al., 2015) suggesting that the strain difference
is dependent on developmental processes. In line with this
hypothesis, a strain difference in sensitivity to incentive salience
of food-associated cues and delayed rewards was only observed in
fully adult B6 and D2 mice (Pinkston and Lamb, 2011; Campus
et al., 2016; Maiolati et al., 2021).

Rodents exposed to restricted feeding in the absence of a
running wheel develop sensitization to the behavioral effects
of psychostimulants (Carr, 2002; Sharpe et al., 2012; D’Cunha
et al., 2013) a phenomenon fostered by prolonged exposure to
addictive drugs and by the experience of IS but not of ES (Maier
and Seligman, 1976).

A strain-specific behavioral sensitization to amphetamine is
observed in male mice of the D2 strain following either 12 days
of restricted feeding or 10 daily experiences of restraint (120 min
daily; Badiani et al., 1992; Cabib et al., 2000) suggesting a
generalized neuroadaptation to chronic or repeated stress by
mice of this inbred strain. In line with this hypothesis, both
food-restricted and repeatedly restrained D2 mice show reduced
availability of meso-striatal DA receptors of the D2 type (Cabib
et al., 1998; Campus et al., 2017), a neuroadaptation fostered by
prolonged experience with addictive drugs (Volkow et al., 2007;
McCutcheon et al., 2009).

The strain-specific addiction-like neuroplasticity that
characterizes food-restricted D2 mice could be driven by
corticosteroids. Thus, adrenalectomy only prevents behavioral
sensitization fostered by repeated cocaine administration
and influences drug-induced neuroplasticity within the
mesocorticolimbic DA system in mice of the D2 strain (de
Jong et al., 2007, 2008, 2009). Moreover, food-restricted D2 mice
show reduced mesocortical and enhanced mesoaccumbens DA
in response to restraint stress (Cabib et al., 2002), spontaneous
recovery of an extinguished active coping strategy acquired
in a water T-maze, and relapse into active coping on retest
in the FST protocol (Campus et al., 2015). The latter effect
was dependent on reduced availability of dorsal striatal DA
receptors of the D2 type (Campus et al., 2017) further supporting
the view that aberrant addiction-like neuroplasticity mediates
the development of perseverant active coping by mice of the
D2 strain. Finally, food-restricted mice of the B6 strain develop
perseverant passive coping (Alcaro et al., 2002; Campus et al.,
2015), indicating dysfunctional adaptation of genotype-specific
coping style.

Chronic and repeated stressful experiences strongly affect
gene expression fostered by acute stress challenge in different
brain areas. Data obtained comparing mice from the B6 and
D2 inbred strains indicate opposite patterns of brain c-fos
expression fostered by the first encounter with FST dependent on
an interaction between genotype and feeding condition. Indeed,
food-restricted male D2 mice were characterized by reduced

FST-induced c-fos expression in the IL and in the left dorsolateral
striatum and left lateral amygdala; whereas food-restricted male
B6 mice showed enhanced FST-induced c-fos expression in the
IL, basal and central amygdala, and hippocampus (Campus et al.,
2015). Moreover, a genome-wide analysis of basal and stress-
induced corticolimbic gene expression performed on brain tissue
samples from repeatedly restrained male mice of the two inbred
strains challenged with FST (Mozhui et al., 2010) found highly
divergent gene expression changes in the mpFC, amygdala, and
hippocampus between male B6 and D2 mice with very few genes
showing alterations in both strains in any region. Thus, the
authors concluded that rather than for the degree of activation
of a common molecular ‘‘stress network’’, mice of the two strains
differ for the gene networks engaged by stress.

Slightly different conclusions were reached by a study in
female mice of the two inbred strains exposed to chronic mild
stress (CMS) protocol and then challenged with a single restraint
experience (Terenina et al., 2019). The study reported that nearly
all the common transcripts detected in the hippocampus of the
stressed mice were increased in B6 and reduced in D2 mice
and that mice of the B6 strain were the least responsive to the
effects of CMS on the hippocampal transcriptional response to
the novel acute stressor. Although the two studies used different
stressors, it is tempting to identify a sex-dependent effect of the
two genotypes. Indeed, male and female rodents appear to be
differentially affected by the chronic/repeated stress procedures,
although sex differences depend on the behavioral, physiological,
or neurobiological phenotype under screening (Franceschelli
et al., 2014).

In summary, adapting to environmental changes can lead to
the development of perseverant/inflexible forms of genotype-
specific coping styles. Indeed, D2mice develop perseverant active
coping whereas B6 mice develop perseverant passive coping.
Moreover, the liability to development of perseverant active
coping seems to be age-specific in some genetic background.
Finally liability to develop a perseverant active coping style is
supported by dysfunctional neuroplasticity within the meso-
cortico-limbic system.

INTERACTION BETWEEN EARLY
EXPERIENCE, GENOTYPE, AND SEX

Early postnatal life represents a particularly relevant time
window for individual development, since it is characterized
by the extreme sensitivity of neurodevelopment trajectories to
environmental influences (Daskalakis et al., 2013; Di Segni et al.,
2018; Luby et al., 2020; Nelson and Gabard-Durnam, 2020;
Babicola et al., 2021; D’Addario et al., 2021; Lo Iacono et al.,
2021). Early experiences can shape synaptic plasticity (Aisa et al.,
2009; Lupien et al., 2009; Korosi et al., 2012) permanently
affecting brain functioning and modulating behavioral response
to stimuli in adulthood (Mintz et al., 2005; Coccurello et al.,
2009; Mcclelland et al., 2011). These experiences can regulate
flexibility of stress coping strategies adopted in adult life leading
to either adaptive or maladaptive coping styles (Pryce et al.,
2005; Arborelius and Eklund, 2007; Jezierski et al., 2007; Lupien
et al., 2009; Rivarola and Suarez, 2009). Thus, several studies
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have shown that the same negative events experienced in early
life can result in higher susceptibility to mental disturbances but
also strengthen resilience to adverse experiences in adulthood
(Di Segni et al., 2017, 2018; D’Addario et al., 2021). Finally,
precocious aversive experiences can differently impact physical
and mental health depending on genetics (Di Segni et al., 2017,
2018).

Early life stress (ELS) is considered a major source of
psychopathology and it encompasses different traumatic events
experienced during childhood and adolescence (Juruena et al.,
2020). One problem with modeling ELS in rodents is maternal
adaptation to the stressed pups; indeed, mothers of manipulated
pups are, usually, over-caring (Orso et al., 2019). This situation is
in sharp contrast with most of the human traumatic conditions
that involve absent, reduced or very dysfunctional caregiving
and, indeed, can foster long-term positive effects on emotional
regulation (D’Amato et al., 1998; Southwick et al., 2005;
Daskalakis et al., 2013; Ashokan et al., 2016). However, a recent
protocol: repeated cross fostering (RCF), involving a daily change
of the fostering mother from postnatal day 1 to postnatal day
4 and leaving the pups with the last adoptive mother until
weaning, was shown not to influence maternal behavior, to
increase pups’ emotional reactivity to temporary isolation, and
to foster hypercapnia in adulthood: an endophenotype of panic
disorder in humans (Luchetti et al., 2015).

A complex genotype × sex interaction moderates the
long-term effects of RCF on coping with FST. Thus, the early
manipulation of the social environment did not influence levels
of immobility expressed by adult D2 male mice, it increased
levels of immobility expressed by B6 male and D2 females and
it decreased immobility levels expressed by B6 females (Di Segni
et al., 2016, 2019; D’Addario et al., 2021; Lo Iacono et al.,
2021). This variability does not seem to depend on variable
sensitivity to the manipulation of the early environment. Indeed,
RCF exposure rendered both B6 and D2 pups insensitive to
the appeasing effect of nest cues during temporary isolation on
postnatal day 8, regardless of the strain; although RCF fostered
hypercapnia in B6 mice only (Luchetti et al., 2021). Moreover, in
spite of the opposite effects on the behavioral response to FST,
RCF did not change baseline or stress-induced corticosterone
levels in adult B6mice, regardless of the sex (Di Segni et al., 2019).

Instead, RCF experience was associated with an enhanced
and reduced restraint-induced increase of mpFC DA in D2 and
B6 female mice respectively, leading to opposite changes of
the mesoaccumbens DA response to the stressor (Di Segni
et al., 2016). The strain-specific changes of frontocortical
modulation of ventral striatal DA transmission are coherent
with the behavioral effect of RCF in mice of each strain (Cabib
and Puglisi-Allegra, 2012). Therefore, meso-cortico-limbic DA
transmission can be a major target of the long-term effects
of early destabilization of the maternal environment. This
hypothesis would be in line with the results of studies in human
subjects (Gee et al., 2018; Cohodes et al., 2021); moreover, studies
of institutionalized children indicate that parental deprivation
occurring between 0 and 24 months is especially detrimental
for longer-term outcomes (Cohodes et al., 2021). The meso-
cortico-limbic system is also involved in modulating motivation

toward positive reward and the analysis of saccharine intake by
adult RCF-exposed mice revealed an increase of consumption by
B6 females and a strong decrease by both B6male and D2 females
(Di Segni et al., 2016, 2019; Lo Iacono et al., 2021), further
supporting the impact of RCF on this system.

A complex genotype × sex interaction also moderates the
long-term effects of RCF on behavioral and central effects of
cocaine in adult mice (Di Segni et al., 2017, 2019; Lo Iacono
et al., 2021), in line with previously discussed evidence on the
involvement of addiction-like neuroplasticity in the development
of dysfunctional active coping.

As discussed in the previous section of this review, stress-
induced resistance to develop passive coping toward novel
inescapable stressful situations is associated with behavioral
sensitization to addictive drugs that depends on the plasticity
of the meso-cortico-limbic system. This seems to be the case
for the effect of RCF in B6 females. Indeed, RCF-exposed adult
female mice of this inbred strain showed enhanced cocaine-
induced conditioned place preferences (CPP), NE release in
mpFC and DA release in NAc (Di Segni et al., 2017). Opposite
effects were observed in RCF-exposed adult B6 mice (Di Segni
et al., 2019). Moreover RCF-exposed female D2 mice, showed
reduced sensitivity to the effects of cocaine on CPP and on
NE release in the mpFC (Di Segni et al., 2017) although DA
release fostered by cocaine in the NAc was unaffected by the
early experience in these mice because RCF also prevented
the cocaine-induced increase of DA in mpFC (Di Segni et al.,
2017). Nonetheless, reduced cocaine CPP by RCF-exposed adult
mice of the D2 strain could still involve altered functioning
of the corticolimbic system. Indeed, the experience of an
unstable maternal environment blunted the cocaine-induced
c-fos expression in mpFC, NAc, hippocampus, and amygdala of
these mice, as well as spinogenesis in mpFC. Opposite effects
were observed in adult RCF-exposed female mice of the B6 strain
(Di Segni et al., 2017).

It is worth pointing out that phenotypes expressed by
RCF-exposed D2 females, i.e., increased helplessness in FST and
reduced sensitivity to the behavioral effects of cocaine were
reported in adult mice of the D2 strain (sex not specified)
raised by adoptive mothers of a different inbred strain (AKR),
characterized by low pup-oriented and high nest disturbing
behaviors (van der Veen et al., 2008). These effects were strain-
specific because they were not observed in adult B6 mice that
had experienced the same maternal environment (van der Veen
et al., 2008). Because RCF does not affect maternal behavior
(Luchetti et al., 2015) the shared long-term effects of the two
early manipulations indicate that they are the general outcome of
disruption of the mother-infant relationship at the early stages of
post-natal development (Lo Iacono et al., 2021), an observation
that strongly supports the translational value of the animal
models.

Finally, epigenetic modifications (Alyamani and Murgatroyd,
2018) are increasingly recognized as critical to understanding
sex differences in brain development and response to early
environment (Keller and Roth, 2016). Sex differences in
transcriptional signatures of early and adult stress exposure in
many brain regions have been reported in both human and
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animal models (see Brivio et al., 2020 for review; Labonté et al.,
2017; Barko et al., 2019; Peña et al., 2019; Parel and Peña,
2020 for review). Data collected in RCF-exposed B6 females
indicate a major influence of the early experience on the
plasticity of DA neurons located in the ventral tegmental area
(VTA; D’Addario et al., 2021), in line with the previously
described alteration of the mesocorticolimbic DA response to
positive/aversive experiences by these mice (Di Segni et al., 2016,
2017), and very recent findings (Lo Iacono et al., 2021) revealed
the role of interaction between sex and genotype on RCF-induced
alteration of transcripts in the VTA of adult mice.

In conclusion, the findings obtained by RCF protocol reveal
that the development of individual coping styles is moderated
by a complex interaction between genotype, sex, and early
mother-infant relationship. Moreover, they offer further support
to the main role of the meso-cortico-limbic DA system in the
expression of coping styles and point to the plasticity of VTA DA
neurons as a major mediator of the long-term effects of genotype,
sex, and ELS.

CONCLUSIONS

The present review focused on factors influencing coping styles
starting from the evidence that dysfunctional coping styles
are associated with mental disturbances. The reviewed data
support the view that: (1) individual coping styles are genotype-
specific; (2) genotype-specific coping styles are moderated
by early experience of an unstable mother-pup relationship;

(3) individual coping styles can become inflexible/perseverant
following chronic/repeated stressful experiences pointing to
dysfunctional coping as the outcome of ‘‘life events’’ experienced
in the course of the lifetime; (4) aminergic modulation of
frontocortical-cortical striatal circuits play a major role in the
expression of individual coping styles; and (5) plasticity fostered
by a history of stress experiences within these same circuits play
a major role in the development of dysfunctional coping.
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