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Mnemonic functions, supporting rodent behavior in complex tasks, include

both long-term and (short-term) working memory components. While

working memory is thought to rely on persistent activity states in an active

neural network, long-term memory and synaptic plasticity contribute to the

formation of the underlying synaptic structure, determining the range of

possible states. Whereas, the implication of working memory in executive

functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has

been extensively studied, the contribution of long-term memory component

to these tasks received little attention. This review summarizes available

experimental data and theoretical work concerning cellular mechanisms of

synaptic plasticity in the medial region of rodent PFC and the link between

plasticity, memory and behavior in PFC-dependent tasks. A special attention

is devoted to unique properties of dopaminergic modulation of prefrontal

synaptic plasticity and its contribution to executive functions.
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synaptic plasticity, long-term memory, dopamine, prefrontal cortex,
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1. Introduction

Any complex purposeful behavior relies on both online control processes and a

long-term representation of related previous experience, including its spatio-temporal

context and associated goals, strategies or rules. Mnemonic functions supporting these

two aspects of executive control can be separated on the basis of relevant time scales

and underlying neural mechanisms (Atkinson and Shiffrin, 1971; Cowan, 2008). Online

control processes, including, e.g., decision making, conflict monitoring, and active

maintenance of goals or rules, rely on working memory, lasting from seconds to minutes

and thought to be supported by reverberatory population activity, bistability in single

cells or short-term synaptic changes (Durstewitz et al., 2000; Mongillo et al., 2008). In

contrast, long-term storage of contextual representations is implemented by synaptic

changes that last from tens of minutes to years and involve increases in receptor density,

protein synthesis and structural changes at the synaptic site (Davis and Squire, 1984; Bliss

and Collingridge, 1993; Yuste and Bonhoeffer, 2001).
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PFC is a central structure mediating executive functions

(Gilbert and Burgess, 2008) and neuronal mechanisms

supporting these functions can also be studied from the

processing or representational perspectives (Wood and

Grafman, 2003). The discovery of cells with “memory fields”

in the primate dorsolateral PFC (Fuster and Alexander, 1971;

Goldman-Rakic, 1995), which fired with maximal rates when

a stimulus presented at a specific location of the visual field

was held in memory during a delay, stimulated an extensive

study of the role of working memory in executive functions

over the last few decades (Arnsten, 2013). This research led

to a considerable progress in our understanding of neuronal

mechanisms underlying online control of behavior and their

possible implication in related mental disorders (Durstewitz

et al., 2000; O’Reilly and Frank, 2006; Rolls et al., 2008). In

contrast, the involvement of prefrontal long-term memory in

executive functions received relatively little attention. While a

general implication of PFC in memory has been demonstrated

in different species in various experimental paradigms, in what

ways the prefrontal long-term plasticity can be directly involved

in the control of behavior is a matter of debate (Blumenfeld and

Ranganath, 2007; Euston et al., 2012). The main questions that

can be asked in relation to this involvement are:

• What aspects of executive function rely on prefrontal long-

term memory?

• What molecular and neuronal mechanisms support such a

long-term memory storage?

While the main issue at stake concerns the role of intrinsic

prefrontal memory storage mechanisms in human executive

functions, a direct experimental study of these questions in

primates is difficult. This difficulty stems from the fact that

even when PFC neurons are shown to encode task-related

information using single cell recordings or neuroimaging

methods, it is hard to prove that such information is stored in

the PFC and not in other areas with which it is connected. A

case in point is the delay-period activity of primate prefrontal

cells mentioned above: even though these cells have been studied

for several decades now, it is not clear whether their activities

are directly associated with remembered stimuli or represent

top-down control signals to other (e.g., sensory) cortices that

retain stimulus-specific information in memory (Lara and

Wallis, 2015). It appears then that rodent models can be of

help, since they are readily amenable to electrophysiological,

pharmacological and genetic methods in order to test both

the memory contents and its storage site. One difficulty of

using rodents to understand primate executive functions is

that no area in the rodent brain is anatomically homologous

to the primate “granular” PFC (including the dorsolateral

region), thought to support complex behavioral control (Wise,

2008; Carlén, 2017). However, a large body of research shows

that rodent medial PFC (mPFC) mediates many functions

attributed to the dorsolateral PFC in primates, suggesting

that understanding neuronal mechanisms of rodent executive

function, including its long-term memory component, can

provide valuable insights into its organization in primates

(Brown and Bowman, 2002; Dalley et al., 2004; Chudasama,

2011). In particular, synaptic plasticity research over the last

decades provided a considerable amount of data describing in

which behavioral tasks and under what experimental conditions

prefrontal synapses undergo long-term changes. In parallel,

theoretical models of long-term plasticity involvement in

behavioral control, in PFC as well as in other areas, and

at various levels of physiological detail, suggested ways in

which plasticity can be linked with behavior. By unifying

available experimental and theoretical evidence, this review

attempts to address the above questions from the synaptic

plasticity perspective.

The first part of this review describes pharmacological,

electrophysiological and behavioral data supporting a direct link

between long-term memory and synaptic plasticity in rodents,

in experimental paradigms that were shown to depend on

the integrity of mPFC. The second part presents a detailed

account of prefrontal synaptic plasticity mechanisms, in vivo

and in vitro, in mice and rats, demonstrating that neurons

in this structure readily exhibit plastic changes in a variety

of experimental protocols. A well-known property of neural

functioning in mPFC is that it is strongly modulated by the

neuromodulator dopamine, to the extent that it is hardly

possible to study prefrontal synaptic plasticity and memory

without taking into account dopamine involvement (Jay, 2003;

Otani, 2004). The third part of the review is therefore devoted to

the properties of dopaminergic modulation of prefrontal long-

term plasticity. The fourth part compares theoretical models of

synaptic plasticity modulated by dopamine in the mPFC, the

striatum and the hippocampus, areas that are often co-involved

with mPFC in behavioral tasks that tax executive functions

(Floresco et al., 1997; Kesner and Rogers, 2004). The review

is concluded by attempting to provide answers to the two

questions above in the context of executive functions research

in rodents.

2. Long-term memory in mPFC and
its role in rodent behavior

In an influential review, Wood and Grafman (2003)

classified existing models of PFC according to whether they

adopt a processing or a representational approach to describe

the functional role of this structure in cognition. The processing

approach attempts to characterize algorithmic procedures (e.g.,

selection of goals and rules to achieve them) governing the active

control of behavior. These procedures are usually considered to

be independent of the nature of the stimuli they operate with,

so that knowing what is stored in prefrontal long-term memory
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is not essential for understanding PFC function from this point

of view. In contrast, the representational approach focuses on

the type information stored by the PFC, as it is this information

that distinguishes it from other cortical structures and defines

its functional significance (as, e.g., memory about objects and

faces is an essential function of the inferior temporal cortex).

The authors argue that the representational approach is more

general (since the characterization of the kind of processes that

PFC stores fits it), more in line with evolutionary history of

PFC and its anatomical properties (see also Wise, 2008) and

potentially more fruitful in generating experimentally testable

predictions. This work is one of the first to highlight long-term

memory as an important issue in prefrontal research. Another

line of evidence supporting the important role of PFC, and in

particular of its medial region, in long-term memory comes

from studies of memory consolidation (see Frankland and

Bontempi, 2005, for review). Based on the combined imaging

and inactivation methods in an animal model of retrograde

amnesia, it is proposed that mPFC plays an essential integrative

role in storage and recall of remote memories, complementing

the hippocampus that is thought to store primarily recent

ones. More recently, Euston et al. (2012) reviewed evidence

of mPFC involvement in the processing of both recent and

remote memories and proposed that its primary role is to learn

associations between the context (including location and events)

and adaptive responses.

The direct involvement of mPFC in the storage of recent

and remote memories is supported by evidence showing that

manipulation of specific molecular targets disrupts memory

in this and nearby cortices. In particular, blockade of

muscarinic and N-Methyl-D-aspartate (NMDA) receptors in

the prelimbic mPFC immediately after learning an odor-

reward association induced severe memory impairment 1

or 2 days later (Tronel and Sara, 2003; Carballo-Márquez

et al., 2007). Protein synthesis blockade with anisomycin

(as well as NMDA receptor disruption) in the same region

blocked consolidation of object recognition memory 1 day

after learning (Akirav and Maroun, 2006). In the nearby

orbitofrontal cortex, disruption of the synapic plasticity cascade

mediated by mitogen-activated protein kinases (MAPK) and

extracellular signal-regulated kinases (ERK) blocked remote

olfactory memory and abolished the late development of cortical

structural plasticity (Lesburguères et al., 2011), whereas in

the frontal association cortex learning and extinction caused

elimination and formation of dendritic spines at the same

dendritic branches (Lai et al., 2012). Cortical storage of remote

taste memory has been associated with protein kinase M zeta

(Shema et al., 2007), whereas remote fear memory was blocked

in α-CaMKII+\− mice, in which cortical, but not hippocampal,

synaptic plasticity is impaired (Frankland et al., 2001, 2004).

The above data strongly suggest that mPFC, similarly to

nearby cortical areas, directly participates in associative long-

term memory, at least in rodents. However, in which way

this memory supports flexible control of behavior is less clear.

Rodent studies of behavioral flexibility, a term that is often

used to describe the kind of cognitive functions referred

to as “executive” in human and primate literature, can be

separated into four main classes according to whether they test

strategy selection (or set-shifting), extinction learning, delay-

period working memory or decision making (Figure 1). In

all these paradigms, (i) Successful performance depends on

mPFC integrity and requires task acquisition across hours/days;

(ii) Task learning is associated with neuronal activity changes

and synaptic plasticity within mPFC; and (iii) Experimental

manipulations of synaptic plasticity during or after learning

perturbs behavioral performance. These properties make it

possible to study which aspects of flexible behavior rely on

long-term synaptic plasticity within mPFC.

In the spatial strategy-selection paradigm or its non-spatial

version referred to as set-shifting, animals are trained to flexibly

switch from one behavioral strategy to another following a

sudden change in the stimulus-reward contingency (de Bruin

et al., 1994; Ragozzino et al., 1999; Birrell and Brown, 2000;

Floresco et al., 2006; Rich and Shapiro, 2007). These paradigms

were developed specifically as adaptations of cognitive flexibility

studies in primates (such as the Wisconsin Card Sorting Task

and its monkey analogs, Berg, 1948; Mansouri et al., 2006)

to rodents (Ragozzino et al., 1999; Bissonette et al., 2013).

In the spatial version of the task (Figure 1A), animals are

initially rewarded when they follow a “place-based” strategy,

approaching the same unmarked allocentric location in the

maze from different starting positions. Once this strategy is

successfully acquired, the experimenter switches (unknown

to the animal) the reward contingency so that animals are

now rewarded when they follow a different, “response-based”

strategy. Here, the animals are rewarded when they make

decisions based on immediately perceived cues, for example,

“once at the center of the maze, turn left,” or “go to the arm

with a yellow landmark at the end.” While learning of the

strategies themselves is not impaired by mPFC inactivation, the

switching between those strategies is (Ragozzino et al., 1999;

White and McDonald, 2002). In set-shifting, animals first learn

to choose one of two feeding bowls to dig for food, based

on a particular type of perceptual cue (e.g., the odor of the

digging medium). After the contingency switch, they have to

make choices based on a different type of cue, e.g., the texture of

the bowl surface. mPFC lesions selectively impair shifting of the

perceptual set, but not its acquisition (Birrell and Brown, 2000).

In these tasks, learning is associated with neural activity changes

in mPFC (Rich and Shapiro, 2009; Durstewitz et al., 2010; Singh

et al., 2019) and with plasticity-related gene expression in mPFC

(DeSteno and Schmauss, 2008; Burnham et al., 2010). The main

learning components of these tasks are the selection of a new

behavioral strategy and inhibition of a previously acquired one,

following a contingency switch (Dalley et al., 2004). Different

mPFC subregions are differentially involved in mediating these
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FIGURE 1

Typical experimental paradigms in which performance depends on synaptic plasticity in the mPFC. (A) Strategy selection. Rodents are trained to

switch between place and response tasks, following a switch of reward contingency (Rich and Shapiro, 2007). In the place task, animals are

rewarded if they reach the same arm (e.g., N) starting from any other arm. In the response task, reward is given if animals perform the same body

turn at the intersection point. Importantly, the contingency switch is not signalled by any external cue, the animals have to infer it via

trial-and-error. In a set-shifting version of the task (Birrell and Brown, 2000), animals switch between decisions based on di�erent types of cue

(e.g., odor vs. texture), instead of spatial strategy. (B) Fear extinction. During a conditioning period, animals associate a neutral cue, e.g., a sound

tone, with a footshock, so that they acquire a freezing response to the cue (Herry and Garcia, 2002). During an extinction period the cue is

repeatedly presented without the footshock, so that animals “learn to forget” the freezing response. In a contextual fear conditioning, the fear

response is associated with environmental features (e.g., its visual appearance) rather than a discrete cue (Bouton et al., 2011). (C) Delay-period

working memory. In an 8-arm maze, animals retrieve a reward (black dot) from a single open arm (forced choice 1) (Touzani et al., 2007). After a

delay, the same arm is open together with an adjacent one and the animal has to choose the non-visited arm to obtain the reward (choice run

1). In a more complicated version of the task, a second forced run is inserted during the delay so that the animal has to keep in memory the two

arms and use this information after the corresponding delay. (D) Decision making. During a training phase, animals learn to press on either of the

two levers to obtain distinct rewards associated with them (e.g., a food pellet or sucrose solution, Corbit and Balleine, 2003). During the

following devaluation phase, the animals are fed to satiety on one of the two reward types. During test, no reward is given and the

preponderance of the animals to press on either lever is measured. Goal-directed behavior corresponds to a less frequent use of the lever

associated with the devaluated reward. In a more complex version of the task, one employs contingency degradation instead of reward

devaluation. In that case, the animal is given a particular reward irrespective of whether it presses on the associated lever or not, leading to a less

frequent use of this lever in normal animals.

components, depending on the nature of the task (Kesner, 2000;

Floresco et al., 2009; Bissonette et al., 2013).

Extinction learning can be considered as a type of behavioral

flexibility, in which a previously acquired emotional response

(e.g., footshock-induced freezing) to a discrete stimulus (e.g.,

a sound) or to a contextual cue (e.g., an environment) is

learned to be inhibited (Morgan and LeDoux, 1995; Quirk

and Mueller, 2008; Bouton et al., 2011; Gass et al., 2014)

(Figure 1B). In primates, fear extinction studies are motivated

by the general question of emotional regulation of behavior

and, in particular, by the role of stress in the development

of many psychiatric disorders, including post-traumatic stress

disorder (Sotres-Bayon et al., 2006; Maren and Holmes, 2016).

In early studies of the role of mnemonic processes in fear

conditioning, synaptic changes in hippocampal-mPFC synapses

were shown to occur during the acquisition of an associative

task using tone-shock pairings (Doyère et al., 1993). Moreover,

an increase in plasticity-related immediate-early gene expression

(c-fos) in mPFC during a similar task was reported, while its

suppression was found to produce learning deficits (Morrow

et al., 1999). However, subsequent investigations revealed the

key role of the basolateral amygdala in associating sensory

and shock-related inputs (Quirk and Mueller, 2008) and a

hippocampal involvement in the reinstatement of extinguished

fear (Frohardt et al., 2000; Short et al., 2022), whereas mPFC

was shown to mediate primarily the consolidation of extinction.

More specifically, the learning to inhibit a fear response was

shown to be associated with synaptic changes in mPFC, as

tested by an electric stimulation of medio-dorsal thalamus

or ventral hippocampus synapses to mPFC neurons (Milad

and Quirk, 2002; Quirk et al., 2006; Hugues and Garcia,

2007). Moreover, behavioral extinction learning was sped up

or slowed down by an electric stimulation of monosynaptic

thalamus-mPFC projections (Herry and Garcia, 2002). Finally,

local pharmacological block of NMDA receptors, MAPK/ERK

pathway or protein synthesis prevented long-term extinction
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(Runyan, 2004; Santini, 2004; Hugues et al., 2006; Burgos-Robles

et al., 2007; Mamiya et al., 2009) and inhibitory avoidance

(Zhang et al., 2011). Potentially different mPFC subregions learn

different components of fear response (i.e., expression of fear

response vs. inhibition of fear response) similarly to what has

been proposed for set-shifting (Quirk and Mueller, 2008).

In a delay-period working memory paradigm, adapted

from the behavioral paradigm of the same name in primates

(Arnsten, 2013), rodents retain in memory a trial-unique spatial

information from a training phase. During a test phase, that

starts after a delay, they are required to retrieve this information

and use it to solve the task (Floresco et al., 1997; Horst and

Laubach, 2009). The delay duration varies from 3 s to 30 min in

different experiments in rodents, while in primate studies it is at

most several seconds.While some lesion studies have shown that

intact mPFC is necessary for successful performance in delay-

period tasks (Horst and Laubach, 2009), others reported that

mPFC is not needed for information storage during the delay

and it is only required during spatial information retrieval and

use for guiding prospective action (Floresco et al., 1997; Seamans

et al., 1998; Gisquet-Verrier and Delatour, 2006). Neuronal

activity dynamics in mPFC were shown to reflect learning

during a delayed alternation task (see, e.g., Baeg et al., 2003) and

in one study, optogenetic suppression of enhanced activity of

pyramidal neurons inmousemPFC impaired learning (Liu et al.,

2014). It is not clear whether long-term plasticity within mPFC

is involved in simple delay-period memory tasks, but in one

study it was shown that a day-to-day improvement in delayed

non-matching to sample task with retroactive interference,

performance improvement required protein synthesis in mPFC

(Touzani et al., 2007 see Figure 1C, see also Marighetto et al.,

2008). In a related reference-memory experimental paradigm,

early studies have shown that learning was associated with

plasticity-related gene expression in hippocampal-prefrontal

synapses (Davis et al., 1996; Laroche et al., 2000).

Finally, decision making is often tested in rodents using a

reward devaluation or contingency degradation experimental

paradigms (Corbit and Balleine, 2003; Killcross and Coutureau,

2003). These paradigms are based on the distinction between

goal-directed and habitual behaviors, the former of which is

mediated by mPFC in rodents and primates (Balleine and

O’Doherty, 2010; Dolan and Dayan, 2013). During a goal-

directed behavior, goal information is directly associated with

actions (or chains of actions) leading to it, such that a change

in the goal value or in the action-reward contingency induces

changes in the corresponding behavior. In contrast, habitual

behaviors prescribe action choices that are linked to the context

or a cue associated with the goal, regardless of the internal

motivation for the goal. Thus, if an animal solves a task in a goal-

directed manner, reward devaluation (e.g., by feeding to satiety)

should lead to a less probable choice of specific actions leading

to it, reflecting the flexibility in the choice of actions (Figure 1D).

However, if responses are habitual, rather than goal-directed, the

actions leading to the now devaluated goal will be automatically

repeated. Lesion studies support the implication of (prelimbic)

mPFC in goal-directed behavior by showing a strong bias of

lesioned animals toward habitual actions (Corbit and Balleine,

2003). Moreover, learning in decision making tasks occurs

across several days (Killcross and Coutureau, 2003) and is

associated with learning-related changes in response patterns of

prefrontal neurons (Mulder et al., 2003). Lastly, the implication

of synaptic plasticity mechanisms, intrinsic to mPFC, in goal-

directed decision-making tasks was demonstrated by showing

an increased expression of MAPK/ERK in mPFC following

learning, as well as by the fact that local inhibition of

this pathway prevented learning (Hart and Balleine, 2016).

Moreover, augmentation of dendritic spine plasticity using

cytoskeletal regulatory factor Rho kinase inhibitor stimulated

goal-directed behavior in mice compared to control animals

who expressed stimulus-response habits (Hart and Balleine,

2016; Swanson et al., 2017; Woon et al., 2020). In spatial goal-

directed tasks, a long-term goal representation inmPFC neurons

has been observed (Poucet et al., 2004; Hok et al., 2005),

whereas inhibition of theMAPK plasticity pathway in the mPFC

immediately after training impaired performance in a version of

the Morris watermaze task (Leon et al., 2010).

The experimental data above support the proposal that

rodent mPFC is directly involved in a behaviorally important

long-termmemory storage. In relation to the first question asked

in the Introduction, the primary candidate options for executive

long-term storage in rodents are high-level representations of

behavioral strategies (Ragozzino et al., 1999; Rich and Shapiro,

2009) and rules for switching between them (Durstewitz

et al., 2010; Hyman et al., 2012), necessary prerequisites of

behavioral flexibility (Granon and Floresco, 2009). In spatial

navigation tasks, neuronal representations of different strategies

correspond to strategy-selective populations of neurons that are

activated when memory systems, encoding these strategies, are

engaged in the current behavioral task (White and McDonald,

2002; Arleo and Rondi-Reig, 2007; Rich and Shapiro, 2009). In

fear conditioning, both the expression of learned fear response

and the expression of learned extinction are stored in the

distributed network of interconnected structures, including

mPFC, which exerts control over other structures such as

amygdala (Quirk and Mueller, 2008). The data showing that

long-term memory in mPFC is required for complex working-

memory tasks suggest that it can keep a memory trace of a

mental strategy (Otani et al., 2002), instrumental to “working

with memory” (Seamans and Yang, 2004).

Whether a contextual information, either spatial (i.e., related

to a representation of surrounding environment during a

particular task) or non-spatial (i.e., related to temporal or

other aspects of the task), is also stored in the mPFC, may

depend on the nature and complexity of the task (Euston

et al., 2012; Hyman et al., 2012). In complex spatial tasks

or in non-spatial tasks, mPFC has been repeatedly implicated
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in supporting a high-level hierarchical representation of the

environment or the abstract task model (Tanji and Hoshi,

2001; Botvinick, 2008), which can be considered as a more

complex form of contextual task representation. In the analysis

of reward devaluation experiments, a distinction between goal-

directed and habitual actions, is often considered in terms

of the distinction between “model-based” and “model-free”

algorithms in the reinforcement learning literature (Dayan and

Niv, 2008). Thus, in addition to a representation of rules

or strategy switches, it is likely that during complex tasks

prefrontal memory circuits store a high-level “task model,”

e.g., as a topological graph of the environment (Hasselmo,

2005; Martinet et al., 2011) or as a tree-like decision structure

(Daw et al., 2005), see Section 5. This proposal is supported

by experimental studies showing that mPFC is involved in

the memory of spatial goals (Hok et al., 2005) and of a

temporal order of spatial information in complex tasks (Kesner,

2000).

3. Long-term synaptic plasticity in
mPFC

Assuming, based on the considerations above, that

long-term memories are indeed stored in mPFC and

support its role in flexible control of behavior, the second

question asked in the Introduction addresses neuronal

mechanisms underlying the formation of such memories,

i.e., long-term depression (LTD) and long-term potentiation

(LTP) (Bliss and Collingridge, 1993). As in many other

cortical areas, neurons in mPFC readily exhibit long-lasting

changes in synaptic strength under a variety of different

experimental protocols, thus providing mechanistic support

for the hypothesis of long-term memory storage in this

brain structure.

In general, synaptic stimulation at low and high frequencies

is expected to result in LTD and LTP, respectively, in agreement

with the standard synaptic plasticity model described by the

Bienenstock-Cooper-Munro (BCM) theory of cortical plasticity

(Bienenstock et al., 1982; Lisman, 1989; Cooper et al., 2004).

A prominent feature of this theory is the adaptive threshold

between LTD and LTP, the value of which determines the

direction (i.e., depression or potentiation) of plasticity at a

given stimulation strength (or, alternatively, at a given level

of stimulation-induced intra-synaptic calcium concentration).

The LTD-LTP pattern of dependence on stimulation frequency

has also been observed in rodent mPFC, although with a

number of differences between rats and mice in terms of

synaptic stimulation protocols, required to induce plasticity,

and underlying molecular mechanisms. Studies reviewed below

are summarized in Table 1, according to the species, type of

plasticity and the corresponding induction protocol.

3.1. Prefrontal synaptic plasticity in the
rat

In vivo. In anesthetized rats, a tetanic stimulation at

frequencies 50–250 Hz induced LTP of projections from

the hippocampus, the visual cortex, the amygdala and the

contralateral cortex to the prelimbic subregion of the mPFC.

In particular, in synaptic contacts from hippocampal afferents

originating in the CA1 or subiculum, LTP was induced by

tetanic stimulation at 250 Hz (Laroche et al., 1990; Jay et al.,

1996, 1998; Mulder et al., 1997). This LTP required NMDA

receptor activity and protein kinase A (PKA). As shown

below, the implication of NMDA-PKA molecular cascade,

also participating in the classical hippocampal LTP (Malenka

and Bear, 2004), is a common feature of prefrontal LTP

induced at high frequencies in rats and mice. In projections

from the contralateral prelimbic cortex, LTP was induced

at frequencies 10–200 Hz (Gemmell and O’Mara, 2000),

and in those from the visual cortex at 50 Hz (Kim et al.,

2003). In synaptic contacts from the amygdala, LTP was

induced by theta burst stimulation (Maroun and Richter-Levin,

2003).

Standard low-frequency tetanus protocols have initially

failed to induce LTD in the synapses from the ventral

hippocampal CA1 to the prelimbic cortex (Burette et al., 1997).

However, Takita et al. (1999) determined a reliable LTD-

inducing low-frequency (1 Hz) burst protocol by varying the

burst duration, thus supporting the LTD-LTP plasticity pattern

(see also Izaki et al., 2002, 2003).

It is interesting to note here that even though Burette

et al. (1997) did not observe LTD following a number of low-

frequency protocols, one of them (2-pulse 5 ms bursts delivered

at 1 hz) resulted in a depotentiation of a previously induced LTP.

This depotentiation decreased synaptic strength to the baseline,

but not below it, even after the same stimulation was repeated

several times. Depotentiation was initially observed in the

hippocampus (Malenka and Bear, 2004) and is considered as a

possible forgetting, or extinction, mechanism (Kim et al., 2007).

Even though it is largely accepted that extinction constitutes new

learning rather than erasure of the old one (Bouton et al., 2011),

a recent study has shown that opposite changes at the same

dendritic branches in the frontal cortex are associated with fear

learning and forgetting (Lai et al., 2012).

In vitro. Layer V pyramidal neurons in rat mPFC slices

were recorded either intracellularly (Hirsch and Crepel, 1990;

Vickery et al., 1997; Otani et al., 1998; Caruana et al., 2011) or

extracellularly (Huang et al., 2004), while an electric stimulation

was delivered by extracellular current pulses to layers I–II

or layers II–III, respectively. These layers contain synapses

of cortico-cortical projections (from neighboring neurons,

contralateral mPFC neurons, and from other cortical areas), as

well as afferent fibers from a wide variety of subcortical brain
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TABLE 1 Experimental studies on long-term synaptic plasticity in rodent PFC.

Rats

Type Freq. (Hz) Protocol Input References

In vivo

LTP

250 tet HPC Laroche et al., 1990

50 tet HPC Mulder et al., 1997

10–200 tet Contr Gemmell and O’Mara, 2000

50 tet Vis Kim et al., 2003

5× 100 BS AM Maroun and Richter-Levin, 2003

LTD
1× 250 BS HPC Takita et al., 1999

1× 250 BS HPC Izaki et al., 2000

In vitro

LTP 300 tet II-III Huang et al., 2004

LTD/LTP

50–100 tet I-II Hirsch and Crepel, 1991

5–100 BS I–II Vickery et al., 1997

50 tet I–II Kolomiets et al., 2009

LTD

1×20 PP II–III Huang and Hsu, 2010

1×20 PP I–II Caruana et al., 2011

3 tet I–II Bai et al., 2014

Mice

In vivo
LTP 250 tet MdT Herry and Garcia, 2002

LTD 2 tet MdT Herry et al., 1999

In vitro

LTP

300 tet II-III Huang et al., 2004

100 tet, BS II–III Xu et al., 2009

100 tet, BS II–III Cui et al., 2011

LTD
3 tet II-III Huang et al., 2004

10 tet II–III Lafourcade et al., 2007

Protocols: tetanic stimulation (tet), burst stimulation (BS), paired-pulse protocol (PP). For tetanic stimulation, frequency in Hz is given; for burst stimulation and paired-pulse protocol,

inter-burst frequency is indicated first and then burst frequency. In all experiments, layer V pyramidal neurons were recorded, while the stimulation site is indicated in the Input column

(roman numbers refer to the cortical layer where the input stimulation was delivered). HPC, hippocampus; Contr, contralateral prelimbic cortex; Vis, visual cortex; AM, amygdala; MdT,

medio-dorsal thalamus. Only one reference per laboratory is given if the same experimental protocol is used in several studies.

structures (including the hippocampus, Kuroda et al., 1998;

Hoover and Vertes, 2007).

Similarly to the in vivo studies cited earlier, a high-

frequency stimulation (300 Hz) induced NMDA-dependent

LTP in these synapses, and pharmacological block of PKA

or protein synthesis impaired this LTP (Huang et al., 2004).

Lowering stimulation frequencies to 50–100 Hz resulted in

high neuron-to-neuron variability in terms of the sign and

amplitude of plasticity, as different neurons expressed either

LTP, LTD or no change under this protocol (Hirsch and

Crepel, 1990; Law-Tho et al., 1995; Vickery et al., 1997;

Auclair et al., 2000). While calcium elevation was necessary for

both LTD and LTP at these intermediate frequencies (Hirsch

et al., 1992), a pharmacological NMDA receptor blockade

masked LTP and resulted in LTD instead (Hirsch and Crepel,

1991). In a series of studies, in which tetanic stimulation

at a fixed frequency of 50 Hz was used, either no change

(when the stimulation included 4 tetanic trains) or NMDA-

independent LTD (with 6 tetanic trains) was observed (Otani

et al., 1998, 1999; Kolomiets et al., 2009). This variability

of plastic changes at the intermediate stimulation frequencies

can be interpreted as a consequence of proximity of synaptic

stimulation (or of stimulation-induced synaptic state) to the

LTD/LTP threshold. Finally, synaptic stimulation at still lower

frequencies reliably resulted in LTD (Huang and Hsu, 2010;

Caruana et al., 2011; Bai et al., 2014). In particular, two

different forms of activity-dependent LTD were observed: one

that required NMDA receptor activation, and the other that did

not. The first, NMDA-dependent form of LTD, was reported

when plasticity was induced by a tetanic stimulation at 3 Hz

(Bai et al., 2014). This form of LTD involved phospholipase

C-protein kinase C (PLC-PKC) molecular cascade and MAP

kinase activity. The second, NMDA-independent form of

LTD, was observed following a paired-pulse stimulation at
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1 Hz (Huang and Hsu, 2010; Caruana et al., 2011), and required

an activation of metabotropic glutamate receptors (mGluRs),

muscarinic acetylcholine receptors and PKC.

3.2. Prefrontal synaptic plasticity in the
mouse

In the mouse in vivo, a high-frequency (250 Hz) stimulation

ofmediodorsal thalamic afferents resulted in LTP of stimulation-

evoked response approximately 30 min after the stimulation

(Herry and Garcia, 2002), while a low-frequency (2 Hz)

stimulation of mediodorsal thalamus afferents resulted in LTD

or LTP in different mice (Herry et al., 1999; Herry and Garcia,

2002). However, when the same stimulation was combined with

fear conditioning, a reliable LTD was observed (probably due to

a neuromodulatory effects on plasticity, see below).

In the mouse in vitro, a 100–300 Hz tetanic and theta-

burst stimulation delivered to mPFC layer II-III, as well as a

pairing protocol for the same synapses also resulted in LTP

(Huang et al., 2004; Xu et al., 2009), which was NMDA-

dependent (Cui et al., 2011). At low stimulation frequencies (3

and 10 Hz), LTD was observed in the same synapses that did not

require NMDA activation, but was instead mGluR-dependent

and required endocannabinoid receptor activation (Huang et al.,

2004; Lafourcade et al., 2007).

3.3. Summary of experimental results on
synaptic plasticity using BCM curves

Within the framework of the BCM theory of synaptic

plasticity mentioned earlier, the above data can be interpreted in

terms of plasticity curves that schematically represent changes

in synaptic efficacy as a function of presynaptic stimulation

strength (or, equivalently, as a function of stimulation-induced

post-synaptic depolarization or calcium elevation, Bear et al.,

1987; Lisman, 1989; Kirkwood et al., 1996), see Figure 2A.

Thus, a high-frequency stimulation invariably results in LTP,

while a low-frequency stimulation leads to LTD, with the

LTD/LTP threshold somewhere in between these two regimes.

The experimentally observed neuron-to-neuron variability with

respect to plasticity amplitude and direction at intermediate

frequencies (i.e., in the range of 50–100 Hz in vitro and 3–

10 Hz in vivo) may thus reflect proximity of stimulation-induced

activation of molecular plasticity processes to the intrinsic

neuronal LTD/LTP threshold. This interpretation suggests the

LTD/LTP threshold in vivo is shifted toward lower synaptic

activity levels and/or calcium concentrations. In addition, the

difficulty of choosing the right protocol for LTD induction

in vivo can be interpreted as corresponding to a narrower

LTD window.

4. Dopaminergic modulation of
long-term synaptic plasticity in
mPFC

Via the mesocortical dopaminergic pathway, mPFC receives

direct projections from dopaminergic neurons residing in the

ventral tegmental area (VTA) and, to a lesser extent, in the

substantia nigra pars compacta (Thierry et al., 1973; Björklund

and Dunnett, 2007). An effective dopamine (DA) concentration

in mPFC is mainly determined by three processes: release of

the neuromodulator by dopaminergic axon terminals, reuptake

by DA (DAT) or norepinephrine (NET) transporter membrane

proteins in these terminals and metabolism via catechol-O-

methyltransferase (COMT), an enzyme located in post synaptic

neurons or glial cells (Garris and Wightman, 1994; Mundorf

et al., 2001; Yavich et al., 2007; Bai et al., 2014). In wild-type

mice, pharmacological DAT inhibition had a negligible effect

on extracellular prefrontal DA levels, whereas NAT inhibition

increased DA levels 2- to 4-fold (Käenmäki et al., 2010),

suggesting that DA uptake in this cortex depends primarily on

the NET, in contrast to the striatum where it primarily mediated

by DAT. In NET- and COMT-knockout mice, prefrontal DA

levels were increased by 55 and 60%, respectively (Morón et al.,

2002; Käenmäki et al., 2010). The data from DAT-knockout

mice are controversial as either no effect (Shen et al., 2004) or

a 3.6-fold increase of DA levels (Xu et al., 2009) were observed.

The release profile of DA is determined by the activity

of dopaminergic neurons, thought to occur in vivo in two

distinct firing regimes: “tonic” and “phasic” (Floresco et al., 2003;

Grace et al., 2007). The tonic regime corresponds to a regular

spontaneous activity of a subset of dopaminergic neurons and is

thought to provide a stable baseline DA concentration in target

structures, including mPFC. The phasic regime corresponds to

burst firing of these neurons, providing a neuronal basis for

reward-based learning in the brain (Hollerman and Schultz,

1998). It has been argued that due to differences between

striatal and cortical dopaminergic projection systems, the latter

is more suited to detect relatively slow (i.e., on the time scale

of seconds to minutes) changes in tonic DA concentration

and is not sensitive to short (i.e., about 200 ms) phasic

dopaminergic signals (Seamans and Yang, 2004; Lavin et al.,

2005). This distinction is supported by the data showing that

mPFC expresses much slower clearance rates for DA (Garris

and Wightman, 1994), leading to a prolonged DA response to

short activation bursts of DA neurons. Moreover, prefrontal

DA appears to be released by a specific subpopulation of VTA

dopaminergic neurons that are molecularly and functionally

distinct from “conventional” neurons thought to signal reward-

related activity, at least in mice (Lammel et al., 2008). This

subpopulation is characterized by the ability to sustain tonic

firing at high rates for prolonged periods of time, and by a

lack of D2 autoreceptors that inhibit DA release by feedback
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A B

FIGURE 2

A schematic summary of synaptic plasticity experiments using BCM curves. (A) Plasticity curves corresponding to in vivo (green line) vs. in vitro

(black line) data. The LTD/LTP threshold in vivo has a lower value and the LTD window is narrower. (B) Plasticity curves corresponding to low

(blue line) and high (red line) tonic DA concentrations, for the in vitro condition. The black curve in (B) is a copy of the curve in (A). The blue and

red arrows illustrate D1 facilitation of LTP and D2 facilitation of LTD by low and high DA concentration, respectively, near plasticity threshold. In

both plots, the vertical axis corresponds to a change in average synaptic weight of a neuron, measured by the amplitude of somatic EPSP. The

horizontal axis represents stimulation frequencies on a logarithmic scale. The black arrows correspond to a stimulation at low (3 Hz),

intermediate (50 Hz) and high (300 Hz) frequencies. Insets: the same curves as in the main plots, shown on a linear scale.

control. Finally, synaptic plasticity experiments have repeatedly

shown that long-term (in the range of tens of minutes), but not

short-term, changes in backgroundDA concentration determine

the amplitude and direction of synaptic plasticity in the mPFC

(Matsuda et al., 2006; Kolomiets et al., 2009). This is in contrast

to the striatum, where a short DA pulse concurrently with

afferent stimulation can induce a change in the direction of

plasticity (Wickens et al., 1996).

On the post-synaptic side, there are two main dopaminergic

receptor types, D1 (including D1 and D5 receptors) and D2

(including D2, D3, and D4 receptors), both of which are

expressed in prefrontal neurons (Vincent et al., 1993; Gaspar

et al., 1995; Santana et al., 2009; Zhang et al., 2010) and

are important for normal PFC-dependent behaviors (Seamans

et al., 1998; Setlow and McGaugh, 2000; Floresco et al.,

2006; St Onge et al., 2011). Santana et al. (2009) performed

a quantitative analysis of D1- and D2- receptor expression

in the rat prelimbic mPFC, showing that these receptors

are present in excitatory pyramidal neurons and, to a lesser

extent, in inhibitory γ -Aminobutyric acid (GABA) interneurons

in all layers. Much larger proportion of pyramidal neurons

express DA receptors in deeper (V-VI) than in superficial (II-

III) layers. As to the receptor types, a similar proportion of

pyramidal cells expressed D1 and D2 receptors in layer V,

while in other layers D1-expressing cells were more abundant

(3- to 4-fold) than D2-expressing ones. In mice, D1 receptors

are more abundant in deeper layers, while D2 receptors in

superficial ones, with D1:D2 ratio varying between 1.5 and

2.5 depending on age (Wei et al., 2018; Cullity et al., 2019;

Bjerke et al., 2022). Co-localization studies show that only

about 25% of prelimbic cells express both receptor types in

rats and mice, suggesting a partial segregation of D1- and D2-

expressing neurons in the mPFC (Gaspar et al., 1995; Vincent

et al., 1995; Wei et al., 2018). Interestingly however, in several

electrophysiological studies the effects of pharmacological

manipulations of both D1 and D2 receptors were observed in

single pyramidal mPFC neurons (e.g., Tseng and O’Donnell,

2004; Matsuda et al., 2006; Xu et al., 2009). In these studies

GABAergic transmission was blocked, excluding the possibility

that D2 receptors acted on neuronal activity via interneurons

(Xu and Yao, 2010).

D1 and D2 receptors are coupled to G proteins stimulating

(Gαs/olf) and inhibiting (Gαi/o) second messenger cAMP,

respectively (Missale et al., 1998; Beaulieu and Gainetdinov,

2011). Consequently, via their main transduction cascades these

receptors exert opposite effects on the classical cAMP - PKA

plasticity pathway (Malenka and Bear, 2004). Specifically to the

PFC, the D1-mediated facilitatory effect on LTP can be mediated

by such mechanisms as stimulation of surface expression of

AMPA receptors (Sun et al., 2005), neuronal excitability increase

via protein kinase C-phospholipase C cascade (Tseng and

O’Donnell, 2004; Chen et al., 2007), and potentiation of NMDA

receptor responses (Zheng et al., 1999; Li et al., 2009). The D1-

mediated activation of cAMP-PKA pathway has been shown

to be necessary for LTP in hippocampal (Jay et al., 1998;

Gurden et al., 1999) and callosal (Coppa-Hopman et al., 2009)

mPFC synapses in vivo. Some of these D1-mediated actions

are mirrored by antagonistic D2-activated cellular pathways.

In particular, D2 receptors decrease excitability, downregulate

AMPA trafficking, and suppress NMDA receptor activity
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(Zheng et al., 1999; Wang et al., 2003; Tseng and O’Donnell,

2004; Sun et al., 2005). In addition, D2 receptors modulate

redistribution of NMDA receptors away from the synapse and

inhibit CaMKII, preventing LTP (Xu et al., 2009). Cooperative

effects of these two receptor classes have also been reported. For

example, coactivation of D1/D2 receptors leads to an increase

in intracellular calcium levels in cell cultures (Lee et al., 2004)

and to the activation of the MAPK/ERK, required for both

LTD and LTP in in vitro (Otani et al., 1999; Kolomiets et al.,

2009).

A given DA concentration will thus activate both D1 and D2

receptors in the local circuit, such that their dynamic balance

will determine the type of resulting plasticity (or its absence),

depending on differential sensitivities of downstream molecular

cascades to DA (Nomura et al., 2014). A certain controversy

exists concerning the relative activation of prefrontal D1 and

D2 receptors as a function of prefrontal DA levels. A widely

held hypothesis is that lower DA concentrations predominantly

activate D2 receptors, while higher DA concentrations result in

a stronger net D1 activity (Goto and Grace, 2005; Shen et al.,

2008). This hypothesis is based on earlier studies suggesting that

a larger proportion of D2 receptors are in a high affinity state,

and, conversely, a larger proportion of D1 receptors are in low

affinity state in the rat striatum (Creese et al., 1983; Richfield

et al., 1989). However, this issue is far from clear in relation to

PFC. In fact, prefrontal studies have repeatedly reported D1-

mediated effects at a lower DA concentrations and D2-mediated

effects at a higher one (Zheng et al., 1999; Trantham-Davidson

et al., 2004; Li et al., 2009), contrary to the striatum-based

data. This can occur due to several reasons: (i) the density of

D1 receptor distribution in rodent PFC is higher than that of

D2 receptors (see above); (ii) differences in the localization of

DA receptors (synaptic for D2 vs. extra-synaptic for D1) may

contribute to receptor sensitivities to DA (Seamans and Yang,

2004); (iii) the distribution of affinity states of these receptors

may differ between the striatum and PFC (no studies, to our

knowledge directly addressed this question so far). Affinity states

may change receptor sensitivities to DA by several orders of

magnitude (Richfield et al., 1989).

While in primates the study of the direct influence of DA

on long-term memory and synaptic plasticity is hard and only

correlative evidence exists (see Puig et al., 2014, for review),

experiments in rodents have clearly demonstrated that this

neuromodulator is strongly involved in executive behavioral

control (Floresco et al., 2006), while also strongly influencing

the amplitude and direction of prefrontal synaptic plasticity (Jay,

2003; Otani et al., 2003). Elucidating the role of DA in plasticity

may thus help to understand its role in mPFC-dependent

memory and therefore in executive behavior. However, it has

proved difficult to provide a coherent interpretation of results of

synaptic plasticity experiments, since it is complicated by the fact

that DA effects on plasticity depend on the stimulation length

and frequency, as well as on the length and time of application.

One of the objectives of this review is to provide such a unifying

interpretation by means of plasticity curves introduced in the

previous section. The next sections provide an overview of

experimental studies, including those from our group, that

address DA modulation of prefrontal synaptic plasticity in rats

and mice (see Table 2).

4.1. Dopaminergic modulation of
synaptic plasticity in the rat

The only in vivo data on DA modulation of prefrontal

plasticity comes from studies in anesthetized rats, in which

an electric stimulation of VTA dopaminergic afferents to

mPFC, concurrent with tetanic plasticity induction protocol

at 250 Hz, enhanced NMDA-dependent LTP in hippocampal-

medial prefrontal synapses (Gurden et al., 1999). An electrolytic

lesion of VTA impaired this LTP, while saturation of LTP

by stimulation at a higher frequency (300 Hz) eliminated the

DA-induced enhancement effect, suggesting that DA acts on

plasticity in a limited window of stimulation frequencies. The

enhancement of LTP was mediated by D1 receptor activation

via cAMP-PKA cascade, while manipulation of D2-receptor

activation by agonists or antagonists had no effect (Gurden et al.,

2000).

In vitro, LTP induced by 300 Hz stimulation was strongly

reduced by D1 receptor antagonism or PKA inhibition, while

D2 receptor blockade had no influence (Huang et al., 2004), in

a good agreement with the in vivo data above. In the range of

lower stimulation frequencies (50–100 Hz), a short and strong

DA application (100 µM for 5 min during stimulation) shut

down LTP and favored NMDA-independent LTD (Law-Tho

et al., 1995; Otani et al., 1998). This LTD required combined

activity of D1, D2 receptors andmGluRs, and also involvedMAP

kinases (Otani et al., 1998, 1999). In a stark contrast to the LTD

facilitation by a short-term high-concentration DA bath, a long-

term application of low-concentrationDA (3µMfor 15–40min)

resulted in an opposite effect, namely LTP facilitation and

conversion from LTD to LTP (Matsuda et al., 2006; Kolomiets

et al., 2009). Moreover, in the LTP regime, the amplitude of

potentiation was highest for an optimal DA concentration, such

that too low or too high concentration of DA abolished LTP

(Kolomiets et al., 2009). Molecular mechanisms implicated in

the DA-facilitated LTP include co-activation of D1, D2 receptors

and MAP kinases, similarly to DA-induced LTD above, but also

require NMDA receptor activity.

Out of the two different forms of LTD induced by low-

frequency stimulation in vitro, NMDA-dependent (Bai et al.,

2014) and NMDA-independent (Caruana et al., 2011), only the

former was tested in different DA conditions. In that study we

have shown that the NMDA-dependent LTD required a co-

activation of D1 andD2 receptors, since the antagonism of either

receptor blocked plasticity (Bai et al., 2014). Moreover, when
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TABLE 2 Experimental studies on DA modulation of long-term synaptic plasticity in rodent PFC.

Rats

Type Freq. (Hz) Mol. Casc. References

In vivo LTP 250 +D1, +NMDA, +PKA,−D2 Gurden et al., 2000

In vitro

LTP 300 +D1, +NMDA, +PKA, +prot. synth Huang et al., 2004

LTD/LTP

50–100 +NMDA Law-Tho et al., 1995

50 +D1, +D2, +mGluR, +MAPK Otani et al., 1999

50 +NMDA, +mGluR, +PLC, +PKC, +IP3 Otani et al., 2002

50 +D1, +D2, +NMDA, +ERK Kolomiets et al., 2009

LTD 3 +D1, +D2, +NMDA, +PLC, +PKC, +MAPK Bai et al., 2014

Mice

In vitro

LTP

300 +D1, +prot.synth Huang et al., 2004

100× 5 Xu et al., 2009

100 +NMDA Cui et al., 2011

LTD
3 +D1, +D2, +PKA, +mGluR, -NMDA Huang et al., 2004

10 +eCB, +mGluR, +PLC,−NMDA,−D1,−D2 Lafourcade et al., 2007

In all experiments, a tetanic stimulation at the given frequency was applied, except the study by Xu et al. (2009) where a theta-burst stimulation was used (five 100 Hz bursts with 200 ms

intervals). Plus (minus) signs in the 4th column indicate that the corresponding receptor/enzyme was (was not) required for a given type of plasticity.

endogenous DA activity was augmented by DAT inhibition

during stimulation, the LTD was blocked by overstimulation

of D1 receptors. Since in these experiments too weak or too

strong DA receptor activation impaired LTD, these results can be

interpreted in terms of an inverted-U shape profile, as has been

done for LTP results above (Bai et al., 2014; Otani et al., 2015).

Molecular mechanisms underlying this NMDA-dependent form

of LTD involved PLC, PKC and MAP kinases.

With the help of the plasticity curves introduced earlier,

DA modulation of plasticity in rats can be interpreted in the

following way (see Figure 2B). First, in the regime of high

stimulation frequencies (≥200 Hz), in which only LTP can

be induced, DA modulates this LTP via D1 receptors acting

through cAMP-PKA cascade. Available evidence suggests that

D2 receptors are not involved in the LTP induced at these

high frequencies, neither in vivo nor in vitro. Second, near

plasticity threshold (around 50 Hz in vitro), DA via both D1

and D2 receptors exerts strong bidirectional effect on plasticity.

In particular, high DA elevation induces a rightward shift of the

LTD/LTP threshold toward higher synaptic activities (high DA,

conversion from LTP to LTD, Figure 2B), while lowDA elevation

induces a leftward shift (low DA, conversion from LTD to

LTP). It follows that progressive elevation of DA concentration

near threshold should peak at some optimal DA concentration

exhibiting the “inverted-U” LTP profile, in agreement with the

data (Kolomiets et al., 2009). Finally, still lower stimulation

frequencies enter into LTD-only regime, in which DA controls

LTD in a bidirectional manner: either DA decrease or DA

elevation can shut down LTD via cooperative action on D1 and

D2 receptors to affect plasticity. In this regime, the interpretation

of experimental results within the proposed framework is

complicated by our ignorance about the stimulation-induced

synaptic state relative to the LTD/LTP threshold. For example,

if the synaptic state is far from the threshold (i.e., close to the

baseline synaptic activity), then progressive DA elevation will

shut down LTD (as in the study by Bai et al., 2014). On the other

hand, if the synaptic state is close to the LTD/LTP threshold,

then DA elevation will enhance LTD (as is the case with mouse

LTD, Huang et al., 2004, see below). Thus, our hypothesis of

DA modulation is neither supported nor disproved by these

opposite experimental results on LTD. However, the hypothesis

predicts that for a given synaptic state, progressive elevation of

DA concentration will result in a particular response profile of

synaptic efficacy change, depending on how close the synaptic

state is to the plasticity threshold.

It can further be speculated that the same pattern of DA

plasticity modulation occurs in vivo, since the same molecular

mechanisms are likely to be at play. However, in this condition

the strongest dopaminergic modulation of plasticity is predicted

to occur at much lower stimulation frequencies (corresponding

to a lower LTD/LTP threshold in vivo) and in a narrower

frequency window (see Figure 2A), a prediction that is yet to

be tested.

4.2. Dopaminergic modulation of
synaptic plasticity in the mouse

While in vivo mouse data testing DA modulation of

prefrontal plasticity is currently absent (to our knowledge), in
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vitro, D1 agonists facilitated LTP induced at 300 Hz (Huang

et al., 2004), in agreement with the role of D1 receptors in this

form of LTP in rats (without agonist application, a stable but

weak LTP was observed in this study).

A synaptic stimulation at an intermediate strength, in

particular, a tetanic stimulation (at 100 Hz) or a theta-burst

stimulation, induced LTP in wild-type mouse slices (Xu et al.,

2009; Xu and Yao, 2010). This LTP could not be induced in

slices from DAT-knockout mice by these same protocols. This

LTP impairment in the mutant mice has been shown to result

from DAT-induced elevated tonic DA concentration, which

acted via D2 receptors to activate protein phosphatase 1 and

block LTP. This effect was confirmed in experiments with wild-

type mice, since when these mice were injected amphetamine

or DAT inhibitor (both of which induce elevated DA levels in

the mPFC) 30 min before killing and slice preparation, LTP

was blocked also in these mPFC slices (Xu et al., 2009). Thus,

in mice, as in rats, an elevated tonic DA concentration shuts

down LTP, induced at frequencies around 50–100 Hz, although

the underlying molecular mechanisms could be different in the

two species. In the framework of the proposed hypothesis, the

LTP block is explained by a DA-induced shift of the plasticity

threshold toward higher synaptic activities (see Figure 2B).

In the low-frequency regime, LTD induced at 3 Hz was

blocked by antagonists of D1 and D2 receptors or by PKA

inhibition, but enhanced by a high-concentration DA bath

via D1 receptor activation (Huang et al., 2004). As discussed

earlier, this might be an indication that the stimulation-induced

synaptic state in this study was closer to the LTD/LTP threshold,

rather than to the baseline synaptic state. Contrary to the

observed DA modulation of the LTD at 3 Hz, blockade of DA

receptors did not affect LTD induced at 10 Hz (Lafourcade

et al., 2007). If confirmed by further research, these data would

support the existence of DA-dependent and DA-independent

forms of low-frequency induced LTD in mice, as in rats.

4.3. STDP experiments

In contrast to classic LTD/LTP induction protocols

considered earlier, spike-timing dependent plasticity (STDP)

protocols induce synaptic changes by pairing a pre-synaptic

stimulation (usually an extracellular current pulse delivered to

the layer where synaptic connections of the recorded neuron

reside), with a post-synaptic spike evoked by an intracellular

current injection. Such a paired stimulation is repeated 50-100

times at a low frequency (about 0.1 Hz). The polarity of

plasticity depends on whether the pre-synaptic stimulation

comes before (leading to LTP in hippocampal cultured neurons

and neocortical slices) or after (leading to LTD) the post-

synaptic spike (Markram et al., 1997; Bi and Poo, 1998). In

STDP experiments targeting mPFC, pyramidal neurons in

layers V are usually recorded, with the presynaptic stimulation

applied to layer II-III. In what follows, the timing difference 1t

between the presynaptic stimulation and the post-synaptic spike

is denoted as positive for pre-post pairing, and negative for

post-pre pairing. To distinguish between the classical LTD/LTP

and that induced by the STDP protocol, we will denote the

latter “t-LTD/t-LTP.”

A number of studies applied STDP protocols to study

prefrontal long-term plasticity in rats and mice, including its

modulation by DA, as well as by other neuromodulators (Couey

et al., 2007; Xu and Yao, 2010; Goriounova and Mansvelder,

2012; Zaitsev and Anwyl, 2012; Ruan et al., 2014; Louth

et al., 2021). These experiments have shown that regulation of

plasticity by pre-post timings in mPFC is different from that

in the classical experiments, since in the absence of exogenous

DA and with blocked inhibitory (GABA) receptors, LTP was

induced by pre-post stimulation at 1t = +5, +10 ms, whereas

no plasticity could be induced either by 1t = +30 ms or

1t = −30 ms. An application of a high DA concentration

(20–100 µM) during pairing extended t-LTP portion of STDP

to all the tested time intervals (Xu and Yao, 2010; Ruan et al.,

2014). This DA-facilitated t-LTP was D1-cAMP-PKA dependent

and required NMDA activation. Pharmacological modulation of

D2 receptor activity did not affect plasticity directly, but only

indirectly via inhibition of GABA release by interneurons (Chiu

et al., 2010; Xu and Yao, 2010). In the presence of GABA, t-LTD

or no change have been observed at almost all tested intervals

(in both young adult and mature mice, Louth et al., 2021).

Optogenetic activation of VTA DA fibers blocked t-LTD and

this modulatory effect was abolished in the presence of the D2

receptor antagonist, but was not affected by the D1 receptor

antagonist (Louth et al., 2021). The blockade of t-LTD by D2

receptors is consistent with the evidence of D2-mediated GABA

suppression by DA acting by inhibiting its presynaptic release

(Xu and Yao, 2010).

A comparison of the STDP data with results from

classical induction protocols reviewed earlier suggests that

the observed t-LTP corresponds to D1-NMDA-PKA-dependent

(and D2-independent) classical high-frequency LTP regime.

This suggestion is further supported by the data showing that

a high concentration of applied DA in mouse slices was shown

to enhance a weak classical LTP (Huang et al., 2004).

4.4. Role of other neuromodulators in
prefrontal long-term plasticity

Other neuromodulators present in mPFC, such as

noradrenalin (NA), acetylcholine, and serotonin, have been

reported to act separately or in concert with DA to affect

synaptic plasticity.

Dendritic spines of cortical pyramidal neurons appear to

be a common target of both DA and NA inputs, and both
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receptor types share similar signaling cascades, which can

modulate excitatory as well as inhibitory synaptic transmission

(see Xing et al., 2016, for review). In vivo, locus coeruleus

stimulation concurrently with a high-frequency stimulation of

hippocampal-to-PFC inputs enhanced LTP in rats (Lim et al.,

2010), similarly to the enhancement of LTP by VTA stimulation

(Gurden et al., 1999). In vitro, an elevated concentration of

NA induced NMDA-dependent LTD in layer I-II to layer V

fibers via postsynaptic α-adrenoceptors and molecular cascade

involving PKC and MAP kinase (Marzo et al., 2010). In slices

from amphetamine-treated mice, in which extracellular levels of

monoamines (DA, NA and serotonin) are increased, compared

to wild-type controls, a low amphetamine dose enhanced, while

a high amphetamine dose abolished, an LTP induced by theta-

burst stimulation (Xu and Yao, 2010). This effect is similar to

that observed with high and low levels of DA (Otani et al.,

1998; Kolomiets et al., 2009). The low-dose LTP facilitation

depended on D1 and β-adrenoceptor activation via cAMP-

PKA cascade. In contrast, the high-dose LTP blockade was

mediated by D2 receptors. In layer III rat pyramidal neurons,

β2 adrenoceptor agonist increased the amplitude of t-LTP

(1t = +10 ms) via both postsynaptic signaling by PKA and

presynaptic suppression of GABAergic inhibition (Zhou et al.,

2013). This is somewhat reminiscent of t-LTP enhancement by

both post- and pre-synaptic mechanisms by DA in mice (Xu and

Yao, 2010). These data suggest cooperative action of DA and NA

on synaptic plasticity.

Concerning the role of prefrontal acetylcholine receptors,

it has been shown that an activation of nicotinic receptors

(nAChR) on several interneuron types in mouse mPFC can

increase GABAergic signaling and prevent t-LTP (1t = 5 ms)

in pyramidal layer V neurons (Couey et al., 2007; Goriounova

and Mansvelder, 2012). On the other hand, an activation of

muscarinic acetylcholine receptors (mAChR) in rat pyramidal

neurons can induce an activity-independent LTD via PLC-

PKC cascade (Huang and Hsu, 2010) and convert transient

to permanent LTD (induced by low frequency stimulation

at about 1 Hz, Caruana et al., 2011). Therefore, endogenous

acetylcholine, that stimulates both receptor types, can potentially

contribute to LTD induced at low stimulation frequencies

around 1 Hz, in both rats and mice.

Lastly, serotonin depletion was shown to result in a LTP

enhancement in the hippocampal-prefrontal pathway in rats

in vivo (Ohashi et al., 2003). Serotonin application in vitro,

together with tetanic stimulation at 50 Hz, facilitated NMDA-

independent LTD via mGluR activation and MAP kinase

(Zhong et al., 2008). These data suggest that serotonin may also

contribute to prefrontal LTD.

In addition to neuromodulatory systems, retrograde

signaling was shown to play an important role in prefrontal LTD.

Consistent with a general involvement of endocannabinoids

in retrograde signaling and cortical LTD (Heifets and Castillo,

2009), they have been implicated in both activity-independent

and tetanus-induced LTD in rodent mPFC. In particular, a sole

application of cannabinoid agonists and antagonists induced

LTD and LTP, respectively, in rat layer V pyramidal neurons

(albeit only in a subset of tested cells, Auclair et al., 2000).

Consequently, when these pharmacological agents were applied

together with high-frequency tetanic stimulation (at 100 Hz),

they biased the tetanus-induced plasticity toward LTD or LTP.

In mice, a low-frequency stimulation at 10 Hz induced LTD

that was completely blocked by endocannabinoid antagonists

acting via mGluR-PLC cascade (Lafourcade et al., 2007).

Cannabinoid receptors (CB1) were also shown to be involved

in controlling prefrontal inhibition. In mice, these receptors co-

localize with D2 receptors at about 30% of inhibitory synaptic

terminals in the mPFC, so that agonists of either receptor

suppress inhibitory transmission (Chiu et al., 2010). Moreover,

endocannabinoids may not be the only retrograde messengers

in the mPFC, as the study by Huang and Hsu (2010) reported

the implication of nitric oxide as a retrograde messenger during

activity-independent LTD (see Caruana et al., 2011).

Finally, regulation of long-term plasticity by inhibitory

GABAergic transmission has been demonstrated in a number

of studies (Couey et al., 2007; Huang et al., 2007; Chiu

et al., 2010; Xu and Yao, 2010; Louth et al., 2021). Often

the same neuromodulator acts in a cooperative manner on

both glutamatergic and GABAergic transmission to influence

plasticity (Couey et al., 2007; Xu and Yao, 2010). In most

of the synaptic plasticity studies reviewed earlier, GABAergic

transmission was routinely blocked to separate a direct influence

of neuromodulators on inhibition (which is rather complex, see

Seamans and Yang, 2004, for review) from its influence on the

plasticity mechanisms per se.

4.5. Summary of synaptic plasticity
mechanisms in the mPFC

A general conclusion that can be made concerning the

cellular mechanisms of long-term plasticity in the mPFC and

its modulation by DA is that distinct plasticity mechanisms are

at play depending on the level of stimulation-induced synaptic

activity. In particular, the experimental data consistently show,

in vitro and in vivo, in rats and mice, an involvement of D1 and

NMDA receptors, as well as PKA and protein synthesis, in LTP

induced at high stimulation frequencies (≥200 Hz). This form

of LTP corresponds to the common form of hippocampal LTP

(Huang and Kandel, 1995; Navakkode et al., 2007).

In contrast, competing molecular cascades for LTD and

LTP mediate plasticity at lower stimulation frequencies around

50–100 Hz in vitro and near 3–5 Hz in vivo. In particular, at

these frequencies LTP enters into competition with NMDA-

independent LTD. While both types of plasticity near threshold

activate MAP kinases, LTP requires NMDA-receptor activation,
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whereas LTD depends onmGluR activity. This is consistent with

the proposal that these two receptors represent “coincidence

detectors” for LTP and LTD, respectively (Karmarkar and

Buonomano, 2002; Bender et al., 2006). It is likely that

the mGluR-dependent form of LTD acts via the retrograde

endocannabinoid signaling and is expressed presynaptically as

in the somatosensory cortex (Auclair et al., 2000; Bender et al.,

2006).

At still lower frequencies (in the range of 1–3 Hz) LTD takes

over LTP, and, moreover, new forms of LTD, likely different in

rats and mice, start to play a role. In rats, one form of LTD

depends on NMDA activity and a cooperative action of D1 and

D2 receptors (Bai et al., 2014). The second form of LTD requires

mGluR and mAchR activation, but does not depend on either

postsynaptic calcium or NMDA receptor activity (Huang and

Hsu, 2010; Caruana et al., 2011). It is not known whether this

latter form of LTD is under influence of DA. In the study of Bai

et al. (2014), no residual LTD was observed at 3 Hz when DA

receptors were blocked, suggesting that these two forms of LTD

may be successively activated at progressively lower synaptic

stimulation levels. More research however is required to support

this conclusion, as the activity of acetylcholine receptors was

not controlled during this study. At these low frequencies in

mice, only NMDA-independent forms of LTD were observed

so far (Huang et al., 2004; Lafourcade et al., 2007), in contrast

to rats. Both forms of LTD require mGluR activation and

endocannabinoid signaling, whereas only 3-Hz LTD was DA-

dependent (Huang et al., 2004).

The experimental data strongly suggests that plasticity near

threshold is regulated in a bidirectional manner by tonic

dopamine via both D1 and D2 receptor subtypes. Although

other neuromodulators, such as NA and serotonin, may also be

involved in different aspects of this plasticity (especially in LTD

Zhong et al., 2008; Marzo et al., 2010), only DA has been shown

to directly influence the direction of plasticity to our knowledge

(Matsuda et al., 2006; Kolomiets et al., 2009; Zhang et al.,

2009). A more complex scenario can not be however excluded,

in which a particular combination of several neuromodulators

(including DA acting via D1 receptors) favors LTP, while a

different combination (including DA acting via D2 receptors)

favors LTD (Seol et al., 2007). Such an assumption is hypothetical

at present as there are not enough data to support it. In mice,

the available evidence suggests that an elevation of tonic DA

can shut down LTP induced at 100 Hz via D2 receptors (Xu

et al., 2009). While there is no direct evidence that tonic DA

can change the direction of plasticity in mice, it was shown that

DA facilitates LTP induced at higher stimulation frequencies,

while it facilitates LTD at low frequencies, as discussed earlier.

Therefore, it is reasonable to suggest that DA effect on plasticity

switches sign at some intermediate stimulation strength (likely

in the range of stimulation frequencies between 10 and 100 Hz

in vitro).

5. Computational models of
prefrontal long-term memory and its
modulation by dopamine

The processing vs. representational dichotomy adopted by

Wood and Grafman (2003) to classify high-level models of

PFC function can also be applied to describe a large variety

of computational models of this structure in the way they

rely on long-term memory storage. Processing-type models

primarily focus on the ability of PFC neurons to show elevated

persistent activity in delay-period tasks, considered to be a

neural implementation of working memory (Durstewitz et al.,

2000; O’Reilly, 2006). A wide array of such models differ in

neuronal mechanisms that are proposed to support persistent

activity, but they all share the property that such activity can

maintain in the working memory any information relevant for

the task. The unique role of PFC is therefore characterized by the

operation it can perform, rather than by the nature of the stimuli

it operates with. In simple working memory tasks, the persistent

network state may represent the direction of eye movement

to a remembered visual cue (Compte et al., 2000), whereas

it can represent a high-level contextual cue in a hierarchical

goal structure or an abstract behavioral rule (Rougier et al.,

2005; O’Reilly and Frank, 2006). In these models, the role of

long-term plasticity is often implicit and is constrained by the

requirement to ensure persistent activity states. For example, an

item can be held in working memory by recurrent excitation

of neurons interconnected with high synaptic weights, forming

a point attractor (Durstewitz et al., 2000). In this case it is

assumed that PFC learns slowly over time all the items it can

represent, such that the corresponding attractor state could be

activated in working memory when needed (Amit and Brunel,

1997). Alternatively, a synaptic matrix can be constructed so

as to enable continuous attractor dynamics, in which case the

attractor represents the location of a remembered object rather

than the objects itself (Camperi and Wang, 1998).

The role of dopamine in processing-type models has been

modeled in relation to working, but not long-term, memory.

In particular, in a detailed biophysical model (Durstewitz

et al., 2010) proposed that an elevated DA by acting primarily

on D1 receptors, enhanced the stability of persistent states

and their resistance to distractors via combined action on

GABA and NMDA currents. This state corresponds to active

maintenance of important information in workingmemory, e.g.,

during a behavioral task. In low DA conditions, D2 receptors

dominate and produce opposing destabilizing effects, allowing

the contents of working memory to be rapidly updated (Dreher

and Burnod, 2002; Seamans and Yang, 2004). This model,

together with an earlier model of gain modulation by DA

(Servan-Schreiber et al., 1990), made sense of a multitude of

DA effects on neural activity and provided a solid biophysical
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foundation to more abstract models of working memory

(O’Reilly, 2006).

In contrast to processing-type models above,

representational models can be distinguished by the type

of information that is proposed to be stored by PFC. Models of

human cognition focused on behavioral planning (Dehaene and

Changeux, 2000), learning hierarchical behavioral structures

(Cooper and Shallice, 2006; Botvinick, 2008; Holroyd and

Mcclure, 2015) and associations between stimuli, rewards,

actions and their outcomes (Alexander and Brown, 2011;

Soltani and Koechlin, 2022). Computational models of rodent

behavior focused on strategy selection (Dollé et al., 2010;

Sheynikhovich and Arleo, 2010), goal-directed behavior and

action planning (Hasselmo, 2005; Martinet et al., 2011). In the

latter models PFC neurons learned either a representation of

a behavioral strategy (e.g., response- vs. place-based) or the

structure of a goal-directed task. These high-level models are not

specific about neuronal mechanisms supporting information

storage and usually assume a combination of associative

Hebbian and reinforcement learning rules. The role of DA is

either not considered at all or is assumed to signal reward-

prediction error in the context of standard reinforcement

learning algorithms. Given the wealth of evidence, reviewed

earlier, that DA is a powerful modulator or long-term synaptic

plasticity in mPFC, we attempted to unify available data in a

simple computational model, in which DA shifts the position

of the LTD/LTP plasticity threshold and therefore controls the

induction of plasticity (Sheynikhovich et al., 2011, 2013).

The model extends the classical calcium-based plasticity

rule (Lisman, 1989; Shouval et al., 2002) by implementing the

threshold modulation via opponent activation of D1- and D2-

receptor pathways. In a first, calcium-dependent component

of the model, the amplitude of synaptic efficacy change in

the model neuron (Figure 3A) follows a BCM-like dependence,

meaning that (i) calcium elevation is necessary for any plasticity

to take place; (ii) moderate calcium levels result in a decrease

of synaptic strength; (iii) high calcium levels result in an

increase of synaptic strength; and (iv) there is a threshold

calcium concentration at which LTD is converted to LTP. The

postsynaptic calcium concentration in the model is controlled

by the calcium influx via NMDA channels and via high-

voltage-activated calcium channels, as observed in real mPFC

neurons (Seamans et al., 1997). The second, DA-dependent,

component of the model describes how an extracellular tonic

DA concentration can modulate the calcium-based plasticity

rule. In agreement with the analysis of the in vitro experimental

data (see Figure 2B), an activation of a D1-mediated molecular

cascade facilitates LTP and shifts the threshold to lower

calcium concentrations, whereas that of a D2-mediated cascade

facilitates LTD and induces a shift in the opposite direction.

While in this model we assumed that both D1 and D2 receptors

are expressed in single pyramidal neurons, it does not exclude

the possibility that the two receptor classes act via segregated

circuits (Xu et al., 2009), as long as they exert opposing effect on

plasticity in target neurons. The effective plasticity modulation

by DA is then proportional to the difference between the

activities of the two molecular cascades. Because of distinct

affinities of D1 and D2 receptors in the model (Figure 3B), as

in real mPFC neurons (Zheng et al., 1999; Trantham-Davidson

et al., 2004; Li et al., 2009), this difference has an inverted-

U-shape dependence on DA concentration (Figure 3C). As a

result of such modulation, lower DA concentrations lead to a

leftward shift of LTD/LTP threshold and a net facilitation of

LTP (corresponding to the downward deflection in Figure 3C),

whereas higher DA concentrations leads to a rightward shift

of the threshold and a net facilitation of LTD (corresponding

to the upward deflection in Figure 3C). To show the effect of

various DA conditions on synaptic plasticity, many neurons

with slightly different neuronal parameters (i.e., compartment

sizes and properties of ionic currents) were simulated to

reflect differences between real neurons in a slice. These

neurons were then tested under conditions mimicking in vitro

experimental protocols reviewed in Section 4. Modeling results

show that for stimulations at high (300Hz), intermediate (50 Hz,

near LTD/LTDP threshold) and low (3 Hz) frequencies all

model neurons exhibited LTP, no change, or LTD, respectively

(Figure 3D), similarly to standard plasticity models (Shouval

et al., 2002; Clopath et al., 2008). At the high and low

frequencies, changes in the stimulation protocols (stimulating

at the same frequency for a longer or shorter period of time)

could only saturate or abolish plasticity (not shown). However,

near threshold, where standard protocols did not induce any

plasticity, increasing the stimulation length produced either LTP,

LTD or no change in different neurons (“No DA” condition in

Figure 3E). We hypothesize that this variability in the induced

plasticity in the model neurons reflects the variability of synaptic

plasticity near this frequency in real neurons in vitro, observed

experimentally (Hirsch and Crepel, 1990; Law-Tho et al., 1995;

Otani et al., 1998; Kolomiets et al., 2009).

In agreement with the key results of plasticity experiments

in the mPFC, DA strongly influenced both the sign and

amplitude of plasticity near threshold in themodel. In particular,

LTD was facilitated by a short-term high-concentration DA

application in most of the simulated neurons, as in real neurons

(Law-Tho et al., 1995; Otani et al., 1998), because this high

DA concentration shifted the threshold to higher calcium

concentrations on the timescale of several minutes (“High DA”

condition in Figure 3E). In contrast, LTP was facilitated by a

prolonged low-concentration DA bath (Kolomiets et al., 2009),

because lower concentrations induced a slow (on the time scales

of tens of minutes) shift of the plasticity threshold to lower

calcium levels (“Low DA” condition in Figure 3E). Third, the

same model provides an explanation of DA priming effect,

showing that a short DA application 40 min before stimulation

changes the direction of plasticity in mPFC neurons (“Priming”

condition in Figure 3E, Matsuda et al., 2006). This is explained
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FIGURE 3

A model of DA-modulated synaptic plasticity and simulation results. (A) A schematic representation of a multicompartment model of pyramidal

neurons with AMPA, NMDA, D1 and D2 receptors. (B) A molecular cascade for LTP is facilitated at lower DA concentrations by D1 receptors

(shown by the full black line). A molecular cascade for LTD is facilitated at higher DA concentrations by D2 receptors (dashed line). (C) The

plasticity threshold between LTD and LTP shifts as a function of a di�erence between the activities of the two molecular cascades in (B),

resulting in a U-shaped net e�ect of DA concentration on synaptic plasticity. A negative threshold change corresponds to its shift to lower

stimulation frequencies in Figure 2B and facilitation of LTP. Conversely, a positive change facilitates LTD. (D) Synaptic plasticity in the model

neurons (measured by the amplitude of somatic EPSP±SD) as a result of tetanic stimulation at low (3 Hz, shown by downward triangles),

intermediate (50 Hz, circles) and high (300 Hz, upward triangles) stimulation frequencies. Inset: mean EPSP amplitude 40 min after stimulation in

the three cases. (E) Dopaminergic modulation of synaptic plasticity near LTD/LTP threshold. The bars show the proportion of simulated neurons

that underwent LTD (in gray), no change (in white) or LTP (in black), depending on DA conditions. (F) An inverted-U-shape dependence of the

LTP amplitude for di�erent concentrations of DA, as observed experimentally by Kolomiets et al. (2009). The plots are adapted with permission

from Sheynikhovich et al. (2013).

by the adaptive threshold dynamics as a function of DA

concentration during washout: initially high DA concentration

facilitated LTD, while at a later time the concentration decreased

and entered the LTP facilitation regime. Finally, the model is

also consistent with the experimentally observed inverted-U

dependence of LTP amplitude as a function of DA concentration

(Figure 3F; Kolomiets et al., 2009). This form of dependence in

the model is a direct consequence of the U-shaped dependence

of the threshold position on DA concentration (see Figure 3C).

While the model described above is the only one, to our

knowledge, addressing the role of DA in prefrontal plasticity,

many previous models considered its role in learning in other

brain areas, such as the striatum and the hippocampus. It

is therefore of interest to compare the key properties of

these models.

On a single neuron level, the role of phasic DA signals

in reward-based plasticity, thought to occur in the striatum,

has been addressed in a number of phenomenological models

of reward-based STDP (reviewed in Frémaux and Gerstner,

2015). In these models, synaptic weight change is proportional

to the product of the phasic DA signal (relative to baseline)

and a Hebbian STDP term, consisting of a potentiation part

(for pre-post pairs of spikes) and a depression part (for post-

pre pairs). Thus, a positive DA deflection from baseline during

a short period of phasic activity should facilitate plasticity, while

a negative DA deflection should inverse the sign of plasticity at

these synapses. Both of these effects are in principle compatible

with what have been observed in experiments in striatal slices,

although the sign flipping effect is controversial (Fino et al.,

2005; Pawlak and Kerr, 2008; Shen et al., 2008). A common

underlying assumption in reward-based models is that a phasic

reward signal arriving some time after activation of a synapse

(induced by execution of an action) gates permanent changes at

this particular synapse. Amemory trace of the activated synapses

Frontiers in Behavioral Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.1068271
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Sheynikhovich et al. 10.3389/fnbeh.2022.1068271

is proposed to reside in a synapse-specific “eligibility trace” or

a “synaptic tag” (Frey and Morris, 1997; Gerstner et al., 2018).

These properties are not compatible with prefrontal plasticity

model described above, mainly because the timescale of DA

action on prefrontal plasticity does not suit stringent timing

requirements of reward-based learning (Seamans and Yang,

2004). Experimentally, both positive events, such as novelty

or food delivery, and negative events, such as stress, increase

mPFC DA levels for prolonged periods (Yoshioka et al., 1996;

Lavin et al., 2005) and a prolonged application of low DA

concentration (15–40 min) is required to switch the sign of

plasticity in the model and experiments (Kolomiets et al.,

2009). In agreement with these observations, a disruption of

phasic firing of DA neurons (leaving tonic firing intact) did not

impair performance in a mPFC-dependent working memory

task, but did impair acquisition of reward-depended behaviors

attributed to the striatum (Zweifel et al., 2009). Moreover, phasic

optogenetic phasic stimulation of VTA-PFC fibers time-locked

to the reward delivery failed to improve performance in a place

preference task (Ellwood et al., 2017).

In the hippocampus, the role of DA in plasticity differs

in three principal ways from that in the striatum. First, a

pharmacological block of phasic DA activity (leaving tonic DA

firing intact), critically important for striatal learning, does

not impair long-term spatial memory, nor novelty-induced

exploration, two tasks that are thought to depend on the

hippocampal DA (Zweifel et al., 2009). Second, presentation of

a novel stimulus that preceded (or followed) reward learning by

tens of minutes, improved hippocampal long-term memory via

DA-dependent pathway (Wang et al., 2010). This is in contrast

to striatal reward-based learning paradigms, in which correct

stimulus-actions associations are stamped-in by a brief phasic

elevation of DA after, but not before, action learning. Third,

STDP experiments in brain slices and cultured hippocampal

neurons have shown that DA expands the effective time window

for synaptic potentiation to negative pre-post pairings via the

activation of D1 receptors and shuts down t-LTD (Zhang et al.,

2009; Brzosko et al., 2015). This is in contrast to striatum, where

D1 was shown to be necessary for both t-LTP (for positive

pre-post timings) and t-LTD (for negative ones, Pawlak and

Kerr, 2008). Synaptic tagging and capture hypothesis (Frey and

Morris, 1997), positing that DA is involved in the synthesis of

plasticity-related proteins, accounted for much of these data,

together with earlier evidence that DA is important only for late

but not early LTP (Huang and Kandel, 1995; Navakkode et al.,

2007; Lisman et al., 2011). It has also inspired computational

models of spike-based learning (in either single-neuron setting

or in populations of neurons) that successfully reproduced a

large array of phenomena observed in electrophysiological and

behavioral experiments (Clopath et al., 2008; Ziegler et al., 2015;

Gerstner et al., 2018). In thesemodels, the amount of DA directly

facilitates synthesis of plasticity-related proteins, which in turn

gates the entry of a synapse into a stable state corresponding to

late LTP or LTD. Plasticity-related proteins in these models act

to switch off a putative “write protection” mechanism, shared

by both types of plasticity. This results in a stabilization of

transient synaptic changes induced by a weak stimulation, in the

presence of novelty-induced elevation of DA. In these models,

the amplitude of plasticity (but not its sign) depends on DA,

as changes in DA levels control the maintenance, but not the

induction, of plasticity, in contrast to the reward-based learning

in the striatum.

Given the comparable time scale of DA influence on

plasticity in PFC and the hippocampus as well as their apparent

insensitivity to phasic DA inputs, the question arises whether

the experimental data from mPFC can be accounted for by

the synaptic tagging and capture hypothesis of hippocampal

learning and related computational models. As mentioned

above, in these models DA “stamps in” the state of a synapse

that has been tagged for LTD or LTP, whereas the induction

process is DA-independent (Wise, 2004; Lisman et al., 2011;

Frémaux and Gerstner, 2015). Therefore, higher or lower DA

concentrations lead to a higher of lower number of consolidated

synapses. It is not clear then, how such a mechanism could

explain the bidirectional control of synaptic plasticity, induced

by an increase in DA concentration, as has been observed in

rodent mPFC (Matsuda et al., 2006; Kolomiets et al., 2009; Xu

et al., 2009; Bai et al., 2010).

6. Conclusions and perspectives

The experimental data and theoretical models reviewed

above support the conclusion that rodent mPFC is directly

involved in a behaviorally important long-term memory

storage, that synaptic machinery in this structure is well

adapted to support such storage, and that the properties of

dopaminergic modulation of these plasticity mechanisms are

rather unique. Electrophysiological studies suggest that this

modulation is strongest within biologically plausible stimulation

regimes and DA concentrations. At the same time behavioral

studies demonstrate dopaminergic involvement in the same

experimental paradigms in which plasticity was tested (Pezze

and Feldon, 2004; Floresco et al., 2006; Hitchcott et al., 2007).

Less data are available concerning the influence of other

neuromodulators on plasticity. At present, it appears that NA

shares many properties with DA in terms of its influence on

plasticity, due to common intracellular signaling pathways (Xing

et al., 2016), although direct evidence for the bidirectional

influence on plasticity is scarce.

We argued that the available data on dopaminergic influence

in prefrontal plasticity is consistent with the idea that tonic DA

levels determine the position of the threshold between LTD and

LTP, on the time scale from minutes to tens of minutes. This

proposed role of DA is distinct from, but not contradictory

to, the other hypotheses of dopaminergic function, namely,
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DA enabling the late phase of plasticity (in the hippocampus,

Lisman et al., 2011) and as a reward signal for stimulus-

response learning and strategy selection (in the striatum, Goto

and Grace, 2005; Collins and Frank, 2014). First, the proposed

DA role in the control of the prefrontal plasticity threshold is

functionally independent from its role in controlling plasticity-

related protein synthesis and late-phase LTP. Moreover, given

that in the hippocampus a low DA concentration switches LTD

to LTP (Zhang et al., 2009), it is possible that DA controls

the plasticity threshold in the hippocampus, as well as in

mPFC. One of possible predictions from this hypothesis is

that for a correctly chosen plasticity induction protocol (within

either classical or STDP frameworks), the switch in the sign of

synaptic plasticity following DA application could be observed

in the hippocampus. If true, this would extend the functional

role of DA in this area compared to hippocampal models.

Second, although reward-based coding in the mPFC can not

be completely excluded (especially in its anterior cingulate

subregion, Holroyd and Mcclure, 2015), available data suggest

that, at least in the prelimbic cortex, properties of DA kinetics

and its documented influence on plasticity do not suit well

for striatum-like reward-based learning paradigms. It could

nevertheless be speculated that short phasic DA events, riding

on top of slow elevations of DA during behavioral task, transmit

reward-based information that could be used for reward-based

learning (Frémaux and Gerstner, 2015). Alternatively, it has

been argued that DA neurons could transmit reward prediction

errors by phasic co-release of glutamate, in parallel to DA (Lavin

et al., 2005). Third, it is possible that slow changes in tonic

DA, that have a strong influence on prefrontal plasticity, may

switch neuronal learning pathways in the mPFC, as in the dorsal

(Shen et al., 2008) and ventral (Goto and Grace, 2005) striatum,

although at a much slower time scale. However, what these

pathways are and whether they are anatomical or functional,

is not clear. Anatomically distinct neuronal populations with

different DA sensitivities (as in the dorsal striatal MSNs) have

not been observed so far (see Vincent et al., 1993, for such

a hypothesis). A more likely situation in our point of view is

a functional, activity- or frequency-dependent, separation. It

has been shown that neocortical neuronal processing occurs

in different frequency bands (Sirota et al., 2008) and DA has

been implicated in increasing neuronal coherence in theta

band (Benchenane et al., 2010). Based on experimental and

computational data reviewed above, we proposed that DA exerts

the strongest influence on plasticity near threshold, i.e., in

theta-gamma frequency range, depending on previous activity

(Kirkwood et al., 1996). DA modulation could then switch

learning between neurons synchronized at different frequencies

(Fries, 2005).

The reviewed data shows that the direction and amplitude

of plasticity in mPFC depends in complex ways on the relative

activation of D1 and D2 receptors. More specifically, whereas

these receptors facilitate opposite plasticity cascades, at low DA

concentrations they cooperatively participate in LTD. There

is evidence that some molecular cascades mediating synaptic

plasticity are activated by a combined action of the two receptor

types (Lee et al., 2004). In agreement with this, a number of

studies of behavioral flexibility have shown either cooperative or

antagonist effects of these receptors on behavior. In particular, it

was shown that blockade of either D1 or D2 receptors impaired

switches from one strategy to another in a cross maze, leading

to an increased number of perseverative errors (Ragozzino,

2002; Mehta et al., 2004; Floresco et al., 2006). This pattern

of results suggests that these receptors cooperatively regulate

learning to inhibit a previously learned response. The latter

study has also shown that D4 receptor blockade improved

learning, exerting an effect opposite to the other receptors

(Floresco et al., 2006). In fear extinction studies, both D1 and

D2 receptor antagonists infused in mPFC prevented extinction

learning in adult rats (Hikind and Maroun, 2008; Mueller

et al., 2010), and D2 agonist quinpirole improved long-term

extinction in adolescent rats (Zbukvic et al., 2017). In a simple

decision making task where animals had to switch lever pressing

from one to another following changes in rewards contingency,

both D1 and D2 receptor antagonism increased the number of

perseverative lever presses (Winter et al., 2009), suggesting a

cooperative action of the two receptors. However, in a more

complicated task, in which rats were choosing between a small

and sure reward vs. a large and risky one, opposite effect

of D1 and D2 receptors was observed (St Onge et al., 2011;

Jenni et al., 2017). A similar opposite effect was observed

in an instrumental tasks that tested a shift from habitual to

goal-directed behavior, thought to be controlled by the mPFC

(Barker et al., 2013; Nelson and Killcross, 2013). In particular,

in rats and mice overtrained to acquire habitual responses

(that were therefore insensitive to contingency degradation and

goal devaluation procedures, respectively), D1 antagonist or D2

agonist restored goal-directed behavior, whereas D2 antagonists

facilitated habitual responding. A first conclusion that may

be derived from the above data is that the role of D1 and

D2 receptors in behavioral flexibility differs from their role

in working memory, where opposite effects of these receptors

on performance have never been observed (El-Ghundi et al.,

2007). We therefore propose that antagonistic action of the two

receptor classes on behavior is a hallmark of the implication

of long-term memory in this behavior. A second conclusion is

that the antagonism of the two receptor classes has been mostly

observed in tasks where the link between actions and rewards

is learned, rather than inhibition of the previously acquired

response. The latter can be more dependent on the cooperative

action of the two receptor classes, suggesting an important role

of LTD.

To conclude, mPFC is critically involved in many

cognitive processes, components of executive functions.

Most of these processes at some stage rely on long-term

memory and synaptic plasticity in PFC neurons, as a
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large number of experimental studies have demonstrated

empirically and most theoretical models have (usually

tacitly) assumed. Despite this ubiquitous dependence of

executive functions on neuronal mechanisms underlying

long-term storage of information, their role is underestimated

in current PFC research. It is important to study them,

because disturbances in the long-term memory component

of executive functions may cause long-term consequences of

PFC-dependent mental or age-related disorders. Given a wealth

of theoretical models addressing the role of dopaminergic

modulation of working, as opposed to long-term, memory,

as well as its interactions with striatal control of actions, a

challenge for future computational theories is to link these

models with prefrontal cortical machinery for storage of

long-term memories.
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