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Quantifying emotional aspects of animal behavior (e.g., anxiety, social

interactions, reward, and stress responses) is a major focus of neuroscience

research. Because manual scoring of emotion-related behaviors is

time-consuming and subjective, classical methods rely on easily quantified

measures such as lever pressing or time spent in different zones of an

apparatus (e.g., open vs. closed arms of an elevated plus maze). Recent

advancements have made it easier to extract pose information from

videos, and multiple approaches for extracting nuanced information about

behavioral states from pose estimation data have been proposed. These

include supervised, unsupervised, and self-supervised approaches, employing

a variety of different model types. Representations of behavioral states derived

from these methods can be correlated with recordings of neural activity to

increase the scope of connections that can be drawn between the brain and

behavior. In this mini review, we will discuss how deep learning techniques

can be used in behavioral experiments and how different model architectures

and training paradigms influence the type of representation that can be

obtained.

KEYWORDS
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Introduction

Animal behavioral studies have been used to investigate neurobiological aspects of
human emotions. In this mini review, we define “emotion” as patterns of behavioral,
hormonal, and autonomic responses (Dolensek et al., 2020) that explain behaviors
more complex than reflexes but less complex than volitional behavior (Adolphs, 2017).
The use of animal models in combination with advanced recording techniques has
furthered our understanding of the biological basis of emotional behavior (Kirlic
et al., 2017; Xia and Kheirbek, 2020), but precise identification of the specific neural
substrates and mechanisms for emotions and emotional behavior have proved elusive
(Celeghin et al., 2017).
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Various brain regions have been implicated in emotional
behavior, including the anterior cingulate cortex (ACC; Johnson
et al., 2022), insular cortex (Dolensek et al., 2020), and
subcortical deep brain structures such as the amygdala (Joëls
et al., 2018; Wu et al., 2021), nucleus accumbens (NAc; Aragona
and Wang, 2009), and periaqueductal gray (Buhle et al., 2013;
Reis et al., 2021). Because animal models rely solely on
observations of behavior to quantify emotional states, accurate
and nuanced behavior quantification is required to understand
the neural basis of emotional states (Xia and Kheirbek, 2020).

One approach to this problem is manual annotation of
animal behavior videos by human observers, labeling behaviors
of interest on a frame-by-frame basis. This process is laborious,
inefficient for processing large amounts of data, error-prone,
and introduces subjectivity (Arac et al., 2019; van Dam et al.,
2020). The other classical approach is measuring only aspects
of behavior that can easily be measured by machines, e.g., by
counting lever presses in an operant chamber or using simple
tracking algorithms to detect the subject’s presence in defined
regions of interest (ROIs). Advancements in computer vision
and deep learning have opened the door to improvement in this
area. Deep learning models, inspired by the way the mammalian
brain processes information, are typically trained by an iterative
optimization process with large quantities of data in a fast and
quasi-deterministic way (Xia et al., 2018; Richards et al., 2019;
Høye et al., 2021; Contreras et al., 2022). Such models, which aim
to automate the process of extracting representations from data
(Arel et al., 2010; Najafabadi et al., 2015), have been applied to
problems in medical imaging, natural language processing, and
image recognition (Najafabadi et al., 2015; Zhao et al., 2021).
Deep learning promises to allow for more nuanced analysis of
emotion-related behavior than classical methods. In this mini
review, we will discuss ways of measuring rodent behaviors that
are relevant to anxiety, social interaction, reward, and stress
responses. We will describe how deep learning can be applied
to studying emotional behavior in rodent models and continues
to advance our understanding of neural activity and emotional
behavior.

Paradigms for measuring emotional
behaviors

Researchers have studied anxiety-like behavior in rodents
by using approach-avoidance conflicts. In these experiments,
rewarding cues (e.g., food, drug, social interaction) elicit
approach and reward-seeking behaviors (e.g., lever pressing)
while aversive cues (e.g., foot shock, predatory threat) elicit
avoidance and fear behaviors (e.g., freezing; Kirlic et al., 2017;
Greiner et al., 2019). To assess anxiety-like behavior, researchers
can present these stimuli and measure the degree to which
an animal approaches or avoids them (Kirlic et al., 2017;
Greiner et al., 2019). Paradigms used to measure different

aspects of anxiety also include the elevated plus maze (EPM),
elevated zero maze (EZM), open field test, social interaction
test, hyponeophagia test, conditioned fear test, shock-probe test,
Vogel conflict test, Geller-Seifter test, and the light-dark box
assay (Sousa et al., 2006; Kirlic et al., 2017; Lezak et al., 2017).
In conflict tests (e.g., Vogel and Geller-Seifter tests), animals
seek reward (water/food) while a conflict is created by delivering
punishment (shock) at a fixed ratio (e.g., every nth reward).
Although deliberate avoidance is not assessed, the total shocks
delivered is used as a measurement of anxiety-like behavior
(Kirlic et al., 2017). Other tests measure stress responses in
animals (novelty-induced suppression of feeding test, forced
swim test; Sousa et al., 2006), depression-like behavior (e.g., tail
suspension test; Xia and Kheirbek, 2020), or facial expression
changes in reaction to different emotionally-salient stimuli
(Dolensek et al., 2020).

Other classical methods focus on social behavior. Examples
include the social interaction test, social preference-avoidance
test, social approach-avoidance test, three-chambered social
approach test, modified Y-maze, and tests that observe maternal
behavior (Sousa et al., 2006; Kirlic et al., 2017). In the
social interaction test, social and exploratory behaviors of two
rodents are monitored in a familiar or unfamiliar context
with different lighting conditions. The amount of time rodents
spend interacting under the four test conditions is used as a
measure of anxiety-like behavior. Other commonly quantified
emotional behaviors include freezing, defecating, vocalizations,
and self-grooming (File and Seth, 2003; Sousa et al., 2006).
Conditioned place preference paradigms have been used to
investigate social vs. drug reward in rodents where time spent
in social or drug chambers are recorded (Thiel et al., 2008;
Kummer et al., 2014). An operant social self-administration
protocol described by Venniro and Shaham (2020) demonstrated
volitional operant choice of social over drug reward where total
lever presses for each reward was used as a measure of operant
social choice.

Measurements such as rate, time, and number of task-related
behaviors performed are convenient ways to quantify observable
emotional behavior. However, many current assays rely on
rudimentary measurements and generalized assumptions that
reduce translational value. For example, we assume that animals
in the EPM that spend less time in the open arms are more
anxious than others that spend more time (Lezak et al., 2017).
Measures like lever press counts and time spent in certain
zones are not fully representative of complex internal emotional
states. Animal movement and posture captured on video can
convey much more information about behavior and internal
state, but accessing that information in a systematic way is a
major challenge in image processing and machine learning.
Recent advances in pose estimation and emerging methods
for behavioral analysis hold the potential to vastly increase
the richness and variety of behavioral variables available for
analysis.
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Tracking and analyzing pose
estimation data

The modern deep learning revolution began in 2012 when
a convolutional neural network (CNN) reached human-level
accuracy visual recognition (Serre, 2019; Mathis and Mathis,
2020). Since then, many techniques have been developed to
apply deep learning algorithms to animal behavior analysis,
including pose estimation algorithms [e.g., DeepLabCut (DLC),
SLEAP; Mathis et al., 2018; Pereira et al., 2022]. Nath et al.
(2019) highlights the DLC protocol, in which users manually
label body parts in a subset of frames and use those labels
to train a pose estimation model. The trained model is used
to extract information about the subject’s pose, or geometric
configuration of body parts (Mathis et al., 2018), from a large
corpus of behavioral video data. DLC has been developed
to accommodate more experimental setups, including top-
down, bottom-up, and multi-animal 3D tracking (Lauer et al.,
2022).

The output of pose estimation workflows (such as DLC) is
frame-by-frame information about the location of the labeled
body parts (if detected) within the video frame. For research
focused primarily on tracking kinematics or an animal’s location
(e.g., presence within some ROI), this may be sufficient for the
desired analyses. For example, DLC has been used in EPM, EZM,
and open field tests to measure time spent in different areas,
distance traveled, location, and velocity (Cui et al., 2021; Lu et al.,
2021; Sun et al., 2021; Johnson et al., 2022; Sánchez-Bellot et al.,
2022). However, pose estimation also offers the possibility of
extracting more general information about an animal’s actions
and behavioral state from moment to moment. This area of study
has attracted significant attention in recent years. A number
of methods have been proposed for extracting this type of
information from video data, a comparison of which is the main
focus of this review.

Machine learning approaches for
emotional behavioral analysis

A variety of frameworks for deriving behavioral motifs
and classifying behavioral states using pose estimation or
related methods have been proposed (Table 1). Supervised
approaches use pose data to identify experimenter-specified
behaviors. Unsupervised approaches seek to identify naturally
occurring behavior categories by clustering. Self-supervised

approaches involve training a model to predict some variable
derived from the data itself (rather than directly set by the
experimenter) and the trained model is used as a feature
extractor for subsequent clustering or other analyses. These
three learning types affect the type of behaviors that may be
identified.

Supervised approaches employ a classification model trained
on human-annotated data, which is then applied to new
data (Figure 1A). SimBA (Nilsson et al., 2020) uses features
extracted from DLC or SLEAP pose data as input to a
random forest classifier to label mouse behaviors, such as
sniffing (social behavior; Dawson et al., 2022), freezing (fear
conditioning; Hon et al., 2022), and pup retrieval (Winters
et al., 2022). DLCAnalyzer (Sturman et al., 2020) also includes
capabilities for supervised behavior classification and has
been used to track head dips in the EPM (Grimm et al.,
2021) and head angle in the open-field test (von Ziegler
et al., 2022). MARS combines pose estimation and behavior
classification capabilities and is suitable for multi-animal social
behavior analysis (e.g., attack, mounting; Segalin et al., 2021).
These approaches are most suitable when researchers are
interested in specific behaviors known a priori, as opposed
to unsupervised or self-supervised approaches which offer
no guarantee that any specific behavior will be identified
as a distinct category. However, human annotations can be
biased, subjective, and may not capture subtle differences
in how a behavior is performed (Pereira et al., 2020). The
utility of supervised approaches is limited in situations where
researchers wish to uncover naturally occurring behavioral
motifs. Additionally, the above frameworks all attempt to classify
behavior within a narrow temporal window (e.g., features
extracted in the SimBA workflow are calculated over a rolling
500 ms window; Nilsson et al., 2020), limiting their ability
to identify highly contextual behavioral motifs or larger-scale
patterns of behavior.

Unsupervised learning models, in contrast to supervised
models, are entirely data driven and require minimal
experimenter input (Figure 1B). These models generate
behavioral clusters based on similarities and differences
between data points, e.g., video frames (Goodwin et al., 2022).
Unsupervised methods generally involve a dimensionality
reduction step, where a large set of input features are compressed
into a low-dimensional representation, and a clustering step,
where data points (i.e., frames in a video sequence) are clustered
to maximize the similarity of points within a cluster, which in
some cases requires the experimenter to specify the number

TABLE 1 Behavior classification algorithms.

Supervised Self-Supervised Unsupervised

Uses tracking data SimBA, JAABA, DLC Analyzer DBM, VAME, Selfee B-SOiD, PyRAT
Built-in pose estimation MARS - AlphaTracker
Does not use tracking data - BehaveNet MoSeq, MotionMapper
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FIGURE 1

Schematic diagram of supervised, unsupervised, and self-supervised approaches for animal behavior classification. (A) In supervised approaches,
a model is trained to generate behavioral classifiers that replicate human annotations. (B) Unsupervised approaches are entirely data driven;
pose estimation data is compressed to the latent state representation and clustered to maximize similarities in data points. Experimenters may
sometimes specify the number of desired clusters. (C) In self-supervised approaches, a model is trained to generate labels derived from the data.
The trained model is used to map subject behavior to a latent space, and the space is then discretized (usually with K-means).
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of clusters. B-SOiD (Hsu and Yttri, 2021) and PyRAT (De
Almeida et al., 2022) apply nonlinear dimensionality reduction,
which can capture nonlinear relationships in the input data
(Portnova-Fahreeva et al., 2020), while AlphaTracker (Chen
et al., 2020) uses linear dimensionality reduction (principal
component analysis, PCA). All three methods then group
video frames into behavioral categories through hierarchical
clustering. MoSeq (Wiltschko et al., 2015) takes a different
approach, applying linear dimensionality reduction directly
to video frames (without pose estimation) and segmenting
the resulting continuous representation of behavior using
an autoregressive hidden Markov model (ARHMM; Bryan
and Levinson, 2015), a variant of the hidden Markov model
adapted to modeling continuous valued time series as the
product of an underlying sequence of discrete states, making
it potentially better suited than simple clustering-based
approaches to identify temporal patterns over a longer
timescale.

Using unsupervised methods is advantageous when the
experimenter wishes to label behaviors without choosing
specific behaviors, or to uncover variations in how behaviors
are performed. Approaches that use hierarchical (PyRAT,
AlphaTracker) or density-based clustering methods (B-SOiD)
do not even require that the user specify the number of
behavioral clusters. This property is a double-edged sword,
however, as hierarchical and density clustering algorithms
do not attempt to ensure that all points included within a
cluster are similar to each other, only that there is no clear
dividing line. Thus, they are suited to detecting behaviors
that occur in sustained bouts with relatively brief transitions
between behaviors, but may group very different behaviors
together when transitions between behaviors occur very
frequently.

Self-supervised methods (Figure 1C) combine aspects of
both supervised and unsupervised learning. Like supervised
methods, they rely on classification or regression models (usually
a deep neural network), but the model is trained to produce
outputs derived from the data instead of manual annotations
(in the simplest case, the autoencoder, the output is the same
as the input). After training, the final classification/regression
output layers of the model are discarded, and the model is
used as a feature extractor (Misra and van der Maaten, 2019).
Applied this way, the model performs nonlinear dimensionality
reduction, mapping video frames to points in a feature space,
with the choice of method for deriving the training outputs
strongly influencing which aspects of the pose/video data are
represented in that space. This “mapping” step may be followed
by a discretization step, in which the transformed points
(i.e., frames) are grouped into categories (typically using a vector
quantization algorithm such as K-means). These categories
are usually assigned descriptive labels by visually inspecting
video clips to determine what behavior(s) each category is
associated with.

Deep behavior mapping (DBM; Zhang et al., 2022) is a
self-supervised framework, in which training labels are derived
by assigning different labels to video frames according to which
ROI the subject is in, in combination with time windows
around experimental events (e.g., lever press). DBM, which
uses pose data from DLC as input and employs a long-short
term memory (LSTM; Hochreiter and Schmidhuber, 1997)
classification network and discretizes the extracted feature space
using K-means, has been used to capture behavioral microstates
in a mouse operant task, including identifying distinct phases
of a well-learned behavior sequence (e.g., lever approach, lever
interaction, shifting from lever port to food port, food port
search, food consumption) and also various non-task behaviors
(grooming, rearing, visiting water sipper; Zhang et al., 2022).
VAME (Luxem et al., 2022) uses a similar model architecture
(using gated recurrent units (Cho et al., 2014), a variant of
LSTM), but trains the model using only the pose data itself.
The model is trained to reproduce the input pose sequence
(i.e., an autoencoder), plus predict the pose data a short distance
into the future. This approach has the benefit of not requiring
the experimenter to specify rules for deriving output labels
for training, at the cost of potentially making the process
more sensitive to noise and occlusions (Hausmann et al., 2021;
Luxem et al., 2022). Selfee (Jia et al., 2022) and BehaveNet
(Batty et al., 2019), unlike VAME and DBM, operate directly
on snippets of video rather than pose data from DLC/SLEAP,
employing autoencoder-style training directly on video data for
nonlinear dimensionality reduction. Selfee operates on short
3-frame snippets of raw video, has been used in mice to identify
behaviors such as social nose contact and allogrooming in
open field tests, and places its main emphasis on using the
extracted feature space for a variety of downstream analyses
(Jia et al., 2022). BehaveNet, unlike the other self-supervised
methods, performs feature extraction on individual frames
rather than sequences of frames, and does not consider the
temporal structure of the data until the discretization step,
which uses an autoregressive hidden Markov model (Batty et al.,
2019).

Data with occluded views of experimental subjects present
an additional challenge for pose estimation-based methods
(Mathis and Mathis, 2020); for example, recording animals
top-down can hide the feet of an animal, while top-down
recordings of animals with headcaps or microendoscopes often
suffer intermittent occlusion of parts of the head. Recording
multiple animals interacting can also occlude body parts, but
advances in 3D animal tracking (Marshall et al., 2022) can
help minimize the effect of occlusions on tracking of animal
identity. Another challenge with recording multiple animals
is that pose-estimating algorithms like DLC may not be able
to differentiate between similar looking animals (Lauer et al.,
2022). AlphaTracker (Chen et al., 2020) does both tracking and
behavior classification and could reliably track four identical-
looking mice. The quality of the available data is likely to
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be a major determining factor in which types of methods
are applicable to a problem, with unsupervised (e.g., B-SOiD,
PyRAT) or autoencoder-based methods (VAME, BehaveNet,
Selfee) best suited to handling relatively noise-free data, and
classifier-based methods (e.g., SimBA, DBM) better suited
to handling data with frequent occlusions and lower video
quality.

Correlating neural activity with
emotional behavior

Advances in imaging technology such as 1-photon
miniscope calcium imaging allow for in vivo imaging of
neuronal activity in freely behaving animals. Using techniques
that record from freely moving animals allows for studying
an animal’s neuronal activity in more complex behavioral
paradigms (Laing et al., 2021). Recent miniscope imaging
studies in freely moving animals correlate calcium activity with
complex behaviors such as pain behavior (Liu et al., 2022),
defensive behavior (Kennedy et al., 2020; Ponserre et al., 2022),
and reward behavior (Siemian et al., 2021).

Many correlations between neural activity and animal
behavior are based on measurements such as timestamps.
Integrating neural imaging and machine/deep learning
techniques in rodents allows for more nuanced relationships
to be identified. Studies have utilized machine/deep learning
techniques for head-fixed in vivo 2-photon calcium imaging
in mice (Dolensek et al., 2020; Lu et al., 2021; Yue et al.,
2021). However, many aspects of emotional behavior are
best measured when rodents are freely behaving in the
testing area (e.g., grooming, nesting, or approach/avoidance).
Recent studies have utilized miniscope calcium imaging to
allow recording of neural activity in freely moving animals,
which can then be combined with advanced techniques for
behavior analysis (Zhang et al., 2022). DLC-derived data in
a rat exposure assay was used for automated classification of
defensive behaviors and correlated with dorsal periaqueductal
gray activity (Reis et al., 2021). DLC-derived data from
mice in the EZM and open field tests was used to extract
kinematics and identify correlations between the activity of
interneurons in the ACC and anxiety and social behavior
(Johnson et al., 2022). In a study on prosocial affiliative touch,
a deep CNN and an LSTM-based RNN identified that affiliative
allogrooming was controlled by the medial amygdala (Wu et al.,
2021).

In vivo electrophysiology can also be combined with video
recording in freely moving animals. For example, the firing
rate of NAc and dorsolateral striatum neurons changed with
operant vertical head movement as drug intake increased
(Coffey et al., 2015). Pose estimation and deep learning-
based behavioral analysis can also be used with optogenetic
manipulation to understand functions of neuron ensembles

in behavior (Grieco et al., 2021). For example, optogenetic
stimulation of primary motor cortex in marmosets used DLC
tracking of hand positions to identify neurons involved in
forelimb movement (Ebina et al., 2019). Integrating deep
learning analysis and neural recording in behavioral studies
allows for correlation of neurons with behaviors in greater
detail.

Discussion

The advent of machine learning and deep learning enables
the simultaneous specialization and standardization of behavior
classification processes across neuroscience research. Previous
studies have utilized various deep learning techniques to look
at behaviors that correlate with pain states (Bohic et al., 2021),
social behavior in stressed mice (Rodriguez et al., 2020; Lee
et al., 2022), depressive behavior in stressed mice (Rivet-
Noor et al., 2022), and reward behavior in mice models of
food seeking (Zhang et al., 2022) or drug and alcohol abuse
(Campos-Ordoñez et al., 2022; Neira et al., 2022). This allows
behavioral neuroscientists to explore behavioral nuances in a
more generalizable way (Goodwin et al., 2022). As deep learning
algorithms continue to evolve, we predict more integration
of deep learning and neural recording techniques to elicit
the neural mechanisms of behavioral motifs implicated in
emotion.

Deep learning techniques can help parse connections
between behavior and the brain in complicated situations. For
example, various cell types, circuits, systems, and projections in
the brain have roles in multiple emotional behaviors, evidenced
by chronic pain and depression comorbidity (Taylor et al.,
2015) or addiction and anxiety comorbidity (Greiner et al.,
2019). There are many complex interactions and overlaps
between neural activity that underlie emotional behaviors, and
much remains to be discovered. Another example is that the
mu-opioid system has been implicated not only in pain and
reward, but also in modulation of social-emotional behaviors
(Meier et al., 2021). Additionally, salience and affect play
important roles in pain, as affective systems, motivational
systems, and pain processing interact (Taylor et al., 2015).
Combining neural recording techniques with behavior analyses
that allow fine-grained differentiation of behavioral states and
motifs can help resolve such paradoxes by providing a broader
range of hypotheses to explain correlations between neural
activity and behavior. This allows researchers to refine our
understanding of the precise role each neural circuit plays
in the larger interaction of internal state, external stimulus,
and behavior. In this way, deep learning techniques advance
our understanding of the neuronal mechanisms of emotional
behavior in animal models, and the importance of using
these methods has strong translational power to treat mood
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disorders, addiction, pain, and other emotional disorders in
humans.
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