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Mice use ultrasonic vocalizations (USVs) to convey a variety of socially relevant

information. These vocalizations are affected by the sex, age, strain, and emotional state

of the emitter and can thus be used to characterize it. Current tools used to detect

and analyze murine USVs rely on user input and image processing algorithms to identify

USVs, therefore requiring ideal recording environments. More recent tools which utilize

convolutional neural networks models to identify vocalization segments perform well

above the latter but do not exploit the sequential structure of audio vocalizations. On the

other hand, human voice recognition models were made explicitly for audio processing;

they incorporate the advantages of CNN models in recurrent models that allow them

to capture the sequential nature of the audio. Here we describe the HybridMouse

software: an audio analysis tool that combines convolutional (CNN) and recurrent (RNN)

neural networks for automatically identifying, labeling, and extracting recorded USVs.

Following training on manually labeled audio files recorded in various experimental

conditions, HybridMouse outperformed the most commonly used benchmark model

utilizing deep-learning tools in accuracy and precision. Moreover, it does not require

user input and produces reliable detection and analysis of USVs recorded under harsh

experimental conditions. We suggest that HybrideMouse will enhance the analysis of

murine USVs and facilitate their use in scientific research.

Keywords: animal communication, social interactions, ultrasonic vocalizations, neural networks, machine

learning, CNN–convolutional neural networks, LSTM–long short-term memory

INTRODUCTION

Many vertebrates use Species-specific vocal communications for social interactions (Todt and
Naguib, 2000;Wilkins et al., 2013; Chen andWiens, 2020). Specifically, mice and rats use ultrasonic
vocalizations (USVs) to convey a variety of information types: identification of the emitter and its
group, its status within the group and the status of the group, the environmental conditions, such
as the presence of predators, and whereabouts of food and water (Lahvis et al., 2011). The emitter
and the receiver of the vocal cue can be found at various types of social engagements. For example,
pups emit either wriggling calls (WC) to gain their parents’ attention or isolation calls following a
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drop in their body temperature when kept away from their
mothers (Haack et al., 1983). An adult male may vocalize to
ward off other male intruders or peruse a female in courtship by
singing to her (i.e., mating calls, MC), while a female may emit
vocalizations to answer her male suiter or to call other females
(Neunuebel et al., 2015).

Current tools used to detect and analyze murine USVs rely
on user input and classical image processing algorithms to
identify and clean USVs, thus requiring manual adjustments and
ideal recording environments. More recent tools utilize machine
learning and convolutional neural networks (CNN) models
(Van Segbroeck et al., 2017; Fonseca et al., 2021) to identify
vocalization segments. For example, DeepSqueak (DS), a recent
benchmark tool for detecting USVs, relies on neural networks
to detect USVs (Coffey et al., 2019). It implements an object
detection architecture, namely: regional convolutional neural
networks (Faster-RCNN) (Ren et al., 2017). CNN-based models
such as DeepSqueak are powerful tools for image processing
due to their capability to take advantage of the local spatial
coherence of images. In the case of vocalizations, the images
are 2D representations of the audio signal transformed to the
frequency domain. However, CNN models do not exploit the
temporal correlations of audio signals and underperform under
noisy recording conditions. On the other hand, recurrent neural
networks (RNNs) can compensate for these weaknesses by
capturing long contextual dependencies, using prior knowledge,
thus offering better performance.

In this study, we describe a USV Extractor software
(termed HybridMouse), an audio analysis tool that allows
labeling of murine ultrasonic vocalizations both manually or
automatically. The automatic detection of USVs is performed by
the HybridMouse model, which combines convolutional (CNN)
and Bidirectional Long-Short TermMemory (BiLSTM) recurrent
neural networks to identify USVs, label them, and extract their
denoised representations.

METHODS

Training a Hybrid CNN-BiLSTM Model to
Detect USVs
Animals
Mice from three distinct strains: BALBc, C57BL/6J, and
CD-1 (ICR) were purchased from Envigo (Rehovot, Israel).
The mice were kept in clean plastic chambers (GM500,
Tecniplast, Italy) at 22◦C and a 12-h light/12-h dark
cycle (light on at 7 am) and received food and water ad
libitum. All cages contained standard wood chip bedding,
cotton wool bedding material, and a mock nest of a 12 cm
plastic tube. All the recorded adult mice were 3–5 months
old, and all the recorded pups were healthy, 3–5 days
old pups.

Recording the Training Data
Adult vocal communications were recorded using a 1/4 inch
microphone (Type 4939-A-011), connected to a preamplifier
(Type 2670), and an amplifier (Type 2690-0S1, Bruel and
Kjaer) in a custom-built sound-shielded box. Vocalizations were

sampled at 250 kHz with a CED Micro 1401-3 recording device
(Cambridge Electronic Design Limited, Sunnyvale, CA). The
mice were placed in their home cage or a fresh cage during
recording sessions and received food and water ad libitum. The
lid was removed and replaced with a metallic grid to allow
passage of sound and prevent escape, while the microphone was
placed hovering just above the cage. The system records 10min
every hour for 12 h, during the 1st, 2nd, and 8th nights. In
each strain, we recorded four types of pairs: male-male (both
naive), female-female (both naive), male-female (both naive),
experienced female (dam following weening)-naïve female. In
total, we recorded S × G × P × D × H × M = 216 h. When
S is the number of strains (3), G is the number of social groups
(4), P is the number of pairs in each group (3), D is the number
of recorded days (3), H is the number of hours recorded each
night (12), and M is the number of minutes sampled every
hour (10).

Pup calls were recorded by placing them in a 200ml
cardboard cup and recording for 5min each. In total, we
recorded ten pups per strain from at least two different litters
for a total of S × P ×M = 2.5 h, where S is the number
of strains (3), P is the number of pups in each group (10),
and M is the number of minutes recorded for each pup
(5). Even though this group’s recorded hours are low, we
extracted ∼4k pups isolation USVs. This is because isolated
pups emit vocalizations rigorously as their temperature drops
almost throughout the entire (5min) recordings, resulting in a
high number of USVs per recording, while other groups tend
to vocalize fewer hours. As a comparison, we also recorded
interactions between naïve male dyads, and we did not use these
recordings in our training because the number of USVs emitted
was too low.

Dealing With Imbalanced Data
Only 0.44% of the data contained USVs (57min of 216 h
recorded), making the data highly imbalanced and unsuitable
for a classification task. To overcome this, we trained the data
only on short (1–20 s) audio segments containing consecutive
USVs with short (<1 s) intervals between them, which effectively
condensed our training data from ∼200 h to ∼2 h with more
balanced training examples (45% USV and 55% background).

Noise Samples
Condensing the data meant that we trained the model only
on the background noise between the USVs, which posed a
new problem; it was insufficient to adequately train the model,
resulting in a high rate of false-positive events. To overcome
this problem, we randomly sampled noise segments from our
recordings and added them to the training data. We also added
background recordings made in other labs to diversify noise
patterns and thus generalize the model. In total, we added 2600
files (1-s long each) without USVs, for a total of∼43 min.

To overcome the imbalance reintroduced to our data due
to adding noise samples, we used a weighted classifier in our
training to represent the imbalance in the data between the two
classes (USV 25%, background 75%).
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Manual Labeling
A trained team of analytics manually identified each USV by
screening spectrograms of all the recorded data using a custom-
made Matlab script. When labeling the USVs, our main priority
was to extract temporal features (such as syllable duration,
call duration, syllable rate per sentence and second, etc.). For
that reason and to save time and effort, we only extracted the
beginning and ending timestamps of each USV, which means
that the minimal and maximal frequencies for each USV were
not extracted.

Evaluation
Evaluation Metrics
Model evaluation was made by comparing the model predictions
to manually labeled data and extracting recall, precision, and F1
scores, as follows:

Recall =
True Positive

True Positive+ False Negative

Precision =
True Positive

True Positive+ False Positive

F1 = 2∗
Presicion∗Recall

Presicion+ Recall

Where
True-positive—The number of correctly identified USVs
False-positive—The number of noise segments mislabeled as

USVs
False-negative—The number of USVs the were not detected.

Local and Global Signal to Noise Ratio Calculations
The magnitude of an audio segment was calculated as the mean
sum of squares of the raw audio values. To calculate the local
signal-to-noise ratio (SNR), we first calculated Msig+bg,i, the
magnitude of the ith audio segment containing USV. We then
calculated Mbg,i, the mean magnitude of the audio segments

preceding and following the ith USV segment (that do not contain
USVs). Then we calculate Ri, the local SNR of the ith USV,
as follows:

Ri =
Msig+bg,i −Mbg,i

Mbg,i

Where
Ri–The local SNR of USV segment i
Msig+bg,i–The magnitude of the audio segment containing

USV segment i
Mbg,i–The magnitude of the audio segments preceding and

following USV segment i.
To calculate the global SNR of the entire audio file, we

calculated Msig+bg, the magnitude of all segments containing
USVs combined, and Mbg, the magnitude of all the segments not
containing USVs combined, and repeated the calculation above.

Testing Data and Labeling
The analysis was performed on audio files downloaded from the
mouseTube database (https://mousetube.pasteur.fr/). The files
were recorded by two laboratories during various social tasks
to ensure model generalization. Files from the first laboratory

(Duke University Medical Center, Social context comparisons)
included recordings of adult male B6D2F1/J mice with either
awake or anesthetized male or female conspecifics on different
menstrual states or only with urine from males or females.
Files from the second laboratory (Washington University in St.
Louis, Pup USV Day 3–14 Monitoring) included recordings
of C57BL/6J pups (p3–p14). All recordings were made using
Avisoft CM16/CMPA microphones at a 250 kHz sampling rate
(for more details, see Supplementary Table 1). USVs detected
by the different models were labeled as “USV.” Subsequent
tagging of the same USVs by a model were labeled “Partial,”
and single taggings encompassing multiple USVs were labeled
“Multi.” Each of these labels was counted only once. In addition,
tagged alarm calls were labeled as “AC” and excluded from
further analysis.

Comparison With DeepSqueak
We analyzed the same test files using DeepSqueak (Coffey et al.,
2019), employing its default network for mouse USVs. We
performed the analysis with two different settings; balanced
(DS_B) and high recall (DS_H); all other settings were kept
unchanged in their default settings: Total analysis length = 0
(full duration), Analysis chunk length = 3 s, Overlap = 0.1 s,
frequency cut off high = 120 kHz, frequency cut off low =

1 kHz, score threshold= 0. The analysis was performed using the
built-in “Mouse Call_Network_V2” network.

Statistical Analysis
Model performances were compared using the Mann-Whitney
U test due to the non-normality of the variables. The analysis was
performed using SPSS version 27 software.

Our Model
Model Architecture and Syllable Isolation
As mentioned in the methods (see section Manual Labeling), we
labeled the recorded data by manually extracting the start and
end time points of each USV and not their frequency boundaries.
Therefore, the model output contained only temporal data (each
USV’s start and end time points) and no spectral data (such
as USV frequency and structure). However, our goal was to
create a model capable of not only identifying the time steps
containing USVs but also of estimating their frequencies and
segmenting them from the background noise. To achieve this, the
model processes the 124 by 51 feature maps in two phases; CNN
and BiLSTM. The output of the CNN phase is a 1×124 vector
estimating the probability of each frequency to be a part of a USV.
Concatenating these vectors along with the temporal domain
into a 2D map allowed us to use it as a mask to clean the raw
spectrograms (Figure 2B, Classification andmask). In the second
phase, the BiLSTM layer classifies each vector (representing each
time point) and estimates whether this vector is part of a USV
or not.

CNN Layers
Each time bin is fed into the model along with its neighboring 25-
time steps. We experimentally found this number of neighboring
steps to be the minimum number that yields an optimal
performance of the model. While models with fewer neighbors
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FIGURE 1 | Model architecture. (A) Sequential data (124 by 51 Mel-spectrograms per time step) are fed into the model. (B) The first phase consists of convolutional

layers and outputs a mask defining the estimated frequency (or the lack of) of USVs. (C) The second half of the model combines data from all time points and

classifies each time step.

resulted in inadequate predictive capabilities, models with a
higher number of neighbors did not improve the model enough
to justify increasing complexity. Inputting each time bin with
neighboring 25-time steps creates a form of self-attention
mechanism (Vaswani et al., 2017; Bello et al., 2019); a 1D
convolution is performed on the mid-time bin to accentuate
potential USVs, and a 2D convolution is performed on the entire
feature map to suppress global noises (Figure 1). By multiplying
the outputs of the two branches, we got a clean 1D representation
of each time-bin. Finally, we multiplied the input by the clean
1D vectors before passing it to the sequential layers to force it to
act as a filter. The output of this phase is used again in the post-
processing stage to produce clean syllables Figure 2C (see section
Pre-processing and Augmentation).

Sequential Layers
The extracted vectors from the CNN layers are first reshaped,
i.e., the vector is transformed from a 124×1×1 vector (Height
x Width x Channel) into a 1×124 (1 × Channel) vector.
They are then fed into the sequential layers, comprised of
BiLSTM layers followed by fully connected (FC) layers. Finally,
a weighted softmax-cross entropy algorithm was implemented in
the classification layer to output a categorical 1D vector where
each time step was labeled either “0” or “1” for “background”
and “USV,” respectively. It is also possible to output a numeric

2D probability vector with values between 0-1 for each label
(“background” or “USV”) at each time step. The output is the
model’s estimated probability of each time step to be part of a
USV (Figure 1C). The model was trained using 1-s long audio
segments (332-time steps). However, it is possible to feed longer
or shorter longer segments to train the model or to extract USVs.

Training Data
Training data was acquired by recording vocalizations emitted
during dyadic interactions between mice of various strains,
ages, and during various social contexts. In total, we recorded
over 200 h of mouse vocal communications representing over
1,200 h of interactions. We then meticulously combed the audio
recordings and extracted over 40k USVs to be used as training
data (See methods for details).

The training data included two types of audio clips; (1)
files containing “calls” (a series of USV syllables) and (2)
files containing only background with no calls. Most of the
background samples were extracted from the recorded training
data, but some samples were extracted from recordings made
by other teams and laboratories in order to diversify the
noise parameters and make the model suitable for general
recording conditions.

It is important to note that themodel was tested and compared
to DeepSqueak on an entirely new set of files downloaded from
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FIGURE 2 | USV processing flow chart. The vocalizations are recorded at a high sampling rate (>250 samples per sec) and, after scaling, undergo processing, which

can be divided into three phases; (A) pre-processing, (B) syllable detection, and (C) post-processing. (A) First, the signal is converted to the frequency domain by

extracting Mel-frequency cepstrum (MFC) features; the spectrograms indicate frequency contours and relative intensities of the frequency components. The extracted

frequencies are binned in 124 frequency bands (range 1–125 kHz) and 332-time steps per second (∼3ms per time step); (A.1) These frequency maps are augmented

during training to create a more generalized model; the insert (A2) shows spectrograms of training images before (Original) and after (Augmented) augmentation. Blue

arrows indicate the vertical translation direction of the images; green dashed lines indicate existing noises’ location; orange dashed lines indicate randomly added lines

to simulate humming (horizontal lines) and impulse (vertical lines) noises. We also scaled the values of the images in the training data but did not do so in this example

to make it easier to plot. Each time step is fed into the classification model along with its preceding and following 25-time bins. (B) The 124 by 51 feature maps are

processed by the model in two phases; CNN and BiLSTM. The CNN layers filter the feature maps and produce 124 by 1 column masks for each time step. These

masks indicate the presence (or lack of) and frequency of USVs in their respective time steps. The masks are flattened and fed into the BiLSTM layers and to fully

connected layers (FC) to classify each time step as a “1” or “0,” indicating whether they contain/are part of a USV or not, respectively. The output of these layers is

also used in (C) the post-processing phase to produce a cleaned signal. The cleaning is done by multiplying the original spectrogram with the mask and the

probability vector produced by the classification model.
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FIGURE 3 | USV detection and denoising. Spectrograms (linear) of example USVs detected by HM model. (A) Detected USVs over a 10-s audio file; green squares

indicate the estimated frequency and time boundaries of each USV. (B) A close-up of the highlighted blue area in (A) containing both types of noises, humming, and

impulse noises, denoted by vertical and horizontal red dashed lines (respectively). (C) The denoised version of the USVs shown in (B), processed by HybrideMouse;

all background noises were removed, and the USVs were isolated.

mouseTube. The recordings that were used to train the model,
both the ones recorded at our lab and those collected from others,
were not used to test the model. The files used for testing were
recorded under different conditions at different laboratories.

Retraining and Fine-Tuning
We added the option to retrain the model. This can be performed
by manually labeling or automatically labeling (and manually
adjusting) samples of recordings and retraining the model to
create new, customized models.

Pre-processing and Augmentation
For pre-processing of audio clips (Figure 2A), the signal was
converted to the frequency domain by extracting Mel-frequency
cepstrum (MFC) features. The extracted frequencies were binned
into 124 frequency bands (range 1–125 kHz) and 332-time steps
per second (3ms per time step). Each time step was fed into

the classification model along with its preceding and following
25-time steps (bins) as 124 by 51 images for each time step
(Figure 2A). We also converted the labels’ timetables into the
corresponding one-dimensional categorical vectors. Each label
vector had the number of time steps as the corresponding feature
map, and each time step that contained a part of a USVs was
labeled “1,” and the rest that did not contain parts of a USV were
labeled“0.”

We have used a similar pre-processing of audio clips for
training and testing, aside from the following augmentations.
During training, the images were augmented in three ways.
USVs varymarkedly, depending on the emitter’s strain, genotype,
age, sex, socio-emotional state, etc. Although our training data
included a great variety, it did not include all types of mouse
USVs. Therefore, we randomly shifted the feature maps along
the feature-axis (frequency axis) in order to train the model to
recognize new vocalizations emitted at different frequency bands
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TABLE 1 | Comparing temporal-spectral estimations.

HybridMouse DeepSqueak

balanced recall

DeepSqueak

high recall

Total number of

USVs

10,327 9,175 10,091

Duration (Mdn,

sec)

0.052 0.072 0.0512

FrLow (Mdn, kHz) 50.6 47.7 50.1

FrHigh (Mdn, kHz) 73 78.8 71.4

FrLow (<20 kHz)

(%)

0.3 8.8 10.7

FrHigh (<20 kHz)

(%)

0 1.2 4.3

Duration—the estimated median length of the USVs in seconds, FrLow and FrHigh—the

estimated median lower and upper (respectively) frequency boundary of the USV in kHz,

FrLow (<20 kHz), and FrHigh (<20 kHz)—the percent of USVs that were estimated to have

lower or upper (respectively) frequency boundaries lower than 20 kHz.

while preserving their basic structure. In addition, the scale of
the signal depends on the acquisition system and method and,
ideally, should be normalized (zero-centered and with a range
between −1 and 1). Signal normalization can be performed by
subtracting the mean from the signal and dividing it by the
maximum value. However, since the audio signal is fed in short
segments, it was challenging to shift and scale it that way. In
addition, normalizing the feature maps was also not ideal due
to the non-linear nature of the Mel-spectrogram transformation.
To overcome these difficulties, we randomly scaled (added
values [−3, +3 a.u]) and shifted (vertical shift [−50,+10 a.u])
the feature maps during training and trained the model to be
less sensitive to the input scale and center. Lastly, horizontal
and vertical lines were randomly added to simulate continuous
humming and impulse noises, respectively (Figure 2A.1). We
also tried other, more traditional augmentation methods, such
as adding Gaussian or pepper-and-salt noise to the images. In
these cases, however, when the augmentation levels were high,
the model accuracy declined, and when the levels were low, the
augmentations didn’t have an effect; therefore, we did not use
these augmentations.

Post-processing
The last step of USVs extraction took place after the model
prediction. The output of the convolutional layer was used
as a mask and multiplied with the raw spectrogram and the
probability vector to extract clean syllables without background
(Figure 2B).

The HybridMouse Software
We integrated the HybridMouse model in a user-friendly
Matlab app (Supplementary Figure 1). This app was designed
to facilitate comparisons between recordings from up to two
microphones. Our original paradigm includes recording from
onemainmicrophone (MainMic) and an additional microphone
(Mini Mic).

RESULTS

Syllable Isolation and Denoising
HybridMouse model extracts the timestamps of each USV,
its frequency, and a clean denoised representation. These
capabilities were tested on 58 audio files (180–300 s total length
each) downloaded from the Mousetube database and recorded
under different conditions and settings. We found that the model
excels in estimating the onsets and endings of the syllables
(Figures 3A,B). We also found that the model manages to
produce denoised representations of the USVs (Figure 3C),
which can be used to extract additional features such as USVs’
frequency boundaries and more.

Comparing Performance of HybridMouse
to DeepSqueak
We compared the performance of HybridMouse to DeepSqueak,
a benchmark model for rodent USV detection (Coffey et al.,
2019). To that end, we analyzed the same files using DeepSqueak
with two different settings; balanced recall (DS_B) and high
recall (DS_H) (Table 1). We found that most of the USVs were
detected by both models with high accuracy, and, naturally, the
detection capabilities declined in noisier sections. Yet, in most
cases, the detection capabilities of HybridMouse were higher than
DeepSqueak in both settings (Figure 4A).

Using all models, we estimated the detected USVs duration
as well as the lower (LowFr) and higher (HighFr)-frequency
boundaries. We found that the estimations of frequency
boundaries (low and high) and USV lengths were similar
between all models. However, the frequencies estimated by
DeepSqueak contained more USVs with frequencies lower than
20 kHz (Table 1; Figure 4B; Supplementary Figure 2). These
USVs could have been USVs that DeepSqueak was able to
detect but could not accurately estimate their frequencies or
low-frequency noise segments that it mislabeled as USVs. These
results suggest that DeepSqueak has lower precision due to a
larger number of false-positive events, especially in high-recall
settings, compared to HybrideMouse.

On the other hand, using a lower threshold enabled
DeepSqueak, when set on high-recall, to capture the duration
of the USVs more reliably. The median value estimated by
this setting is more similar to the value that HybridMouse
estimated. This was in contrast to when DeepSqueak was set
to a balanced-recall setting, which only registered the longer
USVs and ignored the shorter ones. Notably, HybridMouse
suffers from low accuracy when estimating the higher frequency
boundaries due to the spectral map’s representation as a Mel-
spectrogram with higher resolution in the lower frequencies than
the higher ones.

To quantify the detection capabilities of HybridMouse and
statistically compare it to DeepSqueak, we manually labeled
13 arbitrarily selected audio files and extracted each model’s
precision, recall, and F1 score. Of these 13 files, four contained
very few USVs (∼2) and were excluded from the analysis
(Table 2; Supplementary Tables 1–3). As expected, running
DeepSqueak on a high-recall setting missed fewer USVs, thus
achieving higher recall than a balanced-recall setting; however,
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FIGURE 4 | Comparing detection of USVs by HybridMouse to DeepSqueak. (A) Visual comparison between the models and examples of their detection

performance, showing spectrograms (linear) of audio segments with the detected USV markings by all models; HM (black), DS_H (blue), and DS_B (red) and the

missed USVs (green). Shown are USVs detected by all models and settings (3), USVs detected only by HM and DS in high-recall settings (2), USVs detected only by

HM (1, 4, and 5). We also see USVs missed by all models (6 and 7) and finally, a noise segment that all models mislabeled as a USV (8). (B) Comparing

temporal-spectral estimations; Audio files were analyzed using HM and DeepSqueak with balanced recall (DS_B) and high recall (DS_H) settings. Each detected

USV’s duration, lower-frequency (FrLow), and upper-frequency (FrHigh) boundaries were estimated and compared. (C) Comparing the performance of the

HybridMouse model (HM–blue) to the DeepSqueak model with two different settings; balanced recall (DS_B–green) and high recall (DS_H–yellow). Wilcoxon

signed-rank *p < 0.05, **p < 0.01. HybridMouse scored significantly higher in recall (Mdn = 0.979) than DeepSqeak on balanced recall setting (Mdn = 0.802)

(Wilcoxon signed-rank z = −2.666, p < 0.01), and on high recall setting (Mdn = 0.837) (Wilcoxon signed-rank z = −2.666, p < 0.01). All models performed rather

similarly in the precision, with DS_H receiving the lowest score. HybridMouse achieved significantly higher F1 score (Mdn = 0.955) than DS_B (Mdn = 0.876)

(Wilcoxon signed-rank z = −2.66, p < 0.01), and DS_H (Mdn = 0.862) (Wilcoxon signed-rank z = −2.66, p < 0.01).

this comes with the price of mislabeling more noise fragments
as USVs and performing poorly on the precision metric. On the
other hand, HybridMouse missed fewer USVs and mislabeled

fewer noise fragments as USVs than both DeepSqueak settings
and in all the tested files. HybridMouse scored significantly
higher in recall (Mdn = 0.979) than DeepSqeak on balanced
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TABLE 2 | Comparing detection of USVs by HybridMouse to DeepSqueak.

HybridMouse DeepSqueak

balanced recall

DeepSqueak

high recall

Recall 0.98 0.80 0.84

Precision 0.97 0.97 0.94

F1 0.96 0.87 0.86

Comparing median recall, precision, and F1 scores of the HybridMouse model to the

DeepSqueak model with two different settings; balanced recall and high recall.

recall setting (Mdn= 0.802) (Wilcoxon signed-rank z=−2.666,
p < 0.01), and on high recall setting (Mdn = 0.837) (Wilcoxon
signed-rank z = −2.666, p < 0.01). All models performed
similarly in the precision, with DS_H receiving the lowest score.
However, the difference in recall was reflected in the final F1 score
with HybridMouse achieving significantly higher score (Mdn =

0.955) than DS_B (Mdn = 0.876) (Wilcoxon signed-rank z =

−2.66, p < 0.01), and DS_H (Mdn = 0.862) (Wilcoxon signed-
rank z = −2.66, p < 0.01). Thus, HybridMouse outperformed
DeepSqueak (Figure 4C).

Lastly, to show that our model is more robust to low SNR, we
calculated the global SNR of each tested audio file and found that
HybridMouse performs well even in low SNR (Figures 5A–C).
This is further demonstrated by the example of one of the tested
files (interaction between male and female, 300 s duration shown
in Figures 5D–I), showing that below 0.1 local SNR, DeepSqueak
struggles to detect the USVs, resulting in a high number of
false-negative events. Though lowering the detection threshold
(high recall) improves the detection (fewer false-negative events),
it comes at the cost of raising the number of false-positive
events. In addition, we compared the power spectral densities
of the detected USVs and the missed USVs by HybridMouse
(Supplementary Figure 3) and again showed that the missed
USVs have low amplitude and low SNR.

DISCUSSION

Like many vertebrates, mice convey various information through
vocal communication (Todt and Naguib, 2000; Wilkins et al.,
2013; Chen and Wiens, 2020). For these reasons, analyzing
social vocalizations can progress our understanding of animal
social behaviors and the underlining mechanisms governing
these behaviors. Studies in this field rely heavily on observations
and subjective assessments based on visual cues, such as freezing
and body pose. However, these studies tend to ignore the vocal
cues, which can be paramount to understanding and accurately
assessing the socio-emotional state of the animals.

One of the reasons this field is ignored is that most murine
vocalizations are ultrasonic and inaudible to the human ear and
can also be very short and sparse. Another reason is the shortage
of tools that may be used for automatic high-throughput analysis
of such vocalizations.

With the recent explosion of computerized algorithms and the
rise of computational power, multiple tools have been developed
to analyze animal vocal communication, such as VoICE (Burkett

et al., 2015), MUPET (Van Segbroeck et al., 2017), which rely
on classical signal and image processing methods. More recent
models such as USVSEG (Tachibana et al., 2020) and Acoustilytix
(Burkett et al., 2015) rely on machine learning and deep learning
tools to extract useful information from the recording of animal
vocalizations. One of the most popular and publically-available
models for rodent USV analysis is DeepSqueak, a benchmark
in this field that outperforms its predecessors (Coffey et al.,
2019). This model relies on deep neural networks to extract
USVs from audio recordings. However, DeepSqueak relies only
on convolutional neural networks. These CNN-based object
detection models such as YOLO (Redmon et al., 2016) and Faster
R-CNN (on which DeepSquak is based) perform well under ideal
recording conditions; however, they are not suitable for analyzing
recordings with a low signal-to-noise ratio. This is because they
are made explicitly for image analysis and are less optimized
for auditory data, which is represented by a sequence of images
rather than a single image; thus, these models do not allow
capturing the syllables within their context. Other models based
on recurrent neural network-based models are more suitable for
analyzing data that have sequential nature.

In this study, we presented HybridMouse, a hybrid CNN-
BiLSTM based model for mouse USV extraction. This hybrid
model incorporates both CNN and recurrent neural networks
(BiLSTM), thus exploiting both the auditory signal’s structure
and its context.

We decided to compare HybridMouse to DeepSqueak, which
is considered a benchmark model for analyzing murine USVs; it
is well-known and free, unlike other available tools. DeepSqueak
comes with four different pre-trained models, and the model
chosen for comparison was trained explicitly for mouse USVs,
with two different settings: balanced recall (DS_B) and high recall
(DS_H). All other parameters were kept at default settings.

The HybridMouse model was tested on novel data recorded
in different labs on which it was not trained and was found
to be a robust tool for automatically identifying and isolating
USVs even in harsh recording conditions with low SNR. We
found that HybridMouse manages to detect almost all of the
manually identified vocalizations, resulting in high recall without
increasing the rate of false-positive events, thus demonstrating
high precision. We compared HybridMouse to DeepSqueak in a
balanced setting. We found that although the precision of both
models was similar, DS_B identifies fewer USVs, resulting in a
significantly lower recall and an overall lower F1 score. We also
compared HybridMouse to DeepSqueak in a high-recall setting.
This comparison showed that HybridMouse still managed to
identify a higher number of USVs and achieved a significantly
higher recall score even in this setting. Lowering the detection
threshold also increased the number of false-positive events,
resulting in significantly lower precision and overall F1 score
than HybridMouse.

We further investigated the performance of the models by
calculating the global SNR of each tested file and showing that
HybridMouse is more robust to lower SNR than DeepSqueak.
While the latter performed well and was comparable to the
former on files with high SNR, as the levels of SNR dropped,
so did the performance of DeepSqueak. Furthermore, pup
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FIGURE 5 | Comparing the effects of SNR on detection. Comparing the effects of SNR on detection capabilities of the model using the three parameters (A) recall,

(B) precision, and (C) F1 score. The relative SNRs were calculated as described in the methods and rescaled [0,1]. The performance of HybridMouse (HM) remains

relatively high. In contrast, the performance of DeepSqueak in both settings (balanced and high recall) (DS_B and DS_H, respectively) drops in all parameters when

the relative SNR is low. The middle and lower panels show an example of one of the tested files (interaction between male and female, 300 s duration). The black

horizontal line (overlapping with the x-axis) indicates the point where the magnitude of the signal is equal to that of its surroundings. The middle panels (D–F) show the

detected USVs (TP), missed USVs (FN), and segments mislabelled as USVs (FN) by the models throughout the interaction. And the lower panels (G–I) show swarm

plots of these parameters and the number of detections in each category.

vocalizations are recorded in a particular setting where the
microphone is closer to the recorded pup, and there are very
few background noises. Therefore, it was no surprise that
these recordings had high SNR and high detection rates by
all models.

The high time-resolution and robustness of HybridMouse
were achieved by two means. The first one was through the data
augmentation methods that we applied to the training data. We
added randomhorizontal and vertical lines, simulating consistent
humming and burst noises, respectively. The data augmentation
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has significantly improved the model by lowering its false-
positive rate. The second method was implemented within the
model architecture by evaluating each timestep in the contexts of
its neighboring timesteps in two levels. The first level was during
the CNN layers, where each timestep was fed into the model
with its 25 preceding and following time steps. The second layer
was in the BiLSTM layers, where each timestep was evaluated
in the context of its neighboring 330 timesteps. We also tested
other model configurations with different lengths of neighboring
timesteps and found that the abovementioned parameters are
optimal for maximal accuracy and manageable complexity.

However, this meant that the spectral maps had to be
compressed to reduce model complexity. This compression was
made by extracting Mel-spectrogram with 124 filter banks,
where the lower frequencies were represented with higher
resolution than the higher frequencies. In addition, the model
was trained on data that was only labeled in the time domain
and not the frequency domain. The combined effect of these two
properties resulted in a model with high temporal accuracy but
lower spectral accuracy, specifically when estimating the upper
boundaries of the USVs. This limitation should be taken into
account when using HybridMouse.

Another limitation is that the software does not characterize
the USV structure. Our model’s main goal is to extract USVs even
in harsh recording settings. Once these USVs are extracted, the
users may proceed with the analysis independently, using any
number of available methods for clustering, Classification, and
syntax analysis on the extracted USVs.

In summary, HybridMouse is a powerful tool for automatic
identification and extraction of mouse ultrasonic vocalizations
in variable recording conditions. It may be used for high-
throughput detection of murine social vocalizations.
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