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Restricted, repetitive behaviors (RRBs) are commonly divided into two

behavioral categories, lower-order and higher-order RRBs. Individuals

displaying lower-order motoric RRBs may express repetitive hand flapping

behaviors, body rocking back and forth movements, and continuous

body spinning. Higher-order RRBs most commonly cover the behavior

inflexibility and cognitive rigidity commonly found in disorders such

as autism spectrum disorder and obsessive-compulsive disorder. Various

neuropsychiatric disorders are plagued by RRBs yet no FDA-approved

treatments have been identified. In rodents, lower-order RRBs are commonly

measured through various tasks, such as repetitive self-grooming, marble

burying, and stereotypic motor behaviors. This review focuses on the effects

that modulation of specific serotonin receptors have on lower-order RRBs.

Although there is research examining how changes in 5-HT1A, 5-HT1B, 5-

HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptor modulation,

more research has focused on the 5-HT1A, 5-HT2A, and 5-HT2C receptors.

The accumulating data suggest that increasing 5-HT1A activation decreases

RRBs while blocking 5-HT1A activation has no effect on RRBs. While there

are mixed findings regarding the impact of 5-HT2A modulation on RRBs,

the general trend shows mixed effects of 5-HT2A receptor activation RRB

expression, whereas blockade generally decreases RRBs. 5-HT2C receptor

activation can modulate RRBs in either direction depending on the 5-HT2C

drug used, blocking 5-HT2C activation only seems to show therapeutic

properties when 5-HT2C activation is already elevated. The other 5-HT

receptors have been explored far less but show promise as potential targets

for regulating RRBs. Although it is less clear due to the involvement of 5-HT1D,

5-HT1A activation increases RRBs, and blocking 5-HT1A tends to decrease

RRBs. 5-HT2B activation could reduce RRBs, while inhibiting 5-HT2B does

not impact RRBs. Increasing 5-HT3 has not been shown to affect RRBs. Yet,

increases in RRBs have been observed in Htr3a KO mice. 5-HT6 receptor

activation can increase RRBs, while blocking 5-HT6 activity tends to decrease

RRBs. Lastly, neither increasing or blocking 5-HT7 activity can reduce RRBs. In

sum, there is no uniform pattern in whether all specific 5-HT receptors affect
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RRBs in either direction, instead, there is evidence suggesting that different

5-HT receptors can modulate RRBs in different directions. Further researching

the less explored receptors and aiming to understand why these receptors can

differently modulate RRBs, may play a key role in developing therapeutics that

treat RRBs.

KEYWORDS

restricted repetitive behaviors, autism, serotonin receptor, RRBS, obsessive
compulsive disorder

Introduction

Restricted repetitive behaviors (RRBs) are present in several
neuropsychiatric disorders including schizophrenia, obsessive-
compulsive disorder, and autism spectrum disorder. RRBs can
similarly affect routine activities or interests in some individuals.
RRBs can manifest in the first years of life, leading to a
substantial negative impact on daily functioning (DSM-5, 2013).
These behaviors are commonly grouped into lower-order and
higher-order RRBs. Higher-order RRBs are characterized as
rigid, goal-oriented behaviors, such as rituals, compulsions,
and restricted routines. In addition, higher-order RRBs are
often discussed as cognitive or behavioral inflexibility, including
insistence on sameness behaviors and restricted, specific patterns
of interest (Kanner, 1943; Turner, 1999; Richler et al., 2007).
In most instances, distress often follows the alteration of a
familiar environment or routine, such as a change in the
layout of a familiar room or being taken on a different route
to a familiar place. Conversely, lower-order RRBs include
repetitive movements, such as motor stereotypies and repetitive
self-inflicted actions. Individuals displaying lower-order motoric
RRBs may continually flap their hands, rock back and forth, or
spin the wheels of a toy car. In rodents, lower-order RRBs are
measured through various tasks, such as self-grooming, marble
burying, and stereotypic behaviors (i.e., head and body shakes,
licking, forepaw tapping, wet-dog shakes, repetitive jumping,
etc.). The current review will focus on lower-order repetitive
behaviors, with a large portion of the discussed findings
measuring self-grooming and marble burying behaviors.

Serotonin (5-HT) is an indolamine that regulates various
biological processes including appetite, mood, sleep, cognition,
and executive function (Berger et al., 2009; Ray et al., 2011;
Meltzer and Roth, 2013). Serotonin can be found in all brain
regions that have been linked to the presence of RRBSs,
including basal ganglia structures and orbitofrontal cortex
(Sears et al., 1999; Herbert et al., 2003; Hollander et al.,
2005; Palencia and Ragozzino, 2006; Burguière et al., 2013;
Langen et al., 2014). While there have been studies highlighting
striatal regions, secondary motor cortex, and frontal cortical
regions, there is still a lack of research involving the role of

specific neurochemical abnormalities that can lead to RRBs.
Understanding which neurochemical systems may lead to RRBs
may lead to more effective treatments aimed at attenuating RRBs.
Interestingly, there are no FDA-approved treatments for RRBs,
and the pathophysiology and function of RRBs are still unclear
(Moss et al., 2009). In Alvarez et al. (2021), we reviewed the
way in which 5-HT receptor modulation affects higher-order
RRBs (i.e., behavioral inflexibility) hoping to help guide the
development of new therapeutics for neuropsychiatric disorders
afflicted by behavioral inflexibility. This review will focus on
the effects that modulation of specific serotonin receptors has
on lower-order RRBs (i.e., repetitive sensory motor behaviors).
Representative findings are presented in Table 1.

5-HT1A

Localization studies have found that 5-HT1A receptors are
expressed throughout the CNS, while in raphe nuclei these are
somatodendritic receptors, but postsynaptic receptors in cortical
and limbic areas (Radja et al., 1991; Miquel et al., 1992; Riad
et al., 2000). Several studies have shown that 5-HT1A activation
modulates RRB expression. Most of these studies suggest
increases in 5-HT1A activation leads to reductions in RRBs,
while some suggest activation exacerbates RRB expression.
Gaggi et al. (1997) and Khatri et al. (2014) both found that 8-
OH-DPAT, a 5-HT1A agonist, increased stereotypic behaviors,
producing elevated repetitive vertical head movements in
Long-Evan rat pups and stereotypic gnawing in Sprague–Dawley
rats, respectively. Conversely, two other 5-HT1A agonists,
Flesinoxan and Ipsapirone had no effect on self-grooming
behavior in Wistar rats (Molewijk et al., 1995). Bruins Slot
et al. (2008) and Gould et al. (2011) also show that neither
S15535 nor Buspirone impacted marble burying behaviors, even
in the BTBR T+tf/J (BTBR) mouse model of ASD. Most of
the 5-HT1A related research suggests that increasing activation
decreases RRBs. For instance, three different 5-HT1A agonists
(S20499, 8-OH-DPAT, and Tandospirone) reduce self-grooming
behaviors, measured in Swiss–Webster mice and Shank3 mouse
model of ASD (Blanchard et al., 1997; Dunn et al., 2020). Similar
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TABLE 1 Effects of specific serotonin receptor modulation on restricted, repetitive behaviors.

Receptor Activity RRB Manipulation Assay Reference

5HT1A ↑1A ↑ 8-OH-DPAT Stereotypic Behavior Khatri et al. (2014)
↑1A ↑ 8-OH-DPAT Stereotypic Gnawing Gaggi et al. (1997)
↑1A ↑ Buspirone Self Grooming Cao and Rodgers (1997b)
↑1A – Flesinoxan Self Grooming Molewijk et al. (1995)
↑1A – Ipsapirone Self Grooming Molewijk et al. (1995)
↑1A – S15535 Marble Burying Bruins Slot et al. (2008)
↑1A – Buspirone Marble Burying Bruins Slot et al. (2008)
↑1A – Buspirone (BTBR) Marble Burying Gould et al. (2011)
↑1A ↓ S20499 self-grooming Blanchard et al. (1997)
↑1A ↓ 8-OH-DPAT self-grooming Blanchard et al. (1997)
↑1A ↓ Tandospirone (Shank3B) self-grooming Dunn et al. (2020)
↑1A ↓ Buspirone Marble Burying Ichimaru et al. (1995)
↑1A ↓ 8-OH-DPAT Marble Burying Ichimaru et al. (1995)
↑1A ↓ 8-OH-DPAT Marble Burying Egashira et al. (2008)
↑1A ↓ Buspirone Marble Burying Pires et al. (2013)
↑1A ↓ Tandospirone Marble Burying Abe et al. (1998)
↑1A ↓ MKC242 Marble Burying Abe et al. (1998)
↑1A ↓ Buspirone Marble Burying Abe et al. (1998)
↑1A ↓ Buspirone Marble Burying Chen et al. (2019)
↑1A ↓ 8-OH-DPAT Marble Burying Bruins Slot et al. (2008)
↓1A ↑ pMPPI self-grooming Cao and Rodgers (1997a)
↓1A ↑ WAY100635 self-grooming Bagdy et al. (2001)
↓1A – WAY100635 self-grooming Ho et al. (2016)
↓1A – WAY100635 self-grooming Jackson et al. (1998)
↓1A – NDL249 self-grooming Jackson et al. (1998)
↓1A – WAY100635 Marble Burying Bruins Slot et al. (2008)
↓1A – WAY100635 Marble Burying Egashira et al. (2008)
↓1A – WAY100635 (pcp-induced) Marble Burying Cascio et al. (2015)
↓1A – WAY100635 Marble Burying Harasawa et al. (2006)
↓1A – WAY100635 Marble Burying Pires et al. (2013)
↓1A – WAY100635 Marble Burying Casarotto et al. (2010)
↓1A ↓ WAY100635 + Citalopram (compared to Citalopram) Stereotypic Behavior Khatri et al. (2014)
↓1A ↓ Alverine citrate Marble Burying Gupta et al. (2014)
↓1A ↓ WAY100635 (fluvoxamine-induced) Marble Burying Harasawa et al. (2006)

5HT1B ↑1B ↑ CGS12066B Stereotypic Behavior Khatri et al. (2014)
↑1B ↓ RU24969 self-grooming Ho et al. (2016)
↑1B ↓ RU24969 self-grooming O’Neill and Parameswaran (1997)
↓1B ↓ GR127935 self-grooming Ho et al. (2016)
↓1B ↓ GR127935 + Citalopram (compared to Citalopram) Stereotypic Behavior Khatri et al. (2014)

5-HT2A ↑2A ↑ DOI Stereotypic Behavior Kozuru et al. (2000)
↑2A ↑ DOI Stereotypic Behavior Hongyan et al. (2017a)
↑2A ↑ DOI Stereotypic Behavior Hongyan et al. (2017b)
↑2A ↑ DOI Stereotypic Behavior Gaggi et al. (1997)
↑2A ↑ DOI Stereotypic Behavior Wettstein et al. (1999)
↑2A — 25CN-NBOH Marble Burying Tsybko et al. (2020)
↑2A — TCB2 Marble Burying Tsybko et al. (2020)
↑2A — DOI Marble Burying Tsybko et al. (2020)
↑2A ↓ DOI (SKF38393-induced d1) self-grooming Scalzitti et al. (1999)
↑2A ↓ DOI Marble Burying Odland et al. (2021a)
↑2A ↓ DOI Marble Burying Odland et al. (2021b)
↑2A ↓ 25CN-NBOH Marble Burying Odland et al. (2021b)
↓2A ↑ M100907 (BTBR; intra-ofc) self-grooming Amodeo et al. (2017)
↓2A — Mianserin (SKF38393-induced d1) Self-Groomina Scalzitti et al. (1999)
↓2A — M100907 Marble Burying Odland et al. (2021a)
↓2A — M100907 Marble Burying Bruins Slot et al. (2008)
↓2A ↓ M100907 (BTBR; intra-dorsomedial striatum) self-grooming Amodeo et al. (2017)
↓2A ↓ M100907 (BTBR; high dose) self-grooming Amodeo et al. (2016)
↓2A ↓ MDL100907 (lsd-inducedin WT) self-grooming Rodriguiz et al. (2021)
↓2A ↓ Ritanserin Marble Buriina Bruins Slot et al. (2008)

5-HT2B ↑2B ↑ BW723C86 (sc) self-grooming Kennett et al. (1997)
↑2B — BW723C86 [intra-right lateral ventricle (icv)] self-grooming Kennett et al. (1997)
↓2B — LY266097 Marble Burying Bruins Slot et al. (2008)

5-HT2C ↑2C ↑ mCPP self-grooming Graf et al. (2003)
↑2C ↑ mCPP [pretreatment SB242084 (dose)] self-grooming Graf et al. (2003)
↑2C ↑ mCPP (pretreatment p-CPA) self-grooming Graf et al. (2003)
↑2C ↑ mCPP self-grooming Bagdy et al. (2001)
↑2C ↑ mCPP (fawn-hooded rats) self-grooming Kantor et al. (2000)
↑2C ↑ mCPP self-grooming Reimer et al. (2018)
↑2C ↑ mCPP self-grooming Wright and Rodgers (2014)
↑2C ↑ mCPP Marble Burying Bhutada et al. (2013)
↑2C ↓ MK212 self-grooming Halford et al. (1997)

(Continued)
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TABLE 1 (Continued)

Receptor Activity RRB Manipulation Assay Reference

↑2C ↓ Ro600175 Marble Burying Martin et al. (1998)
↑2C ↓ Ro600332 Marble Burying Martin et al. (1998)
↓2C ↓ CPD1 Marble Burying Rodriguez et al. (2017)
↓2C ↓ Ro600175 Marble Burying Rodriguez et al. (2017)
↓2C — SB215505 Self-Groomina Bruins Slot et al. (2008)
↓2C — SB242084 Marble Burying Odland et al. (2021b)
↓2C — SB242084 (decreased the elevated grooming from M) Self-Groomina Graf et al. (2003)
↓2C ↓ SB242084 (decreased the elevated grooming from M) self-grooming Graf et al. (2003)
↓2C ↓ SB242084 self-grooming Bagdy et al. (2001)

5-HT3 ↑3 — 2-methyl-5-HT (intra-VTA) self-grooming Gillies et al. (1996)
↓3 ↑ HTR3A KO mice self-grooming Huang et al. (2021)

5-HT6 ↑6 ↑ WAY208466 self-grooming Pereira et al. (2015)
↓6 — BGC20761 (BTBR) Repetitive Jumping Amodeo et al. (2021)
↓6 ↓ BGC20761 (BTBR) self-grooming Amodeo et al. (2021)

5-HT7 ↑7 ↓ (+)-5-FPT self-grooming Canal et al. (2015)
↑7 ↓ (+)-5-FPT Stereotypic Jumping Canal et al. (2015)
↓7 ↓ 5-HT7-/- KO Marble Burying Hedlund and Sutcliffe (2007)
↓7 ↓ SB269970 (in both KO and control) Marble Burying Hedlund and Sutcliffe (2007)

Key: ↑receptor target, agonist; ↓receptor target, antagonist; ↑, increased rrbs; ↓, decreased rrbs; —, no effect on rrbs.

results are found during marble burying with other 5-HT1A
agonists including Buspiron, 8-OH-DPAT, Tandospirone, and
MKC242 (Ichimaru et al., 1995; Abe et al., 1998; Bruins Slot et al.,
2008; Egashira et al., 2008; Pires et al., 2013; Chen et al., 2019).
These findings are consistent across several strains of mice (ICR,
Swiss, and NMRI mice) and even Wistar rats.

Unlike 5-HT1A agonists, 5-HT1A antagonists tend to
produce little change in RRB expression, some studies show
that 5-HT1A antagonists can increase and decrease RRBs.
The 5-HT1A antagonist, pMPPI, increases self-grooming in
Swiss Webster mice, and WAY10063 increases self-grooming in
Sprague–Dawley rats (Cao and Rodgers, 1997a; Bagdy et al.,
2001). Various studies measuring the effect of WAY100635 on
marble burying similarly suggest 5-HT1A activation has little
effect on RRBs in NMRI, IRC, Swiss, and C57BL/6J mice (Bruins
Slot et al., 2008; Egashira et al., 2008; Casarotto et al., 2010; Pires
et al., 2013). Likewise, Cascio et al. (2015) found that 5-HT1A
blockade did not affect PCP-induced RRBs in Sprague–Dawley
rats. Most studies testing 5-HT1A antagonists find that there
is no effect on marble burying, and repetitive self-grooming in
Sprague–Dawley rats (Jackson et al., 1998). Conversely, Alverine
Citrate, a less commonly studied 5-HT1A antagonist, decreased
marble burying in Swiss Albino mice, but only in the higher
doses of 10, 15, and 20 mg/kg (Gupta et al., 2014). Similar results
were also found with WAY100635 treatment on marble burying,
self-grooming, and stereotypic behaviors (Harasawa et al., 2006;
Khatri et al., 2014; Ho et al., 2016). These results are more
difficult to generalize because Khatri et al. (2014) compared rats
that received citalopram to those receiving both citalopram and
WAY100635. Interestingly, even though Harasawa et al. (2006)
found that WAY100635 alone does not affect marble burying,
dose-dependent effects were found when WAY100635 was
paired with fluvoxamine 30 (mg/kg). Fluvoxamine, an SSRI,
decreased marble burying behavior compared to controls. Yet,

when pairing 0.1 mg/kg WAY100635 with fluvoxamine, marble
burying was significantly decreased compared to fluvoxamine
alone. When the high dose of WAY100635 at 1.0 (mg/kg)
was paired with fluvoxamine, marble burying was significantly
increased compared to fluvoxamine alone suggesting that
5-HT1A blockade alone does not elevate the expression of
repetitive behaviors.

Both 5-HT1A agonists 8-OH-DPAT and Buspirone and the
5-HT1A antagonist WAY 100635 are the most widely studied
specific 5-HT1A receptor drugs examining RRBs. The data
suggest that 8-OH-DPAT and Busprione tend to decrease RRB
expression while the agonist WAY100635 does not significantly
impact RRBs, tested across various doses, tasks, and rodent
strains. On the contrary, there are a few instances where 8-
OH-DPAT and WAY100635 present conflicting results. Khatri
et al. (2014) find that 8-OH-DPAT increases stereotypic behavior
but defines stereotypic behaviors as repetitive vertical head
movements. Repetitive vertical head movements are beyond the
scope of this review and are similar to head-twitch responses,
common behavioral motor measures not typically labeled as
RRBs, and are specifically linked to hallucinogenic compounds.
Cao and Rodgers (1997b) found that buspirone increased RRBs,
instead of decreasing, at 3 (mg/kg), yet found no effect at
the low doses (0.1, 0.3, and 1.0 mg/kg). In the BTBR mouse
model of ASD, Gould et al. (2011) found that buspirone had no
impact on marble burying. Lastly, most of the data involving
the 5-HT1A antagonist WAY100635 displayed no effects on
RRBs. The one study that showed WAY100635 increases
grooming found modest effects, while both of the studies
did find that the 5-HT1A agonist decreased marble burying
and grooming after SSRI treatment. With all this considered,
increasing 5-HT1A activation appears to decrease RRBs, while
blocking 5-HT1A activation does not have a reliable impact
on RRBs.
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5-HT1B

Although 5-HT1B receptors can be found throughout the
CNS, they are primarily expressed within the hippocampus,
frontal cortex, basal ganglia, and striatum. Not much is known
about the impact that 5-HT1B activation or blockade has on
RRBs due to the limited number of studies. Although the three
available studies have opposing results, they utilized the same
5-HT1B agonists, CGS12066B and RU24969. Khatri et al. (2014)
found that repeated CGS12066B treatment increased stereotypic
repetitive vertical head movements in Long Evan rats. On the
other hand, the 5-HT1B agonist RU24969 has been found to
reduce self-grooming in both C57BL/6J mice and Hooded Lister
rats (O’Neill and Parameswaran, 1997; Ho et al., 2016).

Ho et al. (2016) and Khatri et al. (2014) also examined
the effects of 5-HT1B antagonist, GR127935 on grooming
behavior in C57BL/6J mice and Hooded Lister rats respectively.
Their findings suggest that blocking 5-HT1B activation can also
decrease RRB expression. According to Khatri et al. (2014), rats
were pretreated with the SSRI citalopram exhibited increased
self-grooming. These elevated self-grooming behaviors induced
by citalopram were reduced when treated with GR127935 before
testing. Although these drugs (CGS12066B, RU24969, and
GR127935) are all highly selective for 5-HT1B receptors,
none of them solely target 5-HT1B receptors. Even though
the 5-HT1B agonist, CGS12066B, is 17 times more selective
for 5-HT1B receptors, it also has low affinity for 5-HT1D
receptors (Neale et al., 1987; Middlemiss and Hutson, 1990).
The other 5-HT1B agonist mentioned, RU24969, primarily
targets 5-HT1B receptors (Ki = 0.38 nmol) but also has low
affinity for 5-HT1A receptors (Ki = 2.5 nmol; Peroutka, 1986;
Hoyer, 1991). GR127935 is a 5-HT1B/1D antagonist with a
high affinity for 5-HT1B (Starkey and Skingle, 1994). Overall,
CGS12066B is a 5-HT1B/1D agonist, RU24969 is a 5-HT1B/1A
agonist, and GR127935 is a 5-HT1B/1D antagonist, all with
a greater affinity for 5-HT1B receptors. At first glance, when
comparing the available 5-HT1B research on RRBs, the results
appear conflicting but are more consistent when considering the
various receptor targets these compounds can bind. The findings
utilizing CGS12066B and GR127935 indicate that selectively
increasing 5-HT1B/1D receptor activation induces RRBs, while
selectively decreasing 5-HT1B/1D receptor activation reduces
RRBs. To our knowledge, there are no studies that examine the
effects that 5-HT1D receptors have on RRBs.

5-HT2A

Serotonin 2A receptors are widely spread throughout the
CNS with high concentrations in the frontal cortex, limbic
system, claustrum, and basal ganglia (Xu and Pandey, 2000;
Hoyer et al., 2002). Consistent with their high density in

these areas, 5-HT2A receptors are involved in executive
functions, and are the primary binding site for psychedelics
and atypical antipsychotic medications (Fiorella et al., 1995;
Vollenweider et al., 1998; Meltzer, 1999). Interestingly, the
atypical antipsychotics risperidone and aripiprazole are the only
FDA-approved medications for ASD. Although these drugs
are only approved for reducing irritability in ASD individuals,
risperidone has been found to alleviate behavioral deficits in the
BTBR mouse model of ASD (Amodeo et al., 2014). Compared
to other serotonin receptor targets, many more studies have
examined how 5-HT2A receptor modulation impacts RRB
expression. While these findings can be mixed, a general trend
in the literature suggests that increased 5-HT2A activation
increases RRB expression, whereas blockade generally decreases
RRBs.

Although there is a trend in the literature showing
that 5-HT2A activation increases head-twitch behaviors, these
behaviors are more associated with hallucinogenic effects and
were not included in our review. However, some studies
demonstrate that 5-HT2A agonists also increase stereotypic
behaviors. DOI, a 5-HT2 agonist with a high affinity for
5-HT2A receptors, was utilized in almost all studies examining
how 5-HT2A activation affects RRBs. DOI administration
in male Sprague–Dawley rats increased stereotypic gnawing,
forepaw tapping, and skin-jerk behaviors (Gaggi et al., 1997;
Wettstein et al., 1999). In male Wistar rats, DOI increased
wet-dog shake behaviors (Kozuru et al., 2000) and other
stereotypic motor behaviors (Hongyan et al., 2017a,b). All
studies mentioned demonstrating an increase in RRBs following
5-HT2A activation, employed acute administration. One study
found no significant impact of chronic 5-HT2A activation on
marble burying behavior (Tsybko et al., 2020). Administration
of three separate 5-HT2A agonists 25CN-NBOH, TCB2, and
DOI over 14 days in C57Bl/6 male mice, did not produce
significant changes in marble burying behavior. In contrast
to findings demonstrating increased RRBs following 5-HT2A
activation, Scalzitti et al. (1999) found that DOI pretreatment
rescued repetitive self-grooming induced by the dopamine
D1 receptor agonist SKF 38393 in male Sprague–Dawley rats.
Odland et al. (2021b) found that DOI and 25CN-NBOH reduced
marble burying in male C57BL/6J mice. Odland et al. (2021a)
found similar reductions in marble burying in female NMRI
mice treated with DOI. Interestingly, the 5-HT2A antagonist
M100907 attenuated the decreased digging rates produced by
DOI treatment but had no significant impact on marble burying
when administered alone.

There are also mixed effects of 5-HT2A antagonism on RRBs
within the literature, however, there is more evidence suggesting
decreases in RRBs following 5-HT2A antagonism. Amodeo et al.
(2016, 2017) examined the impact of 5-HT2A antagonism in the
BTBR mouse model of autism. When administered systemically,
the 5-HT2A antagonist M100907 (0.1 mg/kg) decreased elevated
grooming behavior in BTBR mice. A follow up study showed
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that micro infusions of M100907 in the dorsomedial striatum
and orbitofrontal cortex had opposing effects. Specifically,
intra-OFC micro infusions potentiated elevated grooming,
whereas intra-dorsomedial striatum micro infusions decreased
grooming. In wild type mice, M100907 has been recently shown
to attenuate LSD-induced elevated grooming (Rodriguiz et al.,
2021). Contrastingly, Bruins Slot et al. (2008) did not observe
a significant effect of M100907 on marble burying, whereas,
the 5-HT2 antagonist ritanserin reduced marble burying. In the
Scalzitti et al. (1999) study, chronic pretreatment with mianserin,
another 5-HT2 antagonist, did not impact SKF 38393-induced
repetitive self-grooming. Although mianserin is an overall
5-HT2 antagonist, chronic administration was previously shown
to downregulate 5-HT2A receptors (Hensler and Truett, 1998).
The differences in effects observed in 5-HT2A blockade may
depend on acute compared to repeated administration, as well
as the binding selectivity of the different compounds used.

Studies examining the impact of 5-HT2A modulation on
RRBs are mixed, however, the differences in administration
could account for the inconsistencies. The two studies that
employed chronic administration did not observe significant
impacts on RRBs, even though Tsybko et al. (2020) employed
a 5-HT2A agonist and Scalzitti et al. (1999) tested a 5-HT2A
antagonist. It is also important to consider differences in the
RRB models used. For example, almost all studies employed
drug-induced models of RRBs. However, Amodeo et al. (2016,
2017) used the BTBR mouse model of ASD, which exhibits
characteristic behaviors analogous to RRBs in humans. There
are possibly differential impacts of 5-HT2A modulation on RRBs
when employed in a drug-induced model compared to a disorder
model. Additionally, there are further differences within the
drug-induced models. Scalzitti et al. (1999) was the only study
to utilize a dopaminergic drug to produce RRBs. When used
as a pretreatment, DOI attenuated elevated grooming induced
by the dopamine D1 activation, however, most other studies
have demonstrated that DOI typically produces RRBs, when
administered alone. There may have been specific dopaminergic
impacts on RRBs that should be explored in future studies.
This section highlights a need for further studies examining
the effects of chronic 5-HT2A modulation on RRBs, especially
considering potential therapeutics for RRBs would likely be
taken chronically.

5-HT2B

5-HT2B is distributed in both CNS and PNS. Although
these receptors are most abundant in the liver and kidney, they
are also present throughout the brain, pancreas, and spleen
(Bonhaus et al., 1995). To our knowledge, only two studies have
explored the impact of 5-HT2B modulation on RRB expression.
Kennett et al. (1997) examined the effects of 5-HT2B agonist
BW723C86 on repetitive self-grooming in Sprague Dawley rats.

They initially found that 1 and 10 µg of BW723C86 when
infused into the right lateral ventricle had no effect on
grooming. However, when administered subcutaneously and
systematically at 10 and 20 (mg/kg), grooming frequency and
duration decreased, indicating that these effects may be through
peripheral systems. Effects of 5-HT2B antagonist LY266097 have
also been tested on marble burying behavior in NMRI mice
(Bruins Slot et al., 2008). LY266097 did not impact marble
burying when administered intraperitoneally between 0.16 and
2.5 (mg/kg). Some evidence suggests 5-HT2B activation impacts
the expression of RRBs, but this receptor target needs further
examination.

5-HT2C

5-HT2C receptors are distributed throughout the CNS, with
high densities found in the choroid plexus. These receptors
are primarily found throughout areas of the limbic system,
specifically concentrated in the hippocampus, hypothalamus,
septum, and neocortex. 5-HT2C is also expressed in areas
important for motor actions, including the substantia nigra
and globus pallidus (Hensler, 2012). 5-HT2C receptors
are likely involved in several neurobiological processes
including modulation of monoaminergic transmission,
mood, and motor behavior (Chanrion et al., 2008). There is
substantial evidence that this receptor is highly related to the
expression of compulsive-like behaviors, defined as repetitious
and ritualistic, although results are variable across studies
(Flaisher-Grinberg et al., 2008).

Namely, mCPP, a 5-HT2C agonist, which in humans, has
been observed to exacerbate symptoms of OCD in untreated
patients (Gross-Isseroff et al., 2004) and in rodent RRBs (Reimer
et al., 2018). Most studies exploring mCPP have observed
increases in stereotypic behavior, commonly evaluated through
repetitive grooming and marble burying and particularly at
higher doses of 1 and 3 mg/kg (Bhutada et al., 2013; Wright
and Rodgers, 2014). Moreover, Kantor et al. (2000) observed
self-grooming behavior during a social interaction paradigm,
finding that administration of mCPP in three separate rat
strains enhanced self-grooming. Both Graf et al. (2003) and
Bagdy et al. (2001) examined the effects of mCPP, which
in both studies demonstrated increased grooming behaviors.
Interestingly, there are several studies that have observed a
decrease in these stereotypic behaviors with the upregulation
of the 5-HT2C receptor. Halford et al. (1997) examined how
increased activation of 5-HT2C receptors with the compound
MK212, lead to an overall decrease in grooming behavior.
Other 5-HT2C receptor agonists, Ro600175, Ro600332, and
CPD1 similarly reduced marble burying behavior (Martin et al.,
1998; Rodriguez et al., 2017). Together suggesting that increases
in 5-HT2C receptor activation reduced rates of RRBs.
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Previous studies suggest that 5-HT2C receptor antagonism
does not increase stereotypic behaviors. Namely, Odland et al.
(2021a) assessed how the 5-HT2C receptor contributes to marble
burying behavior and found no differences with the 5-HT2C
antagonist, SB242084 alone, compared to vehicle-treated mice.
Conversely, Bagdy et al. (2001) observed a dose-dependent
reduction in repetitive grooming with the administration
of 5-HT2C antagonist SB242084, alone. Similar effects were
found in Graf et al. (2003) who observed pre-treatment of
SB242084 was able to effectively reverse the effects of grooming
induced by mCPP. Together these findings suggest that 5-HT2C
downregulation reduces RRB expression, and this is most
evident when RRBs are pharmacologically induced.

Although studies on 5-HT2C receptor modulation are not
consistent, there is evidence that this receptor is highly involved
in behaviors relating to grooming and marble burying. The
agonistic effects of 5-HT2C appear to vary depending on
the specific 5-HT2C compound administered. In all instances,
mCPP has been shown to increase RRBs, whereas the other
5-HT2C agonists (MK212, Ro600175, Ro600332, and CPD1) are
shown to decrease RRBs. On the surface, these differences may
be attributed to the secondary 5-HT receptor targets that these
drugs show an affinity for. These drugs are vastly more selective
for 5-HT2C, yet still show affinity for other 5-HT receptors,
such as 5-HT2B and 5-HT2A. As for the 5-HT2C antagonist,
most instances show that blocking 5-HT2C activation has
no effect on RRBs. The instances where 5-HT2C antagonists
decreased RRBs, were only observed in Bagdy et al. (2001) when
grooming was measured during a social interaction anxiety test
and Graf et al. (2003) only after animals were grooming was
induced from mCPP. Considering these differences, 5-HT2C
receptor activation can modulate RRBs in either direction
depending on the 5-HT2C drug used. Blocking 5-HT2C
activation only seems to show therapeutic capabilities when
RRBs are pharmacologically induced.

5-HT3

Of the several 5-HT3 (5-HT3A/B/C/D/E), only 5-
HT3A/B/C are found in the brain (Yamada et al., 2006).
5-HT3 receptors are expressed in the hippocampus, the
amygdala, and the cerebral cortex (Morales et al., 1996; Hájos
et al., 2000). Until recently, only one study has considered the
effects that 5-HT3 on measures of RRBs. Gillies et al. (1996)
examined the affect of selective 5-HT3 agonist 2-methyl-5-H
treatment on self-grooming in Sprague–Dawley rats. Although
grooming was not the focus of this study, the authors do briefly
mention that grooming was not affected by 2-methyl-5-HT
exposure. More recently, Huang et al. (2021) employed a Htr3a
knockout mouse and measured RRB expression. Compared to
the wild type, Htr3a KO mice displayed elevated self-grooming

rates, suggesting that reduced 5-HT3A receptors development
may lead to increased repetitive grooming behavior.

5-HT6

Similar to previously discussed 5-HT receptors, 5-HT6 is
found in high concentrations in the hippocampus, amygdala,
and the cerebral cortex. 5-HT6 receptors are also expressed
in the nucleus accumbens, dentate gyrus, olfactory tubercles,
and entorhinal cortex (Gérard et al., 1996; Hirst et al., 2003;
de Assis Brasil et al., 2019). Two studies have examined how
5-HT6 affects RRB expression, including the 5-HT6 agonist
WAY208466 and 5-HT6 antagonist BGC20761. Pereira et al.
(2015) measured rates of self-grooming in C57BL/6J mice
during the training and test sessions of a passive avoidance
task. Treatment with the 5-HT6 agonist WAY208466 elevated
grooming rates in C57BL/6J mice. Amodeo et al. (2021)
measured the effects of the 5-HT6 antagonist BGC2076 in
C57BL/6J and BTBR mice, a strain that expresses high rates
of grooming behavior. Both male and female BTBR mice
displayed elevated grooming behaviors compared to C57BL/6J
mice. BGC20761 had no effect on C57BL/6J normal mice
but decreased the elevated grooming behaviors observed in
BTBR mice. In the same study, C58/J inbred mouse strain
that expresses elevated repetitive spontaneous jumping, another
RRB, was also treated with BGC20761. Unlike the repetitive
grooming behaviors observed in BTBR mice, BGC207 did
not attenuate the elevated jumping and flipping behaviors
observed in C58 mice. Together these studies suggest that
increasing 5-HT6 receptor activity increases RRB expression
while blocking 5-HT6 activity decreases RRBs. However, due to
the limited amount of data, these results appear to be task and
strain-specific.

5-HT7

The most recently identified serotonin receptor, 5-HT7
has been shown to be involved in circadian regulation,
thermoregulation, mood, and the gastrointestinal systems (Glass
et al., 2003; Hedlund et al., 2004). There are also high
densities of 5-HT7 receptors in the thalamus, dentate gyrus
of the hippocampus, with lower concentrations found in the
cortex, septum, hypothalamus, and CA1 and CA2 regions of
the hippocampus (Hannon and Hoyer, 2008). While there
is limited data available on the 5-HT7 receptor, studies
have found that both agonists and antagonists decrease RRB
expression. The 5-HT7 agonist, (+)-5-FPT, eliminated idiopathic
stereotypic jumping in C58/J mice and decreased self-grooming
in C57BL/6J mice (Canal et al., 2015). Hedlund and Sutcliffe
(2007) found that the inactivation of 5-HT7 receptors in OCD
model mice can attenuate repetitive burying behavior. This study
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also found that 5-HT7 KO mice buried fewer marbles than
5-HT7/+ mice. Although the 5-HT7 antagonist SB269970 did
not affect the 5-HT7-/- mice, it decreased marble burying in
5-HT7+/+ mice. Together, these studies suggest that either
increasing or blocking 5-HT7 activity can reduce RRBs.

Conclusion

The current review highlights how much of the research
seems to focus on select receptors, such as the 5-HT1A, 5-HT2A,
and 5-HT2C receptors and it is difficult to determine why this
is. One possibility is that these receptors have a greater effect
on RRB expression, but this is difficult to determine from the
current findings. It is also possible that the compounds that bind
to these receptors are readily available, thus making it easier to
attain and test. Alternatively, because there is a demand for these
specific receptor compounds, their affinity for those specific
receptors has been refined, compared to the other less examined
5-HT receptor targets.

Alleviating RRB expression may require drugs that have
a broader receptor profile, although this is not the focus of
the current review. The current review provides a rationale
for developing new compounds that take a multiple receptor
approach to attenuating RRBs. To do this we need to design
more studies that use this approach. The current findings
begin to shine a light on the impact of specific serotonin
receptor modulation on RRBs and highlight some of the
contradictory findings commonly found with these receptor
targets. Interestingly, the newer identified 5-HT6 and 5-HT7

receptors, although few studies have been conducted, show
evidence of being effective in attenuating RRBs. This is
encouraging in the search to find new therapeutic treatments.
In sum, the hope is that these findings will produce novel
therapeutics for neuropsychiatric disorders afflicted by repetitive
behaviors.
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