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Neuronal oscillations: early
biomarkers of psychiatric
disease?

Anne Günther* and Ileana L. Hanganu-Opatz

Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University
Medical Center Hamburg-Eppendorf, Hamburg, Germany

Our understanding of the environmental and genetic factors contributing to

the wide spectrum of neuropsychiatric disorders has significantly increased

in recent years. Impairment of neuronal network activity during early

development has been suggested as a contributor to the emergence of

neuropsychiatric pathologies later in life. Still, the neurobiological substrates

underlying these disorders remain yet to be fully understood and the

lack of biomarkers for early diagnosis has impeded research into curative

treatment options. Here, we briefly review current knowledge on potential

biomarkers for emerging neuropsychiatric disease. Moreover, we summarize

recent findings on aberrant activity patterns in the context of psychiatric

disease, with a particular focus on their potential as early biomarkers of

neuropathologies, an essential step towards pre-symptomatic diagnosis and,

thus, early intervention.
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Introduction

Neurodevelopmental disorders (NDDs) are highly prevalent diseases that affect
about 3% of the population worldwide. They include disorders such as schizophrenia
(SCZ), some forms of epilepsy, autism spectrum disorder (ASD), and attention
deficit-hyperactivity disorder (ADHD). NDDs are characterized by a wide range of
symptoms, including impairments in cognition, language, emotional processing, and
motor functions (Thapar et al., 2017; Savatt and Myers, 2021). Despite the devastating
individual and societal burden of NDDs, no disease-modifying treatments are available,
as current treatments are solely aimed to mitigate symptoms. While symptomatic
treatments can alleviate some of the burdens for affected individuals, currently available
treatments are only effective for some patients, only target some of the described
symptoms of NDDs, and tend to have strong side-effects (Genovese and Butler, 2020;
Goff, 2021).

The etiology of NDDs is multifaceted, including risk factors from genetic, epigenetic,
as well as environmental sources, such as maternal immune activation during embryonal
development or stress later in life (van Os and Kapur, 2009; Schmitt et al., 2014; Willsey
and State, 2015; Han et al., 2021; Reichard and Zimmer-Bensch, 2021). However,
despite the discovery of many new risk factors over the years, no comprehensive
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model of the pathophysiological mechanisms underlying NDDs
has been described.

In recent years, there has been a growing understanding
that developmental trajectories define the physiological and
pathophysiological development of neuronal circuits (Marín,
2016). Thus, the notion of early therapeutic intervention during
sensitive phases of development has gained traction in the
context of potentially rescuing pathophysiological trajectories
of development towards a healthy state (Veenstra-VanderWeele
and Warren, 2015; Dehorter and Del Pino, 2020). However, early
diagnosis of at-risk individuals before the onset of symptoms
remains challenging, not only due to heterogeneity of NDDs
but also due to their high levels of comorbidity, e.g., for some
forms of epilepsy co-occurring with intellectual disability or
ADHD co-occurring with ASD (Thapar et al., 2017). Thus,
the identification of biomarkers for NDDs is essential in order
to facilitate early diagnosis and, consequently, research into
potential avenues of treatment.

Recent studies identified neuronal activity patterns as a
potential parameter for the pre-symptomatic diagnosis of NDDs.
Activity patterns were shown to be altered in patients of NDDs
in a frequency-specific manner (Newson and Thiagarajan, 2019).
Promisingly, in animal models of NDDs similar aberrations
have been reported not only in adult animals but also during
early development (Sigurdsson et al., 2010; Richter et al., 2019;
Chini et al., 2020). This review focuses on early biomarkers
of neuropsychiatric disease. We provide a brief overview of
different neurodevelopmental psychopathologies, with a focus
on two of the most prevalent NDDs, schizophrenia (SCZ)
and autism spectrum disorders (ASD). Moreover, we include
a summary of the current knowledge on potential biomarkers
for emerging neuropsychiatric disease, before giving a brief
overview of normal and aberrant activity in developing neuronal
networks. A particular focus will be on relating observations
from human studies to recent insights gained from animal
models. Finally, we identify open questions and future research
directions for linking early dysfunction of neuronal circuits with
emerging disease.

Schizophrenia

SCZ is a severe neuropsychiatric disorder with onset during
young adulthood. SCZ is characterized by chronic, debilitating
symptoms, which have been classified as “positive” (e.g.,
hallucinations, delusions), “disorganized” (e.g., formal thought
disorder), and “negative” (e.g., social withdrawal, anhedonia), as
well as by cognitive deficits (Jauhar et al., 2022). Despite decades
of research, the pathophysiological mechanisms underlying
SCZ are not entirely understood. The etiology of SCZ is
heterogeneous, including environmental, epigenetic, as well
as genetic risk factors, the latter ranging from chromosomal
aberrations to single point mutations (van Os and Kapur, 2009).

A known major risk factor for SCZ is the 22q11.2 microdeletion,
which, on top of cognitive impairments, often includes
metabolic burdens for affected individuals (McDonald-McGinn
et al., 2015). Another risk factor for NDDs, including SCZ, is
disruption of DISC1 (disrupted-in-schizophrenia 1) which is
involved in coordinating neuronal development (Millar et al.,
2001). Additionally, environmental insults, such as maternal
immune activation during pregnancy, hypoxia, and stress
(Schmitt et al., 2014), alone or in combination with genetic
abnormalities, are thought to contribute to the emergence of SCZ
symptoms.

Treatment options for SCZ are limited to symptomatic
treatment, despite the fact that many patients respond poorly to
available treatments (Goff, 2021). Additionally, most therapeutic
strategies solely target “positive” symptoms of schizophrenia,
whereas “negative” symptoms are unaffected (Owen et al.,
2016). Crucially, pre-symptomatic diagnosis of SCZ remains
challenging, due to its heterogeneous etiology and the late
emergence of diverse symptoms (Jauhar et al., 2022). Notably,
the first symptomatic onset of SCZ tends to be preceded by
a prodromal period of up to 5 years with subtle alterations
in behavior and cognition, described as “basic symptoms”
(e.g., thought processing and attention) and “ultra-high-risk”
symptoms (e.g., brief limited intermittent psychotic episode;
Klosterkötter et al., 2001; Fusar-Poli et al., 2013). Accordingly,
recent studies have focused on the prodromal period, aiming
to identify reliable markers of emerging psychosis (Bernardini
et al., 2017; Mikanmaa et al., 2019).

Autism spectrum disorder

ASD comprises a heterogeneous group of NDDs, which
are characterized by symptoms of impaired social interaction,
restricted interests, and repetitive behaviors (Lord et al., 2020).
The onset of ASD occurs at an early age, usually prior to
the age of 3 years, and it has a prevalence of more than 1%
of the total population. Similar to SCZ, the etiology of ASD
is heterogeneous and risk factors include genetic aberrations
as well as environmental or epigenetic factors (Lord et al.,
2020; Savatt and Myers, 2021). ASD can be further split
into syndromic (i.e., with additional symptoms associated with
other neurological disorders) and non-syndromic (i.e., without
additional symptoms) ASD, based on the underlying genetic
aberrations. These aberrations range from heritable point
mutations or chromosomal aberrations, all the way to de novo
gene mutations, with the most common aberrations being
mutations in synaptic genes, such as neuroligins and neurexins,
or chromosomal aberrations, such as 15q11 duplications (Pinto
et al., 2010; Iossifov et al., 2012; Singh and Eroglu, 2013).
However, while a multitude of risk factors has been identified,
no consistent model of the pathways underlying ASD has been
described.
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Symptomatic treatments for ASD are available, but they
are often complicated by comorbidities with other disorders
and only provide partial relief from symptoms (Genovese
and Butler, 2020). Accordingly, a better understanding of the
pathophysiological mechanisms underlying NDDs is essential
in order to facilitate research into potential options for
intervention.

Animal models of neuropsychiatric
disease

Animal models are instrumental for basic and pre-clinical
research of any human condition. Over the past century, animal
models have provided essential insights into the manifold
pathways underlying not only animal but also human physiology
(Robinson et al., 2019). Non-human primates are particularly
well-suited for research on neuropsychiatric disorders. They not
only exhibit complex cognitive, social, and behavioral processes,
but they also offer general similarity of brain structures
compared to humans, such as the expanded prefrontal cortex
(PFC), which is essential for higher-order processes (Chini and
Hanganu-Opatz, 2021). With the discovery of new-generation
gene editing tools, non-human primate models of NDDs have
received increased interest in recent years (Lin et al., 2022).
Insights into the pathophysiology of ASD have been obtained
based on macaque NDD models, including a reduced expression
of excitatory synaptic proteins, such as glutamate receptors

and PSD95, in SHANK3-deficient macaques and an increased
presence of GFAP-positive astrocytes in a brain region-specific
manner (Liu et al., 2016; Zhao et al., 2017; Zhou et al.,
2019). However, as of yet, the limited availability of models
inadequately mirrors the multifaceted spectrum of human
neuropsychiatric pathologies.

The most widely used animal models in research are rodents.
Despite the evolutionary split of rats and mice from humans
more than 70 million years ago, they still offer similarities in
brain structure and molecular pathways of neurophysiological
processes, as well as many shared developmental milestones
(Figure 1). While rodent models rarely replicate the full
symptomatic spectrum of any human disease, they can still
mirror key features of NDDs, and targeted genetic manipulation
has been used to address the contribution of individual risk
factors to the pathophysiological mechanisms underlying NDDs
(Diamantopoulou and Gogos, 2019).

Biomarkers of neuropsychiatric
disease

Biomarkers allow for clear, standardized diagnosis and
monitoring of pathologies and they are crucial for research
on the etiology, manifestation, and potential treatment of
human disease. So far, most studies on biomarkers of
neuropsychiatric disorders have focused on morphological or
molecular parameters (Table 1).

FIGURE 1

Developmental milestones for humans and mice. Developmental milestones are shown for human and murine development. Gestational
durations are indicated on the left. Anatomical milestones (eye opening, development of hearing, expression of olfactory receptors) are indicated
for each time line individually. Shared developmental processes (discontinuous activity, γ-activity, myelination) are indicated as age-matched
ranges for both species. Insets depict examples of delta-brushes in humans [modified from Milh et al. (2007)] and spindle bursts in mice [modified
from Shen and Colonnese (2016)] during early discontinuous activity, as well as filtered γ-oscillation in humans [modified from Synigal et al.
(2020)] and in mice [modified from Bott et al. (2016)].
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TABLE 1 Biomarkers of neuropsychiatric disorders.

Schizophrenia Autism spectrum disorder

Serological markers
(complement components)

C1q ↑ Arakelyan et al. (2011) ↑ Corbett et al. (2007)

C3 ↑ Boyajyan et al. (2010) ↑ Shen et al. (2018)

= Arakelyan et al. (2011)

↓ Li et al. (2016)

C4B ↑ Maes et al. (1997) ↓ Warren et al. (1994)

= Schroers et al. (1997)

C5 ↑ Ishii et al. (2018) ↑ Shen et al. (2018)

Functional markers EEG Hypofrontality at rest (Knyazeva et al.,
2008); hyperfrontality during task
performance (Shafritz et al., 2019)

Hypofrontality at young ages (Levin et al.,
2017); hyperfrontality at later ages
(Stroganova et al., 2007)

fMRI PFC hyperconnectivity during early stages
(Anticevic et al., 2015)

PFC hyperconnectivity at young ages and
hypoconnectivity at older ages (Jassim
et al., 2021)

Anatomical markers Volume Reduction overall and particularly in Cg
(Pantelis et al., 2003)

Increase at early stages in Th and CC,
reduction at later stages (Lange et al.,
2015)

Other Prodromal phase of up to 5 years:
behavioral and cognitive impairments
(Klosterkötter et al., 2001)

Previously identified candidates for potential biomarkers of neurodevelopmental disorders are listed. Arrows indicate an increase or reduction of serological markers, [=]
indicates no detected change. PFC, prefrontal cortex; Cg, cingulate cortex; Th, thalamus; CC, corpus callosum; EEG, electroencephalogram; fMRI, functional magnetic
resonance imaging.

One group of proposed NDD biomarkers are components
of the microglial signaling cascade. Microglia function as the
brain’s immune system and they are essential for synaptic
refinement, monitoring, pruning, and maintaining synapses
throughout development (Magdalon et al., 2020). Altered
expression of components of the complement cascade, which
underlies microglia signaling, has been reported in patients of
SCZ and ASD (Warren et al., 1994; Maes et al., 1997; Schroers
et al., 1997; Corbett et al., 2007; Boyajyan et al., 2010; Arakelyan
et al., 2011; Li et al., 2016; Ishii et al., 2018; Shen et al.,
2018; Rey et al., 2020), yet the roles of individual complement
factors in the context of specific pathophysiological changes
still need to be resolved (Magdalon et al., 2020; Woo et al.,
2020). Interestingly, Sager et al. (2021) highlighted the relevance
of age for these interactions with a change in expression of
complement factors during development and a peak during
early childhood between ages 3 and 5. In addition to possible
molecular parameters, anatomical factors, such as volumetric
assessment of gray matter, have been proposed as biomarkers of
disease (Table 1). Changes in the volume of several brain regions
have been reported in patients of NDDs, the most prominent
change being a reduction of brain volume at later stages of these
diseases (Pantelis et al., 2003; Lange et al., 2015; Hoogman et al.,
2017). Additionally, fMRI data documented altered functional
connectivity within networks prior to the onset of the disease,
especially hyperconnectivity at early stages of SCZ as well as ASD
(Anticevic et al., 2015; Jassim et al., 2021).

On the functional level, excitation/inhibition (E/I)
imbalance has been proposed as a potential biomarker. E/I
balance is essential for maintaining physiological network
activity and disruptions of the pathways underlying excitation
and/or inhibition have been described for patients with SCZ or
ASD (Gao and Penzes, 2015; Sohal and Rubenstein, 2019). It is,
therefore, tempting to postulate that neuronal activity patterns
could provide a potential llink between genetic aberrations,
physiological changes, and impaired cognitive or behavioral
functions.

Patterns of neuronal oscillations in
health and disease

Precisely coordinated interactions of neurons in local and
distant networks are the physiological substrate of cognitive and
sensory processing, which is imperative for day-to-day survival.
These network oscillations are essential for gating of incoming
information (Singer, 2018) and they are conserved across species
(Buzsáki et al., 2013).

Since the first electroencephalographic recordings (Berger,
1929), network oscillations within distinct frequency bands have
been related to specific functions. High-frequency oscillations
(gamma band, 30–100 Hz) allow for synchronization of local
activity and are essential for cognitive processing, whereas
slower oscillations (delta band 1–4 Hz, theta band 4–12 Hz)
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are more suited for coordination of distant networks, as
they require less temporal precision due to the lengthened
periods between alternating phases (Uhlhaas and Singer,
2013). Additionally, cross-frequency coupling between networks
can mediate long-range coordination, with the phase of
low-frequency oscillations in one network modulating the
amplitude of high-frequency oscillations in another (Buzsáki
and Draguhn, 2004).

Neuronal oscillations are known to play an essential role in
cognitive processing and a link to cognitive deficits in NDDs
has been postulated (Simon and Wallace, 2016; Hirano and
Uhlhaas, 2021). Electroencephalographic (EEG) studies in SCZ
patients have shown a general increase of power across lower-
frequencies accompanied by a power decrease in the high
frequency band (Newson and Thiagarajan, 2019). However,
these observations depend on multiple factors, such as the
task performed by the examined individuals, the stage of
the disease, as well as medication. Additionally, the question
of prefrontal hypo- and/or hyperactivity in NDD patients
remains (Weinberger et al., 1986; Schneider et al., 2007;
Stroganova et al., 2007; Knyazeva et al., 2008; Levin et al.,
2017; Shafritz et al., 2019). Abnormal neuronal activity in
the PFC of SCZ and ASD patients is of particular interest,
as the PFC is a critical hub of cognitive functions across
mammalian species (Miller, 2000). The PFC is involved
in executive processes, such as attention, working memory,
and decision-making, as well as social behaviors (Chini and
Hanganu-Opatz, 2021), and impairments of these processes
constitute the core of cognitive symptoms observed in NDDs
(O’Grada and Dinan, 2007). Accordingly, many studies have
focused on prefrontal function in disease and both hyper-
as well as hypofrontality have been observed in SCZ and
ASD patients, depending on brain state or performed task
(Dawson et al., 1995; Knyazeva et al., 2008; van Diessen
et al., 2015; Shafritz et al., 2019). Notably, altered prefrontal
activity and connectivity have been shown in mouse models
of SCZ and ASD (Fénelon et al., 2013; Crabtree et al.,
2017; Wang et al., 2018). In addition, multiple studies on
mouse models have identified prefrontal layer 2/3 pyramidal
neurons to be particularly vulnerable to disruptions and to
show structural and functional impairment, such as reduced
synaptic density, in models of NDDs (Cooper and Koleske,
2014; Lazaro et al., 2019; Comer et al., 2020; Nagahama et al.,
2020). Interestingly, similar alterations in spine densities have
been reported in postmortem brain tissue from SCZ patients
(Konopaske et al., 2014).

In SCZ and ASD patients, weaker prefrontal-hippocampal
communication has been suggested to potentially underlie
cognitive deficits (Meyer-Lindenberg et al., 2005; Cooper et al.,
2017). Correspondingly, in mouse models of SCZ and ASD,
prefrontal-hippocampal interactions are disrupted. For example,
in a mouse model mirroring the human 22q11.2 microdeletion,
hippocampal-prefrontal theta-frequency synchrony is decreased

during working memory tasks (Sigurdsson et al., 2010). In
a mouse model of ASD, manipulation of Pogz expression
similarly affected prefrontal-hippocampal synchronization
(Cunniff et al., 2020).

These consistent changes within prefrontal-hippocampal
circuits across species, models, and pathologies, indicate that
altered patterns of oscillatory activity and synchrony-based
coupling might contribute to the emergence of cognitive
deficits. Therefore, a key question to be addressed is whether
aberrant activity patterns develops earlier, potentially even
before symptomatic onset of the disease.

Early patterns of neuronal activity in
schizophrenia and autism spectrum
disorders

Precisely timed coordination of molecular and cellular
processes is required in order to define developmental
trajectories early in life and all the way to adulthood. In
the human CNS, the ability to respond to new experiences
persists throughout development, including neuronal cell
migration at embryonal ages as well as neuronal differentiation,
synaptogenesis, synaptic plasticity, and synaptic pruning all the
way to adulthood. However, this lasting plasticity might also
imply an increased vulnerability towards insults. It has been
hypothesized that the trajectory of physiological development is
particularly sensitive during specific phases (Larsen and Luna,
2018; Sakurai and Gamo, 2019).

Patterns of electrical activity and their temporal coordination
change alongside development (Chini and Hanganu-Opatz,
2021). Spontaneous, highly synchronized activity is a hallmark of
neuronal circuits during early development (Babola et al., 2018;
Martini et al., 2021). This activity is discontinuous (i.e., periods
of oscillatory discharges alternate with silent periods) and
has been shown for all mammalian species investigated at a
comparable stage of brain development (i.e., 2nd–3rd gestational
trimester in humans and early postnatal in rodents; Figure 1;
Khazipov et al., 2004; Hanganu et al., 2006; Colonnese et al.,
2010). Subsequent desynchronization of activity mirrors the
increasing influence of sensory inputs shaping neuronal activity
(Toyoizumi et al., 2013). Notably, due to different types
of processed information and timelines of circuit assembly,
different areas and functions exhibit distinct sensitive periods
of maturation, e.g., the human visual system being particularly
sensitive during the first few years of life, while language
acquisition is sensitive during the first year after birth (Wiesel,
1982; Daw, 1998; Anderson and Reidy, 2012; Friedmann and
Rusou, 2015; Gire et al., 2022). Similarly, in rodents, experience
shapes synaptic circuits of visual and auditory systems during
periods of enhanced plasticity, following eye/ear opening
(Lehmann and Löwel, 2008; Rinaldi Barkat et al., 2011). Even
for circuits involved in cognitive processing in mice, recent data
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suggested the presence of time windows exhibiting increased
sensitivity.

Several studies have hypothesized that therapeutic
interventions at earlier stages of development might hold
promise for NDD treatment. Birth cohort studies showed
developmental anomalies of behavior and cognition already in
4-year-old children, who developed SCZ later in life (Welham
et al., 2009). Notably, in prodromal SCZ patients, the elevation
of frontal oscillatory activity in delta and theta frequency
bands has been detected (van Tricht et al., 2014), although the
underlying neuronal mechanisms remain poorly understood.
A comprehensive summary of available data on alterations of
neuronal dynamics in SCZ patients and high-risk prodromal
individuals has previously been done (Mikanmaa et al., 2019).

Similarly, mouse models of NDDs have been investigated
during early development. For example, immune-challenged
mice with altered DISC1 expression showed disrupted patterns
of network activity in beta-gamma range in the PFC during
the first two postnatal weeks (Chini et al., 2020). Additionally,
prefrontal-hippocampal coupling was decreased in theta
frequency bands at early ages (Xu et al., 2019; Song et al.,
2022). These early deficits in neuronal activity have been
proposed to contribute to poor cognitive performance at adult
age. Notably, prominent dysfunctions induced by transient
disruption of DISC1 expression in immune-challenged mice,
as well as perinatal disruption of Arc/Arg3.1 (activity-regulated
cytoskeleton-associated protein) suggest the existence of specific
phases during which hippocampal and prefrontal activity play a
crucial role (Gao et al., 2018, 2019; Xu et al., 2019).

In summary, these findings suggest that disruption of early
neuronal activity patterns relates to the emergence of NDDs
later in life and might offer a promising avenue for potential
treatments.

Future perspectives for diagnosis
and intervention

Despite the ethical and technical challenges inherent to
investigations of early human development, the data reviewed
here highlight early development as a crucial time window for
addressing the circuit miswiring which underlies adult cognitive
burdens of neuropsychiatric disorders. Therefore, sustained
efforts are necessary in order to develop tailored interventions
which minimize this burden for affected individuals. Early
intensive behavioral intervention (EIBI) in children with
emerging ASD has shown promising results for improving
adaptive behaviors later in life (Tiura et al., 2017; Reichow
et al., 2018). Similarly, early intervention using psychosocial
and psychopharmacological treatments immediately after the
onset of psychosis has shown some promising results in
SCZ patients, e.g., reduced severity of positive as well as
negative symptoms (Correll et al., 2018). However, the effects

of this described early intervention do not persist over time
(Chan et al., 2019).

In this context, the need for reliable biomarkers of
early dysfunction is evident. The wide spectrum of dynamic
features inherent to neuronal oscillations might constitute a
powerful tool for identifying, describing, and potentially even
rerouting disorder-specific deficits. Specifically for SCZ, previous
hypotheses have focused on altered neuronal activity during the
prodromal period or during the time of the first episode of
psychosis as a potential time window for intervention (Millan
et al., 2016; Mikanmaa et al., 2019). However, the idea of
sensitive phases during early development as potential points for
intervention has gained traction in recent years (Dehorter and
Del Pino, 2020). Particularly the roles of GABAergic signaling as
well as of fast-spiking parvalbumin (PV) interneurons have been
highlighted as critical modulators of sensitive periods during
development (Marín, 2016). Notably, more than a decade ago,
PV interneuron dysfunction was linked to the characteristic
cognitive deficits of SCZ (Lewis et al., 2012).

Additionally, identifying developmental phases of aberrant
activity in NDDs is a prerequisite for the rescue of physiological
trajectories during development. Recently, manipulation of
activity in a specific subset of prefrontal pyramidal neurons
in young mice was shown to alter developmental trajectories
and to have long-term effects on brain function and cognitive
processes (Bitzenhofer et al., 2021). Thus, identifying aberrant
patterns of early network oscillations might not only provide
an approach for pre-symptomatic diagnosis but also facilitate
a better understanding of NDDs. In humans, approaches for
direct modulation of neuronal oscillations (e.g., transcranial
alternating current stimulation) have been used in a frequency-
specific manner (Fröhlich et al., 2015; Jones et al., 2020),
revealing promising tools for the treatment of psychiatric
disorders (Allenby et al., 2018; Ahn et al., 2019).

In conclusion, monitoring early neuronal oscillations
is highly instrumental for understanding physiological and
pathophysiological development. Early aberrations of neuronal
activity patterns could serve as biomarkers of NDDs and
thereby open up new avenues for non-invasive, pre-symptomatic
diagnosis of at-risk patients, as well as provide potential tools for
the directed treatment of emerging neuropsychiatric disease.
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