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Major Depressive Disorder (MDD) is a widespread debilitating neuropsychiatric disorder. While
a broad range of drugs to treat MDD are available, a large portion of the patients fail to achieve
a complete and sustained remission. It is estimated that only about half of the patients will be
responsive to currently available antidepressant treatment (Rush et al., 2006), while others will be
only partly responsive, and some will develop a treatment-resistant MDD (Akil et al., 2018).

The etiology of MDD is not clear and considering the large heterogeneity of symptoms and
pathophysiologies it is likely to arise from a complex integration of genetic risk factors (Flint
and Kendler, 2014; Geschwind and Flint, 2015) and environmental influences, mostly adverse life
experiences (Gourion et al., 2008; LeMoult et al., 2020).

Adverse experiences such as early-life stress and poormaternal care are associated with increased
risk for MDD in humans (Heim et al., 2010; Lippard and Nemeroff, 2020) and these findings
were recapitulated in rodent models (Liu et al., 1997; Caldji et al., 1998) and non-human primates
(Champoux et al., 2002; Barr et al., 2003). Maternal behavior and environmental stress alter the
development of the hypothalamic–pituitary–adrenal (HPA) axis stress response leading to a stress
susceptible phenotype associated with a greater risk for depression later in life (Liu et al., 1997;
Anacker et al., 2014). Early-life stress effects can further interact with genetic factors that predispose
individuals to depression (Heim and Binder, 2012).

The genome can integrate environmental signals through epigenetic mechanisms such as DNA
methylation of CpG dinucleotides and histone modifications. Indeed, ample evidence has linked
environmental stress to epigenetic alterations. Increased DNA methylation of the glucocorticoid
receptor (GR) promoter was found in the hippocampus of rat pups with poor maternal care
(Weaver et al., 2004) and in the post-mortem human brains of individuals who suffered childhood
abuse (McGowan et al., 2009). Similar findings suggested conserved epigenetic signature of early
life stress in rats and humans (Suderman et al., 2012). It was also demonstrated that peripheral
tissues (including blood, saliva and buccal cells) can be used as surrogates for measuring epigenetic
changes in the brain across many neuropsychiatric disorders (Fuchikami et al., 2011; Unternaehrer
et al., 2012; Lax et al., 2018; McEwen et al., 2020). In addition, many CpGs show correlation of
DNA methylation levels between blood and several brain regions, and hence can serve as disease
biomarkers (Hannon et al., 2015; Edgar et al., 2017).

The observations that environmental factors, such as early-life stress, that make individuals
prone toMDD, also modulate the epigenetic signals to ultimately reprogram brain gene-expression
patterns encouraged studies that seek direct associations between MDD and DNA methylation.
For example, a genome-wide DNA methylation study in post-mortem brain samples from MDD
patients who died during a depressive episode and matched controls found more than a hundred
differentially methylated regions between the groups (Nagy et al., 2015). Recently, a large-scale
genome-wide study directly compared brain and blood DNA methylation patterns in MDD
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FIGURE 1 | Environmental and genetic risk factors promote changes in DNA methyltransferases (DNMTs) and ten-eleven translocation methylcytosine dioxygenases

(TET) activity that increase DNA methylation and demethylation, respectively. Changes in DNA methylation lead to aberrant expression of genes that are associated

with MDD ultimately causing MDD. SAM administration can attenuate these changes in DNA methylation. Further, genomic sequencing to detect changes in DNA

methylation can serve as a predictive tool for MDD as well as a tool to predict treatment efficacy and responsiveness.

patients including replication cohorts and found differentially
methylated sites in MDD patients (Aberg et al., 2020). Other
researchers used a candidate gene approach and found changes
in DNA methylation levels for the genes MAOA (encoding
the monoamine-oxidase-A enzyme) and NR3C1 (encoding
the glucocorticoid-receptor) in individuals with MDD and
childhood adversities (Melas et al., 2013).

Other studies aimed to assess DNA methylation levels of
the promoter of SLC6A4, the gene that encodes the serotonin
transporter, a major target of many antidepressant drugs.
Kang et al. (2013) found an association between childhood
adversity and worse clinical presentation of MDD and higher
methylation levels of the SLC6A4 promoter with no effect of
antidepressant treatment on methylation levels of this region.

Using the same approach, Okada et al. (2014) did not find a
significant difference between DNA methylation levels of the
SLC6A4 promoter in healthy controls and MDD patients before
antidepressant treatment. However, they found significantly
increased methylation in some CpGs following a 6-week
treatment. Similar findings were also found in additional studies
(Vijayendran et al., 2012; Zhao et al., 2013; Domschke et al.,
2014). Furthermore, several studies linked peripheral measures
of SLC6A4 promoter DNA methylation to brain connectivity
in MDD (Chiarella et al., 2020), brain functions involved in
emotional stimuli (Frodl et al., 2015), and hippocampal volume
in MDD (Booij et al., 2015). Notably, heterogeneity in DNA
methylation changes in MDD across experiments is to be

expected due to factors such as genomic heterogeneity and the
parameters of the sampled population. For example, a distinct
DNA methylation signature was found for adult-onset and
late-onset MDD (Yamagata et al., 2021). On the other hand,
parameters such as ethnicity might have smaller effects. A meta-
analysis of multiethnic epigenome-wide studies for depressive
symptoms found DNA methylation signatures of depression
which were robust across ethnicities (Story Jovanova et al., 2018).

Taken together, the findings that DNA methylation changes
were observed in MDD led to efforts to pharmacologically
manipulate DNAmethylation levels as a potential antidepressant
treatment. Administration of S-adenosyl methionine (SAM),
a methyl donor that is used by DNA methyltransferases
(DNMTs) to catalyze DNA methylation, can increase global
DNA methylation. Therefore, many studies examined the
effect of SAM administration as a monotherapy or an add-
on to antidepressant treatment. The overall effects of SAM
administration in MDD were analyzed in several thorough
systemic reviews, which concluded that SAM shows promising
results although additional larger randomized double-blind
studies with long-term follow-up are required (Galizia et al.,
2016; Sarris et al., 2016; Sharma et al., 2017; Cuomo et al., 2020).
Animal models suggested some mechanistic insight into the
beneficial effects of SAM. Saunderson et al. (2016) demonstrated
that SAM administration attenuated stress-induced c-Fos and
Egr-1 gene-promoter demethylation and protein expression
in the dentate gyrus of stressed rats. Intracerebroventricular
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infusion of methionine (SAM precursor) reversed stress response
and DNA methylation levels of the GR promoter in rat
offspring from poor maternal care dams (Weaver et al.,
2005) and systemic methionine injections in the same animal
model altered gene-expression of over 300 genes in the
hippocampus (Weaver et al., 2006). Notably, Dnmt3a over-
expression (which increases global methylation) specifically
in the nucleus accumbens increased depressive-like behaviors,
while DNMT inhibition with RG-108 decreased depressive-like
behaviors in mice (LaPlant et al., 2010). Also, forebrain deletion
of Dnmt1, but not Dnmt3a, showed anti-depressive effects
(Morris et al., 2016).

In naïve newborn and adult rodents, systematic
administration of the DNMT inhibitors 5-aza-2-deoxycytidine
or 5-azacytidine reduced depressive-like behaviors through
demethylation of the Bdnf gene promoter leading to increased
brain Bdnf mRNA and protein levels (Sales et al., 2011; Li
et al., 2017). While the findings of pharmacological inhibition
of DNA methylation might be seen as contradictory to the
beneficial effects of SAM observed in preclinical and clinical
studies, it is important to note that different models, species,
and administration routes were used, making it hard to directly
compare these results. Also, while SAM treatment is a promising
add-on MDD therapy, it increases DNA methylation globally
and can potentially reprogram gene-expression beyond those
that are causative for MDD. However, many human studies on
the effects of SAM administration on MDD showed beneficial
effects for this treatment with no major adverse side-effects
reported. Currently, there are not pharmacological interventions
that can manipulate DNA methylation levels of specific genomic
loci. Novel technologies might allow this in the future, for
example by targeting a catalytically inactive CRISPR/deadCAS9
protein fused to DNMT3a (dCAS9-DNMT3a) to loci of interest
as was shown experimentally (Liu et al., 2016; Vojta et al., 2016;
Xu and Heller, 2019).

Disentangling whether changes in DNA methylation are the
cause or result of MMD is very difficult in human studies
which can measure mostly associations. However, several studies
found that DNA methylation can predict behavioral outcomes,
including major depression, in humans (Ursini et al., 2011;
Guintivano et al., 2014; Humphreys et al., 2019). In addition,
studies in animal models for MDD showed that manipulating
the methyl donor availability, DNMTs levels and DNMTs activity
can induce MDD-like behavioral phenotypes (LaPlant et al.,
2010; Sales et al., 2011; Morris et al., 2016; Li et al., 2017).
Therefore, it is prudent to assume that alterations in DNA
methylation, as a result to external stressful stimuli, are at
least partly causative of MDD, although it is likely that some
methylation alterations are secondary toMDD (and yet can serve
as potential biomarkers).

The notion that manipulating DNA methylation has
an impact on MDD encouraged studies measuring DNA
methylation levels as potential biomarkers to predict MDD and
its severity in vulnerable populations as well as treatment
outcomes. For example, blood methylation levels were
measured in several cohorts to successfully predict antenatal
and postpartum depression (Guintivano et al., 2014; Payne
et al., 2020). Some of these studies focused on one or a few
candidate genes as potential MDD predictors, mostly the
BDNF and SLC6A4 genes (Booij et al., 2015; Kleimann et al.,
2015), while others used genome-wide methods (Barbu et al.,
2020).

A recent systematic review onDNAmethylation in depression
and the effects of MDD treatment on DNA methylation
concluded that findings from studies that aimed to search for
biomarkers for MDD treatment outcome are inconsistent; with
some studies showing significant results while others had mixed
findings. This is most likely due to larger heterogeneity compared
to other studies, types and stages of treatment and small sample
sizes in some of the studies. Overall, the most consistent effects
were increased methylation of the BDNF and SLC6A4 genes in
MDD patients (Li et al., 2019).

Taken as a whole, a growing body of evidence support a role
for DNAmethylation in MDD (see summary in Figure 1). Drugs
that modify DNA methylation are available and demonstrate
significant effects across both preclinical and clinical studies.
These drugs (mostly methionine and SAM) have the potential
to be used as adjuvants increasing the efficacy of classic
antidepressant treatments. Further, peripheral DNA methylation
has the potential to become a non-invasive method for assessing
MDD risk and treatment-efficacy estimation. Future large-scale
research on MDD patients is needed for further study and
validation to establish these approaches.
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