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Background: Males consume more alcohol than females, and alcohol use

disorder (AUD) is more prevalent in males than females. However, females

progress faster to AUD. Sex differences in neural alcohol cue reactivity

were previously observed in young social drinkers, indicating a role of

hypersensitivity to alcohol-related cues in very early stages of addiction. To

our knowledge, this is the first study on patients diagnosed with AUD to

test sex differences in neural reactivity to alcohol cues in order to widen

previous findings.

Methods: We analyzed data from previous studies, using a well-established

functional magnetic resonance imaging (fMRI) paradigm to compare neural

reactivity to alcohol cues between 42 female and 124 male patients with

AUD (mean age 45 and 46 years) in predefined regions of interest that

were implicated by previous studies (ventral and dorsal striatum as well as

caudate, putamen, amygdala, hippocampus, insula, anterior cingulate cortex,

and medial prefrontal cortex) using independent samples t-tests. Post-hoc,

effect size calculations were performed.

Results: Throughout all nine regions of interest, we found no statistically

significant sex differences in neural reactivity toward alcoholic pictures alone

or in comparison to neutral pictures (p > 0.05, FDR-corrected). Post-hoc

effect size estimates indicated a magnitude between 0.137 and 0.418 (Hedge’s

g) on alcohol reactivity to alcohol cues compared to neutral cues and indicate

very small to less than medium effect sizes in the direction of higher cue

reactivity in female patients.
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Conclusion: Previous studies showed sex differences in neural alcohol cue

reactivity in younger social and problematic alcohol drinkers, i.e., stronger

striatal cue-reactivity in males. After correction for multiple comparisons, we

did not observe significant sex differences in a cohort of middle-aged females

and males with AUD. Sex differences that are present during early phases of

addiction development might disappear at later stages of AUD and might thus

be considered as clinically less relevant in patients with more severe AUD.
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Introduction

Alcohol is responsible for 3 million deaths and 132.6 million
disability-adjusted life years (DALYs) per year worldwide,
which accounts for 5.3% of global deaths and 5.1% of DALYs
[estimate of the World Health Organization for 2016 (WHO,
2018)]. Sex differences regarding alcohol consumption and
alcohol use disorder (AUD) are widely accepted and can
be explained by biological and psychosocial factors (Ceylan-
Isik et al., 2010; Becker et al., 2017). In Europe and the
Americas, males drink more alcohol than females and are 2
to 4 times more prone to AUD (Rehm et al., 2015; WHO,
2018). By contrast, females show an accelerated progression
from initiation of alcohol use to AUD (Zilberman et al.,
2004) and a higher vulnerability to the sequelae of chronic
alcohol intake such as liver damage (Agabio et al., 2017).
Whereas males with AUD drink alcohol more often to
facilitate social interaction, females use it more frequently
to regulate symptoms of anxiety and depression or stress
(Peltier et al., 2019; Müller et al., 2021). Further, female
compared to male patients with AUD were observed to report
generally stronger substance craving (Boykoff et al., 2010),
they also showed a stronger relation between craving and
negative affect throughout the detoxification process (Petit et al.,
2017). However, recent observations indicate a closing gap
with respect to sex differences in alcohol consumption and
related consequences (White et al., 2015; Slade et al., 2016;
White, 2020).

A stronger neural cue reactivity relates to negative outcomes
of substance consumption, such as addiction severity, substance
craving, or treatment outcomes, and the underlying brain
regions include circuits associated with reward, motivation, and
goal directed behavior, as well as habit learning (Kühn and
Gallinat, 2011; Jasinska et al., 2014). Specifically, meta-analyses
have shown that alcohol cues induce activation of subcortical
and prefrontal brain regions, i.e., ventral striatum (VS), anterior
cingulate cortex (ACC), and ventromedial prefrontal cortex
(vmPFC) (Schacht et al., 2013). To our knowledge, only two

functional magnetic resonance imaging (fMRI) studies have
been published so far to report on sex-differing effects of neural
alcohol cue reactivity (Seo et al., 2011; Kaag et al., 2019).
During brief guided imagery, male social drinkers (N = 20,
mean age 32.5 years) showed stronger stress-related activation
than female social drinkers (N = 23, mean age 30.9 years) in
the medial prefrontal cortex, rostral anterior cingulate cortex,
posterior insula, amygdala, and hippocampus and weaker
alcohol cue-reactivity in the superior and middle frontal gyrus
(Seo et al., 2011). During a visual alcohol cue task, alcohol
compared to neutral stimuli elicited stronger reactivity of the
VS and dorsal striatum (DS) with medium to large effect
sizes (VS ηp

2
= 0.10, DS ηp

2
= 0.11) in males (N = 28,

mean age 26.0 years) compared to females (N = 27, mean
age 24.9 years) with problematic alcohol consumption (Kaag
et al., 2019). Notably, substance use, anxiety, and/or depressed
mood did not account for the sex effects on reactivity of the
DS. Taken together, the existing literature on sex differences
in neuronal reactivity to alcohol cues is limited. Only small
cohorts with rather young and non-dependent subjects have
been investigated. A better understanding of sex differences
in alcohol cue reactivity will inform the development of
personalized strategies to treat patients with AUD, i.e., sex-
sensitive prevention, diagnosis, and treatment approaches (Lenz
et al., 2012; Barker and Taylor, 2019).

This study aimed to identify sex differences in brain
reactivity to visual alcohol cues within specific regions of
interest (ROI) in a larger sample of male and female patients
in treatment for AUD. Based on the existing literature (Kaag
et al., 2019), we hypothesized stronger alcohol cue reactivity
in the dorsal striatum (DS) and ventral striatum (VS) in males
compared to females. Based on previously reported findings
and as corticostriatal-limbic regions are relevant in AUD (Zeng
et al., 2021), we further examined sex differences in alcohol cue
reactivity in the ACC, the medial prefrontal cortex (medPFC),
the insula, the amygdala, and the hippocampus (including a core
circuit for emotion regulation, Ochsner et al., 2004).
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Materials and methods

Procedure and participants

Between 2008 and 2015, treatment-seeking patients with
AUD from the Department of Addictive Behavior and
Addiction Medicine, Central Institute of Mental Health
(CIMH), Mannheim, Germany, participated in one of three
studies, respectively, previously conducted in our lab (e.g.,
Vollstädt-Klein et al., 2011, 2012; Kiefer et al., 2015; Bach et al.,
2020, 2022). Baseline functional magnetic resonance imaging
(fMRI) examination prior to any study intervention was used
for the here presented analyses [N = 178 (23.6% female)].
The diagnosis of an alcohol dependency, corresponding to a
moderate to severe AUD, was made by trained medical staff
following the International Classification of Diseases (ICD-
10). A diagnosis of alcohol dependency following the ICD-
10 or Diagnostic and Statistical Manual of Mental Disorders,
4th edition (DSM-IV) can be considered as moderate to
severe AUD according to the DSM, 5th edition (DSM-5)
(American Psychiatric Association, 2013; Hasin et al., 2013;
Hoffmann and Kopak, 2015). All study participants were
given full particulars about the study and open questions
were answered. Subsequently, all participants provided written
informed consent prior to study participation. The local Ethics
Committee II of the Medical Faculty Mannheim, Heidelberg
University, approved the corresponding studies (approval
number study 1 + 2: 2007-095F-MA; study 3: 2011-303-MA).

Following study inclusion, a structured clinical interview
was conducted to examine possible comorbid mental disorders
(Wittchen et al., 1997). Individuals with substance use disorder
besides alcohol and nicotine or comorbid mental disorders
within the last 12 months, neurological or severe somatic
conditions, a history of brain injury, a use of psychotropic
substances or medication (except during detoxification), and
contraindications for an MRI examination were excluded from
study participation. Prior to scanning, participants were free
from any detoxification medication for at least 3 days, abstained
from alcohol for 3−21 days, and did not show withdrawal
symptoms [measured with the Clinical Institute Withdrawal
Assessment scale (CIWA-Ar), Sullivan et al., 1989].

Before proceeding with the fMRI data acquisition,
sociodemographic information was collected and participants
completed self-report questionnaires. Alcohol craving and
AUD severity were examined using the Obsessive-Compulsive
Drinking Scale-German (OCDS-G; Anton, 2000; Mann
and Ackermann, 2000) and the Alcohol Dependence
Scale (ADS; Skinner and Horn, 1984; Doyle and Donovan,
2009), respectively. The last drinking day prior to the fMRI
examination was assessed, and the Beck Depression Inventory
(BDI-II; Beck et al., 1961), the trait questions from the State-
Trait Anxiety Inventory (STAI; Laux et al., 1981), and the

Fagerstroem Test for Nicotine Dependence (FTND; Heatherton
et al., 1991) were applied.

Magnetic resonance imaging data
acquisition

Functional magnetic resonance imaging
paradigm

A well-established fMRI paradigm was used to examine
neural alcohol cue reactivity (Vollstädt-Klein et al., 2010, 2012).
In brief, alcohol-related (beer, wine, and schnapps) and neutral
stimuli were presented in pseudo-randomized blocks. Slight
changes in the application of the paradigm arose due to the
combined data from three different studies. In study 1 and
study 2, participants were asked to evaluate their alcohol craving
following each alcohol-related or neutral block of stimuli
(Vollstädt-Klein et al., 2010; studies 1 and 2, N = 113). In
study 3, pictures were only passively viewed, and craving was
not assessed between alcohol-related or neutral blocks of stimuli
(Bach et al., 2020; N = 65).

Functional magnetic resonance imaging
acquisition

Scanning was performed using a 3T whole-body tomograph
(MAGNETOM Trio, TiM-technology; Siemens, Erlangen,
Germany). During all studies, images were presented to
patients using MRI Audio/Video Systems goggles (Resonance
Technology Inc., Los Angeles, CA, United States). The paradigm
was presented using Presentation R© software (Neurobehavioral
Systems, Inc., Albany, CA, United States). For each subject,
T2∗-weighted echo-planar images (EPI) were acquired in a
transversal orientation 30◦clockwise to the bicommissural line
(AC-PC line) using the same parameters for all three studies
[repetition time (TR) = 2.41 s, echo time (TE) = 25 ms,
flip angle = 80◦, 42 slices, slice thickness: 2 mm, 1 mm gap,
voxel size 3 × 3 × 3 mm3, field of view (FOV) 192 × 192
mm2, 64 × 64 in-plane resolution]. Additionally, a 5:21 min
anatomical scan was performed to acquire a T1-weighted
3D MPRAGE (Magnetization Prepared-Rapid Gradient Echo)
dataset [192 sagittal slices, TR= 2.30 s, TE= 3.03 ms, inversion
time (TI) = 900 ms, flip angle = 9◦, slice thickness: 1 mm,
0.5 mm gap, voxel dimensions 1× 1× 1.5 mm3, FOV 256× 256
mm2, 256× 256 in-plane resolution].

Data analysis

Pre-processing and individual statistical analyses of brain
imaging data were performed using SPM12 (Wellcome
Centre for Human Neuroimaging, London, United Kingdom).
Subsequent descriptive and statistical analyses were performed
in SPSS (IBM SPSS Statistics for Windows, Version 27.0, IBM
Corp., Armonk, NY, United States).
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Functional magnetic resonance imaging data
preprocessing

For each functional data set, the first five scans were
excluded from the analyses to avoid artifacts caused by
magnetic saturation effects. The remaining scans were spatially
realigned to correct for head motion, temporally realigned
to minimize temporal differences in slice acquisition, and
normalized to the SPM12 tissue probability map template
provided by MNI (Montreal Neurological Institute, Montreal,
QC, Canada). Subsequent smoothing of the images was
performed using an isotropic Gaussian kernel (6 mm full width
at half maximum, FWHM).

First-level functional magnetic resonance
imaging analyses

Statistical analyses of the pre-processed fMRI data on
the first-level (single subject) were performed by modeling
the contrasts for alcohol-related stimuli (“alcohol” to implicit
baseline), neutral stimuli (“neutral” to implicit baseline),
and “alcohol > neutral,” i.e., neural reactivity during the
presentation of alcohol-related stimuli vs. neutral stimuli.
A general linear model (GLM) on a voxel-by-voxel basis was
applied and convolution with the canonical hemodynamic
response function was used. A high-pass filter was used (cut-
off at 128 s). All six motion parameters from the preprocessing
were included as regressors of no interest. A quality check
was performed and subjects with excessive head movement
(>3 mm/3◦) or other artifacts were excluded from the
subsequent analysis.

Anatomical masks and regions of interest data
extraction

Preselected ROI are based on previous research on neural
correlates of cue reactivity, cognitive control, and reward
processing in AUD (Ochsner et al., 2004; Seo et al., 2011; Schacht
et al., 2013; Kaag et al., 2019). The anatomical masks for the
left and right hemispheres separately were created using the
human WFU_pickatlas v31. The implemented aal (anatomical
automatic labeling) atlas was used for mean data extraction
of the ACC, medPFC (superior medial PFC), amygdala, and
hippocampus. The implemented IBASPM71 atlas was used for
mean data extraction of the caudate, insula, and putamen.
Following Kaag et al. (2019), the VS was defined as the nucleus
accumbens (NAcc) and the DS was defined as a combined
mask of the putamen and caudate (i1) minus the ventral
striatum (i2) using the ImCalc function in SPM12 (i1–i2).
In total, nine bilateral ROI were created. Data extraction of
parameter estimates was performed for the individual contrasts
“alcohol,” “neutral,” and “alcohol > neutral” within each of
the aforementioned ROI. An automatized script based on

1 https://www.nitrc.org/projects/wfu_pickatlas/

SPM12 was used for extracting and averaging the data (mean)
per ROI.

Analysis of sociodemographic, psychometric,
and regions of interest data

Group characteristics with respect to study and sex were
examined and are reported in the Supplementary material S1.
Regarding ROI data, extreme outliers (values more than
three box lengths from either hinge) were defined following
the inspection of boxplots and the computation of inter
quartile ranges in SPSS and excluded from subsequent analyses
if they appeared for the contrasts “alcohol” or “neutral”
(N = 12). N = 166 data sets (42 females) were available for
subsequent analyses.

Variables that could potentially influence neural cue
reactivity were examined (days of abstinence, smoking
status, age; see Supplementary material S2). Subsequently,
independent samples t-tests for continuous data or chi-square
tests for dichotomous data were calculated to test for sex
differences. Correction for multiple comparisons was applied
using the false discovery rate (FDR) with the Benjamini
and Hochberg method (Storey, 2002). Exploratory analyses
to examine the influence of craving and severity of AUD
on sex effects were conducted. Univariate GLM were used
to assess the influence of sex as well as craving for alcohol
and severity of AUD on neural cue reactivity within the
nine predefined ROI for the contrasts “alcohol,” “neutral,”
and “alcohol > neutral.” Uncorrected results are reported
in the following. As for both, craving and severity of AUD,
no interaction effects with sex emerged, these terms were
removed from the analyses and only main effects are reported
(Supplementary Tables S2, S3). All analyses included age as a
potentially confounding variable.

Lastly, independent samples t-tests were used to
test for sex differences with respect to the category of
beverage (beer, wine, and schnapps) and are reported in
the Supplementary material S3.

Effect size calculations
As for effect size (ES) calculations based on the previous

analyses, Hedges’ g was estimated in SPSS. Post-hoc power
analyses and sample size calculations using the here observed
ES were conducted using G∗Power 3.1 (Faul et al., 2007).

In order to generate further exploratory value from
our analyses, additional voxel-wise calculations of ES and
corresponding confidence intervals were performed post-hoc.
The procedure follows Gerchen et al. (2021). In short, whole
brain two-sample t-tests were calculated in SPM12 for the
contrast “alcohol > neutral” for “males > females.” Using
the resulting t-maps and applying the “g_es_ci” Matlab script
(Gerchen et al., 2021), the standardized ES Hedges’ g and the
corresponding 95-% confidence intervals (CI) were calculated
for all voxels in the nine ROI separately. Subsequently
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all ROI masks were resized to the same MNI dimensions
as the ES g-map. Finally and separately for each of the
aforementioned ROI, an in-house Matlab script was used to
firstly create a data matrix including the ES as well as the
lower and upper bound of the corresponding CI per voxel;
secondly sort the data from low to high ES values; thirdly
plot the distribution of ES including the lower and upper
CI; and fourthly extract the median ES for each ROI (see
Supplementary Figure S1).

Results

Sample characteristics

After exclusion of individuals with extreme outliers
(N = 12), the study sample consisted of N = 166 individuals
with AUD (25% females, 68% smokers). No significant
difference in the sex ratio (male vs. female) emerged when
comparing the three studies [χ2(2) = 2.621, p = 0.270]. No
significant sex differences were observed for the severity of
dependence, craving, days of abstinence, and further variables
(p > 0.05), see Table 1. Results from analysis examining these
variables with respect to all three studies can be found in the
Supplementary material S1.

Neural cue reactivity

Following independent samples t-tests and FDR correction
for multiple testing, no significant sex differences regarding
the contrasts “alcohol,” “neutral,” or “alcohol > neutral” were

observed for the DS and VS (main hypothesis) or additional ROI
(exploratory hypothesis) (p > 0.05) (see Tables 2A–C). Post-hoc
analyses revealed that the sample sizes of the present data sets
were not sufficient for detecting the corresponding effects with a
power of ≥0.80 and an alpha error probability of ≤0.05.

The additional ES calculation (based on the effect size
calculation for each voxel as described before) resulted
in median ES for the contrast males > females between
−0.093 (Caudate) and −0.247 (Putamen). As depicted in
Supplementary Figure S1 the lack of significant group
differences emerged once again.

Exploratory analyses of further sex effects
Post-hoc exploratory analyses were conducted to examine

the possibly interacting influence of craving or severity
of dependence on sex-effects in order to broaden our
understanding of the present data.

When only adjusting for age, a significant sex effect was
observed for the contrast “alcohol > neutral” on putamen
activity (F(1, 166) = 5.666, p = 0.018, partial η2

= 0.034;
males-females: MeanDiff = −0.125 (0.052), 95%-CI [−0.228,
−0.021]). No further significant sex effects were observed.

When adjusting for craving (OCDS-G) and age, no
significant interaction of sex and severity of craving was
observed, and the interaction term was removed for subsequent
analyses. An effect of sex was observed on neural activity
of the putamen and medPFC for “alcohol > neutral”
[putamen: F(1, 160) = 6.296, p = 0.013, partial η2

= 0.038;
males-females: MeanDiff = −0.133 (0.053), 95%-CI [−0.238,
−0.028]; medPFC: F(1, 160) = 4.035, p = 0.046, partial
η2
= 0.025; males-females: MeanDiff = −0.241 (0.120),

95%-CI [−0.477, −0.004]; Supplementary Table S2C] and
on neural activity of the putamen, DS, and amygdala for

TABLE 1 Sample description.

Males
M (SD) or %

Females
M (SD) or %

Statistics p

N 124 (74.7%) 42 (25.3%) χ2(2)= 2.621 p= 0.270a

Age (years) 46.3 (10.3) 45.3 (8.8) t(164)= 0.577 p= 0.565

Living (%; alone:together with others) 49:51 32:68 χ2(1)= 3.629 p= 0.057

Education (years) 13.6 (2.8) 13.7 (2.7) t(162)=−0.213 p= 0.832

Smoker (%; yes:no) 69:31 67:33 χ2(1)= 0.051 p= 0.821

FTND (sum score, for smokers only) 5.3 (2.7) 5.2 (2.7) t(111)= 0.272 p= 0.768

DSM-5 criteria 6.0 (1.1) 5.8 (1.5) t(133)= 1.129 p= 0.261

Days of abstinence 11.3 (10.8) 12.1 (11.2) t(156)=−0.373 p= 0.710

ADS (sum score) 15.8 (7.0) 15.9 (6.6) t(161)=−0.106 p= 0.916

OCDS-G (sum score) 20.5 (8.0) 20.3 (7.6) t(162)= 0.114 p= 0.909

STAI (trait sum score) 45.1 (11.9) 46.5 (9.8) t(158)=−0.658 p= 0.512

BDI-II (sum score) 13.4 (9.8) 11.7 (8.4) t(162)= 0.647 p= 0.336

Sex differences in sociodemographic and clinical variables are displayed. M, Mean; SD, Standard Deviation; N, sample size. ADS, Alcohol Dependence Scale; BDI-II, Beck Depression
Inventory II; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, 5th edition (available for studies 2 and 3); FTND, Fagerstroem Test for Nicotine Dependence; OCDS-G,
Obsessive-Compulsive Drinking Scale-German (global score); STAI, State-Trait-Anxiety Inventory. Two-sided t-tests and chi-square tests were used to address group differences. Results
of t-tests are reported following the assessment of homogeneity of variances. Uncorrected p-values are displayed. aComparison of sex ratio (females vs. males) between all three studies.
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TABLE 2 Independent samples t-tests for all nine regions of interest for the contrasts “alcohol”, “neutral”, and “alcohol > neutral”.

(A) “alcohol”

Males
M

(SD)

Females
M

(SD)

Statistic p pFDR−corrr meanDIFF
(SEDIFF)

95%-CI
lower|
upper

g 1-β Nreq
a

N 124 42

DS 0.002
(0.373)

−0.012
(0.364)

t(164)= 0.210 0.834 0.938 0.014 (0.066) −0.117 |
0.145

0.037 0.055 22,936

VS 0.067
(0.440)

0.139
(0.431)

t(164)=−0.917 0.360 0.878 −0.072 (0.078) −0.226 |
0.083

−0.163 0.149 1,184

Putamen 0.159
(0.332)

0.187
(0.335)

t(164)=−0.472 0.638 0.878 −0.028 (0.059) −0.145 |
0.089

−0.084 0.075 4,452

Caudate −0.169
(0.563)

−0.229
(0.531)

t(164)= 0.605 0.546 0.878 0.060 (0.099) −0.136 |
0.256

0.107 0.092 2,746

Amygdala 0.398
(0.476)

0.396
(0.603)

t(164)= 0.027 0.978 0.978 0.003 (0.091) −0.178 |
0.183

0.005 0.050 1,255,820

Insula 0.082
(0.420)

0.136
(0.375)

t(164)=−0.739 0.461 0.878 −0.054 (0.073) −0.198 |
0.090

−0.131 0.113 1,832

Hippocampus 0.327
(0.440)

0.372
(0.358)

t(164)=−0.596 0.552 0.878 −0.045 (0.075) −0.193 |
0.104

−0.106 0.091 2,798

medPFC 0.024
(0.602)

0.156
(0.635)

t(164)=−1.212 0.227 0.878 −0.132 (0.109) −0.347 |
0.083

−0.215 0.224 682

ACC −0.121
(0.429)

−0.090
(0.399)

t(164)=−0.409 0.683 0.878 −0.031 (0.075) −0.179 |
0.118

−0.073 0.069 5,894

(B) “neutral”

N 124 42

DS −0.023
(0.171)

−0.073
(0.147)

t(164)= 1.697 0.092 0.318 0.050 (0.029) −0.008 |
0.108

0.302 0.391 348

VS −0.019
(0.166)

−0.029
(0.171)

t(164)= 0.351 0.726 0.726 0.010 (0.030) −0.048 |
0.069

0.062 0.065 8,170

Putamen 0.048
(0.136)

0.010
(0.115)

t(164)= 1.628 0.106 0.318 0.038 (0.023) −0.008 |
0.084

0.289 0.363 378

Caudate −0.100
(0.267)

−0.163
(0.239)

t(164)= 1.356 0.177 0.398 0.063 (0.046) −0.029 |
0.155

0.241 0.268 544

Amygdala 0.148
(0.221)

0.080
(0.210)

t(164)= 1.749 0.082 0.318 0.068 (0.039) −0.009 |
0.145

0.311 0.410 328

Insula 0.015
(0.193)

−0.013
(0.148)

t(164)= 0.838 0.403 0.452 0.027 (0.033) −0.037 |
0.092

0.149 0.132 1,418

Hippocampus 0.117
(0.186)

0.086
(0.145)

t(164)= 0.985 0.326 0.452 0.031 (0.032) −0.031 |
0.093

0.175 0.164 1,028

medPFC −0.074
(0.250)

−0.114
(0.239)

t(164)= 0.897 0.371 0.452 0.040 (0.044) −0.048 |
0.127

0.159 0.143 1,244

ACC −0.117
(0.188)

−0.147
(0.183)

t(164)= 0.905 0.367 0.452 0.030 (0.033) −0.036 |
0.096

0.161 0.146 1,214

(C) “alcohol > neutral”

N 124 42

DS 0.053
(0.343)

0.152
(0.334)

t(164)=−1.622 0.107 0.216 −0.099 (0.061) −0.219 |
0.021

−0.288 0.361 382

VS 0.065
(0.414)

0.160
(0.409)

t(164)=−1.291 0.198 0.235 −0.095 (0.074) −0.241 |
0.050

−0.229 0.247 602

Putamen 0.029
(0.286)

0.152
(0.313)

t(164)=−2.350 0.020 0.180 −0.123 (0.052) −0.226 |
−0.020

−0.418 0.643 182

Caudate 0.080
(0.547)

0.152
(0.423)

t(164)=−0.773 0.440 0.440 −0.072 (0.093) −0.254 |
0.111

−0.137 0.119 1,676

(Continued)
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TABLE 2 (Continued)

Males
M

(SD)

Females
M

(SD)

Statistic p pFDR−corrr meanDIFF
(SEDIFF)

95%-CI
lower|
upper

g 1-β Nreq
a

Amygdala 0.061
(0.471)

0.197
(0.526)

t(164)=−1.565 0.120 0.216 −0.135 (0.087) −0.306 |
0.035

−0.278 0.340 410

Insula 0.036
(0.424)

0.149
(0.471)

t(164)=−1.445 0.150 0.225 −0.112 (0.078) −0.266 |
0.041

−0.257 0.299 478

Hippocampus 0.055
(0.431)

0.174
(0.324)

t(164)=−1.636 0.104 0.216 −0.119 (0.073) −0.262 |
0.025

−0.291 0.367 374

medPFC 0.164
(0.697)

0.381
(0.544)

t(164)=−1.842 0.067 0.216 −0.218 (0.118) −0.451 |
0.016

−0.327 0.445 296

ACC 0.132
(0.469)

0.236
(0.430)

t(164)=−1.263 0.209 0.235 −0.104 (0.082) −0.265 |
0.058

−0.224 0.239 628

Mean values of cue reactivity (standard deviation), corresponding statistics, and Hedge’s g are displayed. Actual power and required sample size for an equal male:female ratio were
calculated. M, Mean; SD, Standard Deviation; SE, Standard Error; N, sample size. PFDR−corr , corrected p-value using the False Discovery Rate; DIFF, Difference; 95%-CI, 95% Confidence
Interval; g, Hedge’s g; 1-β, Power; Nreq , required sample size to detect the calculated effect with a power of 0.80, an alpha error probability of 0.05, and equal allocation ratio of males
and females in an two-sided independent t-test; DS, Dorsal Striatum; VS, Ventral Striatum (Nucleus Accumbens); medPFC, superior medial Prefrontal Cortex; ACC, Anterior Cingulate
Cortex. Two-sided t-tests were used to test for group differences between males and females. Results of t-tests are reported following the assessment of homogeneity of variances.
Corrections of p-values using the False Discovery Rate were conducted per contrast and according to Storey (2002). Power analyses and hypothetical sample sizes were calculated using
G*Power (Faul et al., 2007) using the estimated effect size (Hedge’s g) as calculated in SPSS. asample size with a 1:1 ratio of male:female.

“neutral” (see Supplementary Table S2B). No significant sex
effects emerged for other contrasts or ROI. OCDS-G score
excerpted a significant influence on neural activity for the
contrast “alcohol” (putamen, VS, amygdala, and hippocampus,
Supplementary Table S2A). Please see Supplementary Table S2
for more details.

When adjusting for AUD severity (ADS) and age, no
significant interaction of sex and severity of AUD was observed,
and the interaction term was removed for subsequent analyses.
A significant effect of sex effect was observed on neural reactivity
of the putamen and medPFC for “alcohol > neutral” [putamen:
F(1, 159) = 6.306, p = 0.013, partial η2

= 0.038; males-
females: MeanDiff=−0.134 (0.052), 95%-CI [−0.240,−0.029];
medPFC: F(1, 159)= 4.145, p= 0.043, partial η2

= 0.025; males-
females: MeanDiff=−0.244 (0.120), 95%-CI [−0.482,−0.007];
see Supplementary Table S3C] and on neural activity of the
putamen, DS, and amygdala for “neutral” (see Supplementary
Table S3B). No significant sex effects emerged for other
contrasts or ROI. ADS score did not excerpt a significant
influence on neural activity. Please see Supplementary Table S3
for more details.

Further, sex differences in neural reactivity with regard
to specific alcoholic beverages (i.e., beer, wine, and schnapps)
were examined as they might present a sex-specific bias.
No statistically significant group differences were observed
(pFDRcorr > 0.05). Analyses procedure and results are reported
in the Supplementary material S3.

Whole-brain analyses on sex-differences in neural alcohol
cue-reactivity for the contrast “alcohol > neutral” are reported
in the Supplementary material S4. Males compared to females
showed significantly less activation within the bilateral superior
and middle occipital gyri, left lingual and fusiform gyri as well as

the precentral and inferior frontal gyri, and right cuneus (family
wise error-corrected threshold of p < 0.05).

Discussion

The aim of the study was to identify sex differences in neural
reactivity toward alcohol stimuli of brain regions relevant for
AUD in a sample of treatment-seeking in-patients with AUD.
Here, we did not observe the hypothesized significantly higher
alcohol cue reactivity in striatal regions in males vs. females.
Remarkably, in the VS we did not even identify a single voxel
with an effect in the hypothesized direction. We further did
not observe significant sex differences in other brain regions
commonly involved. On a descriptive level, in our data all
ROI showed a tendency toward larger cue reactivity in females
with ES on averaged data ranging from −0.137 to −0.418
(Table 2C) and median voxel-wise ES ranging from −0.093
to −0.247 (Supplementary Figure S1) for the task contrast
“alcohol > neutral.”

Examining humans and rodents, prenatal and adult sex
hormone activities have been related to alcohol consumption,
brain structure, and neural function (Hermans et al., 2010; Lenz
et al., 2012, 2017, 2018; Huber et al., 2018; Siegmann et al., 2019).
Previous studies showed sex-specific neural reactivity toward
alcohol cues with stronger effects in the superior and middle
frontal gyrus in women with social alcohol drinking (Seo et al.,
2011) and stronger striatal reactivity in men with problematic
alcohol consumption (Kaag et al., 2019). Further, female-specific
estradiol effects to induce dorsolateral striatal drug response
have been observed in cocaine-dependent rats (Cummings et al.,
2014). In nicotine-dependent women, neural reactivity of the
putamen to smoking compared to non-smoking cues has further
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been shown to be dependent on the menstrual cycle status
(Franklin et al., 2019). Interestingly, our uncorrected results
(Table 2C) suggest that women with AUD might show stronger
putamen reactivity toward substance cues - even though the
direction of the effect opposes our hypothesis.

Several factors might explain the absence of the expected sex
differences in our cohort.

First, considering both previous studies and our analyses,
we studies individuals with AUD compared to social or heavy
drinkers. Our data might indicate that sex differences in alcohol
cue reactivity disappear from early to later phases of AUD
development (see for e.g., Kaag et al., 2019). The incentive
salience of alcohol stimuli represents a major contributor to
alcohol use during early AUD, and more habit-associated
mechanisms become relevant during later stages, i.e., severe
AUD. Indeed, striatal neural reactivity toward alcohol cues has
been suggested to be contingent on several factors. A shift
from VS to DS cue reactivity from heavy social drinking to
alcohol dependence (Vollstädt-Klein et al., 2010) and increased
reactivity of the putamen during the first 2 weeks of abstinence
(Bach et al., 2020) have been observed.

Second, previous studies including smaller sample sizes
might have over-estimated ES. Our study was sufficiently
powered to detect sex differences with medium ES. However,
the Hedges’ g ES of the sex differences observed here varied
between | 0.005| for the “alcohol” contrast in the amygdala and
| 0.418| for the “alcohol > neutral” contrast in the putamen,
which can be considered as very small to small. Further and with
respect to a power of 0.80, it is possible that medium size effects
might have been missed, even though they truly exist. To detect
the maximal effect that we identified with this power, an even
larger sample size of N = 182 (91 males and 91 females) would
have been necessary.

When using a slightly different approach (Gerchen et al.,
2021), voxel-wise ES estimation as well as corresponding CI
were calculated and depicted. Besides the visual representation
of the Hedges’ g ES per voxel within one ROI, displaying the
CI allows for assessing the range of values that the ES of a
specific voxel lies within – in our analyses with a probability
of 95%. This procedure further allows for navigating the
uncertainty of how well this sample of N = 166 individuals
with AUD estimates the ES within a specific ROI for comparing
alcohol vs. neutral cues when assessing sex differences, i.e.,
narrow CIs represent precise estimations. We could also, for
example, inspect the figure with a reference of g = 0.2 (small
effect) to evaluate the question of how many voxel within a
specific ROI might have a probable ES superior to this or use
an ES interval to examine the number of voxel within this
range. The position of the ES curve with respect to null of
the Y-axis (ES) also indicates a bias within the overall data
distribution and can be quantified using the median effect
size as a characteristic value of this ROI. Importantly, our
analyses and visual presentation of the data does not only

result in a deeper understanding of the lack of significant
sex effects, as compared to solely stating a p-value. It further
serves the community regarding the planning of the sample
size and direction of effect (rather females > males) for future,
confirmatory studies. However, our results suggest that possible
sex effects are rather of small size. Thus, they could be of
limited clinical relevance and might not significantly contribute
to improving therapy outcomes. Even though sex differences
were observed previously, e.g., on an endocrine level, they
might not be strongly relevant in terms of a pathological
neurobiological phenotype.

Third, differences in age might account for the divergence
of the previous and our current findings. Our study population
was older (45.4 and 46.1 years for females and males) than the
cohorts of Kaag et al. (2019) (24.9 and 26.0 years) and Seo et al.
(2011) (30.9 and 32.5 years). However and after adjusting for
age, there were also no sex effects on neural cue reactivity of the
VS or DS.

Sex differences in the development, maintenance, and
phenomenology of AUD have to be acknowledged in research
and treatment, and differences in alcohol drinking between men
and women decline (Mccaul et al., 2019; White, 2020). Even
though females are more at risk for severe somatic sequelae
of alcohol, they are, compared to males, underrepresented in
treatment settings for AUD (Mccaul et al., 2019). However, we
also did not observe significant interaction of main effects of sex
with either severity of craving or AUD. The uncorrected results
indicate that craving influences neural cue reactivity toward
alcoholic stimuli in both male and female patients with AUD
as we observed that alcohol craving excerpted an influence on
neural reactivity toward alcoholic stimuli in the putamen, VS,
amygdala, and hippocampus (see Supplementary Table S2).
The relation between self-reported craving and neural cue
reactivity is well documented for alcohol and other substances
(Jasinska et al., 2014).

Several limitations have to be discussed. The sample was
unevenly balanced with respect to males and females. As it
consisted of treatment-seeking patient, one cannot exclude that
individual patients already have acquired and possibly used
craving regulation strategies during the experiment. Patients
were not instructed to respond in any specific way to the
presented stimuli but were asked to rate their craving between
blocks of alcohol and neutral stimuli in studies 1 and 2, but
not study 3. Not giving specific instruction with regard to
how to look at the stimuli [e.g., (not) regulating one’s craving]
might also contribute to the here presented findings. Also, time
since the last cigarette was not assessed but represents a major
factor influencing alcohol cue-reactivity. It should further be
noted that certain aspects, typically observed in female study
participants, were not addressed in the current analyses due
to the original study design, especially hormonal medication
and menstrual cycle status. Both are of importance since oral
contraceptives exert hormonal effects on the central nervous
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system (Hampson, 2020), mesolimbic incentive processing
changes during the menstrual cycle (Dreher et al., 2007), and
alterations in estradiol and progesterone activities associate with
AUD and related phenotypes (Mühle et al., 2019; Weinland
et al., 2021). In a monetary incentive delay task, women show
stronger ventral striatal activation during the premenstrual than
during the follicular phase (Ossewaarde et al., 2011). Also,
a premenstrual volume increase of the amygdala has been
reported and correlated with higher stress-induced negative
affect (Ossewaarde et al., 2013). Cue reactivity in striatal
regions, such as the putamen, were found to be modulated
by menstrual cycle status in cigarette smokers (Franklin et al.,
2019). Moreover, we did not correct for diurnal variations in
craving (West and Schneider, 1987).

Consequently, future studies are necessary to investigate
neural cue reactivity in a longitudinal design to address the
question, whether prominent sex differences in neural cue
reactivity diminishes over time and whether the small effect of
increased cue reactivity in females might be more pronounced
when specific phases of the menstrual cycle are analyzed
separately. In terms of losing and regaining control over alcohol
consumption, the causal association between female-specific
aspects such as hormonal fluctuations and the progression
from social drinking to severe AUD, as well as examining the
complex interplay between sex and further (clinical) factors
are subject to future research. Addressing the hypotheses
of stronger (striatal) alcohol cue-reactivity in females when
examining underlying causalities for the faster progression
from drinking to being alcohol-dependent might open new
perspectives that might then be translated into sex- and gender-
oriented addiction therapy.

Conclusion

In this study, we did not observe significant sex differences
in neural alcohol cue reactivity in patients with AUD. We further
found only very small to less than medium effect sizes in the
direction of higher cue reactivity in female patients. Previous
studies in younger social and problematic alcohol drinkers
indicate sex differences in neural cue reactivity within reward-
related brain regions (males > females). Women might differ
from men in terms of neural reactivity to alcohol cues during
early phases of the addiction development. However, our data
indicates that a clinically significant effect of sex differences
might diminish in later phases of AUD.
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