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Accurate tracking is the basis of behavioral analysis, an important research method in
neuroscience and many other fields. However, the currently available tracking methods
have limitations. Traditional computer vision methods have problems in complex
environments, and deep learning methods are hard to be applied universally due to the
requirement of laborious annotations. To address the trade-off between accuracy and
universality, we developed an easy-to-use tracking tool, Siamese Network-based All-
Purpose Tracker (SNAP-Tracker), a model-free tracking software built on the Siamese
network. The pretrained Siamese network offers SNAP-Tracker a remarkable feature
extraction ability to keep tracking accuracy, and the model-free design makes it
usable directly before laborious annotations and network refinement. SNAP-Tracker
provides a “tracking with detection” mode to track longer videos with an additional
detection module. We demonstrate the stability of SNAP-Tracker through different
experimental conditions and different tracking tasks. In short, SNAP-Tracker provides
a general solution to behavioral tracking without compromising accuracy. For the user’s
convenience, we have integrated the tool into a tidy graphic user interface and opened
the source code for downloading and using (https://github.com/slh0302/SNAP).

Keywords: behavioral tracking, deep learning, model-free, universality, Siamese network

INTRODUCTION

Living organisms receive cues from external environments, process the information internally, and
finally output the processing outcomes in the form of behavior. Therefore quantitatively modeling
and analyzing behavior is vital to help understand the motivations and underlying mechanisms
of animals and is thus widely used in neuroscience (Frye and Dickinson, 2004; Krakauer et al.,
2017) and other animal-related disciplines, such as psychology (Snowdon, 1983; Dewsbury, 1992),
ecology (Nathan et al., 2008; Dall et al., 2012). The recent decades have witnessed the application
of technology in recording and observing animal behavior, which has greatly liberated human
labor in behavioral data acquisition, and yielded large amounts of data with unprecedented spatial
and temporal resolutions (Gomez-Marin et al., 2014). These explosive animal behavioral data
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bring significant challenges to analysis. Fortunately, automated
image-based processing methods offer opportunities to solve
the challenges in behavioral analysis (Dell et al., 2014) and
open up a new field called computational ethology that aims to
quantify animal behavior (Anderson and Perona, 2014). Accurate
trajectory tracking is the first and most crucial step of behavioral
analysis (Pereira et al., 2020).

Recent advances in computer vision (CV) and deep learning
have inspired many well-behaved tracking methods. Among
different algorithms developed on traditional CV techniques,
background subtraction is the earliest and most commonly
used by software such as ToxTrac (Rodriguez et al., 2017).
There are also software packages that apply other efficient
object segmentation methods, such as the adaptive thresholding
in Tracktor (Sridhar et al., 2019). To track individuals in
groups, which can be disturbed by the touching and crossing
among individuals, idTracker (Pérez-Escudero et al., 2014) uses
regressive features of all individuals and successfully tracks
multiple individuals simultaneously. The above-mentioned
methods have shown successful tracking performance in
particular conditions. However, they still have some limitations,
of which the most critical one is that these methods work fine
only in constrained environments because of the relatively simple
features extracted by their segmentation methods. Deep learning,
which is the most popular method in image processing (LeCun
et al., 2015), has provided significant breakthroughs in designing
video-based animal behavior tracking algorithms (Mathis
and Mathis, 2020). Representative examples are idTracker.ai
(Romero-Ferrero et al., 2019) for multiple individual tracking
and DeepLabCut (DLC; Mathis et al., 2018), LEAP (Pereira
et al., 2019), and DeepPoseKit (Graving et al., 2019) for
high-dimensional postures tracking. The outstanding feature
extraction ability of deep learning significantly improves the
performance of tracking tools in complex environments.
However, a common problem for both traditional and deep
learning methods is their performance loss in “open” conditions,
in which the statistical distributions of test datasets are different
from those of training datasets (Goodfellow et al., 2014; Nguyen
et al., 2015). The most effective solution for deep learning
methods is enough training samples. Thus when applying deep
learning methods in practice, researchers have to manually
annotate a certain number of video frames to collect enough
training samples, a well-known difficult task in biological fields
requiring expertise and time. Besides, researchers should also be
equipped with professional knowledge to train or fine-tune the
neural networks. Therefore, solving practical problems by taking
advantage of deep learning while bypassing its overdependence
on data is a hot topic in the deep-learning field. We think
SNAP-Tracker is a successful attempt to implement this idea in
animal behavioral tracking.

To alleviate the burden of researchers and promote the
development of behavioral analysis, in this article, we present an
accurate, universal, and easy-to-use tracking software, Siamese
Network based All-Purpose Tracker (SNAP-Tracker). As its
name suggests, we develop SNAP-Tracker upon a pretrained
Siamese network, consisting of two identical subnetworks to
extract features and make comparisons (Bromley et al., 1993).

Although developed upon deep learning methods, SNAP-
Tracker works in a model-free way to track the object without
premodeling it first. Thus, it no longer requires refinements
after network pretraining. A region-of-interest (ROI) align and
distractor learning protocol has been applied to the Siamese
network to help overcome the disturbance from background
information (Su et al., 2020). Briefly, the ROI-aligned operation
can promise a smaller data loss/data gain ratio than the
ordinary ROI pooling operation, so it is set before ROI
pooling in the template branch to generate more accurate
target features. SNAP-Tracker’s graphic user interface (GUI) is
tidy and easy to operate (Supplementary Figure 1). In most
cases, users only need to define the tracking target with a
bounding box at the beginning of the videos, just like taking
a “snapshot” of the target, and SNAP-Tracker will use the
“snapshot” as the beginning template to finish the following
tracking procedure. Experimental results displayed that SNAP-
Tracker can accomplish tracking tasks across various species and
environmental conditions without compromising performance.
With an additional detection module, SNAP-Tracker can behave
in the “tracking with detection” mode, suitable for dealing with
larger datasets or more complicated tracking tasks. However,
different from other “tracking by detection” software, the
detection module of SNAP-Tracker is only activated when
tracking failures might happen, which can improve the overall
accuracy but will not affect processing speed too much. To sum
up, with SNAP-Tracker, accurate tracking, can become more
accessible and more efficient.

MATERIALS AND METHODS

Datasets
Mouse Freely Running Dataset
The dataset describes the freely running behavior of mice with
their heads fixed. It consists of seven raw videos, provided
by Jun Ding’s Lab from Stanford University. The videos
were captured from the side, and each one recorded 5,000
frames (896 × 600 pixels) for about 3 min. All experimental
procedures were conducted in accordance with protocols
approved by Stanford University’s Administrative Panel on
Laboratory Animal Care. We separated the seven videos into
four groups according to foot illumination, roller color, and
head direction (Table 1). Throughout all the seven videos, the
forefoot and hindfoot on the closer side to the camera were
manually annotated with bounding boxes and served as the
ground truth to test the performance of the tracking tools.
The dataset is available at https://drive.google.com/file/d/1k0w_
lgIBd5xIY0f63J8VfuccvHZ7spsD/view?usp=sharing.

Other Datasets
The zebrafish dataset is a video of five freely swimming zebrafish
recorded from the top. An example video of idTracker is
available from Perez-Escudero et al. (2014), and we downloaded
it from http://www.idtracker.es/. The mouse pupil dataset
displays the abnormal pupil constriction behavior in the absence
of intrinsic photosensitive retinal ganglion cells glutamate
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TABLE 1 | Groups of the mouse freely running dataset.

Groups Video characteristics Examples

Foot illumination Roller color Head direction

1 No Dark Left

2 Yes Dark Left

3 No Light Left

4 No Light Right

(Keenan et al., 2016). The chimpanzee dataset is a video about the
tapping behavior of a chimpanzee on a keyboard we downloaded
from Hattori et al. (2013). The peacock spider dataset displays the
courtship body behavior of peacock spiders (Girard et al., 2011).
The blue-capped cordon-bleu dataset records the multimodal
courtship of birds (Ota et al., 2015).

Siamese Network-Based
All-Purpose-Tracker
Overview
Siamese Network-based All-Purpose-Tracker was written in
Python 3 and implemented with PyTorch 0.4.0. We develop the
GUI with Qt 5.13.0. We have tested its availability on Ubuntu
16.04 and Windows 10. More detailed information, including the
executable file, the master code, and others, can be found in the
GitHub repository: https://github.com/slh0302/SNAP.

The basic structure of SNAP-Tracker follows the framework
of the Siamese network (Bertinetto et al., 2016), which consists
of twin-deep convolution networks sharing the same set of
parameters. The first essential module of SNAP-Tracker is the
feature extractor pretrained on ImageNet, which can be either a
5-layer AlexNet (Krizhevsky et al., 2012) or a 50-layer ResNet-
50 (He et al., 2016). Experiments in this paper were all performed
with the faster AlexNet. Another essential module is the similarity
metric module used for calculating the cross-correlation between
the template and target frames. The area with maximum
similarity will be decided as the tracking location. To decrease the
disturbance of background information, we have developed an
ROI align and distractor learning protocol (Su et al., 2020). Briefly
speaking, the ROI align layer is placed after the feature extractor
to maintain the template scale with more accurate features and
exclude the disturbance from marginal background information.
Further distractor learning is performed after cross-correlation
calculation to increase the Euclidian distance between the target
and distractors.

We have also implemented a “tracking with detection”
mode with an additional detection module, a Faster-
RCNN with a 50-layer ResNet that can be trained with
the primary tracking results offered by the basic tracking
module. When the detection module is activated, if the output
confidence of SNAP-Tracker is below 0.3, it will help guide the
tracking procedure.

Network Training
We have used AlexNet (Krizhevsky et al., 2012) and stride-
reduced ResNet50 (He et al., 2016) as the backbone network
to perform proposal classification and bounding box regression
with five anchors as in Li et al. (2018). The backbone network
of our architecture was pretrained on ImageNet (Russakovsky
et al., 2015). Then we further trained the whole neural network
of SNAP-Tracker on COCO (Lin et al., 2014), ImageNet DET
(Deng et al., 2009), ImageNet VID (Russakovsky et al., 2015),
and YouTube-Bounding Boxes Dataset (Real et al., 2017) to
learn a general measurement of similarities between objects for
visual tracking. In both training and testing, we used single-scale
images with 127 pixels for template patches and 255 pixels for
searching regions. We applied stochastic gradient descent with
the momentum of 0.9 and a weight attenuation of 0.0005 as the
optimizing method. We warmed up ResNet50 with a learning
rate of 0.005 for the first five epochs. For AlexNet, we fixed the
parameters of its first three layers, and AlexNet did not need a
warm-up at the beginning of the training. Then we set 0.001 and
0.0001 as the learning rate of the backbone network and the rest
of the network (Zhu et al., 2018; Li et al., 2019). The learning rate
decayed exponentially to one-tenth of the original value.

The detection module of SNAP-Tracker is a pretrained
50-layer ResNet-based Faster-RCNN. For the retraining of
the detection module, we kept all of the parameters default.
We collected 10–50K frames by the basic SNAP-Tracker for
retraining, the initial learning rate was 0.001, and the batch size
was 32. For DLC and LEAP, the initial learning rate was 0.005 and
0.0001, and the batch size was 16 and 8, correspondingly.

Output Confidence
Output confidence represents the confidence level of the model
about results. It is used in the “tracking with detection” mode to
activate the detection module. As we can regard object tracking
as a binary classification problem between the tracking target and
background information, we used the classification probability of
the tracking target as the output confidence.

Experimental Design
Evaluation Criteria
Overlap rate (OR) is the ratio of intersection area to union
area between tracking results and human annotations. We used
OR to evaluate the tracking accuracy of software using bound
boxes as the tracking results. We set the threshold of success at
0.5. If the OR value of the result is higher than the threshold,
we can consider that the tracking is successful, and the success
rate means the ratio of successful frames. We ran a test on the
first 1,300 frames of mouse freely running video 1 and found
out that the bounding box size in the first frame could affect
the final successful rate (Supplementary Figure 2); and in our
results, we chose circumscribed rectangle as the bounding box
size by our experience.

We also used pixel error (PE) to evaluate the accuracy of
tracking software when the tracking results of the software are
points. PE is the Euclidean distance between the tracking results
of software and human annotations. Positions of tracking points
or bounding boxes centers refer to the tracking results of the
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software. We set the successful threshold at 20 pixels. If the
PE value is lower than the threshold, we can consider that
successful tracking and the accuracy rate means the ratio of
successful frames.

Experiments Description
To reveal that few human corrections are helpful to maintain high
accuracy (Figure 2), feet tracking was performed on different
continuous frames (up to 3,000) of three videos from the mouse
freely running dataset (Table 1). We used OR as the evaluation
criterion for calculating error rates, which were the ratios of
the number of failing frames to total frames (Figure 2B). Label
efforts under different tracking frames mean the ratio of human
correcting frames to total frames (Figure 2C).

To illustrate the stability of SNAP-Tracker in open conditions,
we used PE as the evaluation criterion to demonstrate the
performance of SNAP-Tracker and two representative deep
learning tracking tools, DLC (Mathis et al., 2018) and LEAP
(Pereira et al., 2019; Figure 3). Test frames and training frames
were from the same video in the close condition test, while
from different videos or under different conditions in the open
condition tests. We fixed the length of the testing frames at
1,000 and repeated each test session with randomly selected
clips three times.

To test the applicability of SNAP-Tracker in broader
situations, we used five other videos coming from published data
(Figure 4). We validated and converted the tracking results to
other indexes for further analysis, such as moving distance in
pixel (px), moving speed in pixel per frame (px/f), area size
in pixel square (px2), and angle in degree. We also recorded
the times needed for human correction and exhibited it in the
percentage of total frames.

To compare the efficiency of the “tracking with detection”
mode of SNAP-Tracker with other “tracking by detection”
methods, such as DLC, we applied PE as the evaluation criterion
to evaluate their success rates under different training frames
(Figure 5B). In this experiment, we used all the seven mouse
running videos as a whole to test both packages. We randomly
selected 60% of the seven video frames to constitute the whole
training set and evenly used 2–100% in the training sessions.
For the working pipeline of DLC, training frames were precisely
the handed-labeled ground truth annotations. So the label efforts
equaled its training samples. For the working pipeline of the
detection mode of SNAP-Tracker, the training frames were from
its immediate automatic tracking results and occasional human
corrections; and we took the human corrections as the label
efforts it needed.

RESULTS

Framework and Workflow of Siamese
Network-Based All-Purpose-Tracker
We developed SNAP-Tracker on a deep Siamese neural network,
one of the deep neural networks widely used in visual tracking.
SNAP-Tracker is a model-free tracker and thus can complete
tracking tasks without modeling the object priorly, different

from other model-based deep learning methods. There are
two critical compositions in the basic framework of SNAP-
Tracker (Figure 1). The feature extraction module (the orange
part in Figure 1) is thoroughly pretrained first and then used
for feature extraction from the bounding box of the template
frame and the searching areas in target frames. The similarity
metric module (the blue part in Figure 1) determines the
object’s location by calculating the cross-correlation between the
extracted features from the template and the target frames. To
start a realistic tracking procedure, users can label the object in
the first frame as the template and then give hands to SNAP-
Tracker, which will automatically label-size adaptive bounding
boxes outside the tracking object according to the maximum
feature similarity to the template. With the sliding of video
frames, SNAP-Tracker annotates each frame continuously and
finally produces the trajectory of the tracking object through
the video. Supplementary Video 1 shows a practical case of
the workflow, which is easy to operate. As described above,
throughout the whole tracking procedure, usually the only thing
users have to do is define their interested tracking objects at the
first frame with a bounding box and then handing over the task to
SNAP-Tracker by simply clicking the starting button in the GUI
(Supplementary Figure 1).

Few Human Corrections Are Helpful to
Keep High Accuracy
Tracking failure is a common problem for tracking tools, which
can happen when the tracking object moves too fast or when
another similar object occurs nearby. In these cases, the software
would accumulate errors without human interference. Therefore
we integrated a manually auxiliary correction module into the
basic operation panel of SNAP-Tracker (the dashed box E in
Supplementary Figure 1). Users can rescue tracking failures
by stopping the tracking and correcting the error with a new
bounding box, which will change the original template into
a new annotation of the current frame. After this, we can
restart tracking from the breaking point (Supplementary Video 2
shows a practical case). We have shown the efficiency of human
correction in preventing tracking errors with the first video of
the mouse dataset (Figure 2A). In this experiment, we used
OR as the evaluation criteria and set the threshold at 0.5;
tracking failure meant the OR was below the threshold. The
OR of the 1,145th frame dropped suddenly below the threshold
of 0.5, indicating a tracking failure might happen, which was
the tracking drift to the other forefoot (the bottom middle
inset of Figure 2A). Without human correction, SNAP-Tracker
regarded the wrong foot as the tracking object, and tracking
failure could happen (the bottom right inset of Figure 2A).
Sometimes, it was probable for SNAP-Tracker to automatically
relocate the target if the correct foot appeared again in the
searching region of SNAP-Tracker. However, if we could timely
correct the shifted bounding box at the 1,145th frame where
the tracking drift started, the continuous tracking failures could
be avoided to a large degree. Intuitively, failures would increase
with the length of the video being longer. To reveal that few
human corrections are helpful to keep high accuracy in this
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FIGURE 1 | An illustration of the workflow for SNAP-Tracker. In the typical workflow of SNAP-Tracker, users should make the only annotation at the first frame of the
video by dragging a bounding box out of the tracking object, which will serve as the template for the second and other later frames. In the search region of a target
frame, the image feature is extracted by the pretrained feature extractor simultaneously with the template. After comparing the cross-correlation between the
template and target frame feature, the similarity metric module will select the location with maximum similarity and generate an adapted bounding box outside the
tracking object. Connecting the bounding boxes of all frames in series can form the object’s trajectory. ∗ Denotes the similarity function (i.e., cross correlation) to be
computed for target and template feature.

situation, we performed feet tracking on the mouse dataset with
different continuous frames clips (up to 3,000). As expected,
error rates, indicating the ratio of failed tracking frames to
total frames, increased with longer clips (Figure 2B). But a
certain number of label efforts, representing the ratio of human
correcting frames, were enough to keep the OR of each frame
steady above the threshold, which we identified as 100% tracking
accuracy (Figure 2C). It must be noted that the OR value and
final successful/error rate can be influenced by the bounding
box size, as we tested on the first 1,300 frames of the video
used in Figure 2A (Supplementary Figure 2). Our paper used
circumscribed rectangle as the bounding box covering the target
while the size was as small as possible. In short, SNAP-Tracker

can complete much better tracking with acceptable times of
timely corrections by humans.

Stable Performance of Siamese
Network-Based All-Purpose-Tracker in
Open Conditions
Siamese Network-based All-Purpose-Tracker is a model-free
tracking package. Unlike the popular model-based methods,
model-free methods do not need to learn the prior knowledge
of the tracking object in advance. Therefore SNAP-Tracker does
not require model retraining or parameters fine-tuning, which
significantly alleviates the need for manual annotation before
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FIGURE 2 | Few human corrections are helpful to increase accuracy. (A) In a practical auto-tracking procedure (the gray line in the top plot), the tracking result (the
green box) can match the ground truth (the red box) most of the time (the bottom left inset). Tracking drift may occasionally happen due to the fast movement of the
object or another similar object nearby (the bottom middle inset). The tracking drift can evolve to tracking failure without a correction (the bottom right inset).
However, a single correction on the earliest tracking drift frame can successfully rescue the subsequent tracking failure (the black line in the top plot). X-axis: Frame
number of the video; Y-axis: overlap rate with the evaluation threshold of 0.5. (B) The tracking error rates of forefoot and hindfoot increased with video frame length’s
elongation. Error rate: the percent ratio of failed frames in the total frames. N = 3 videos. (C) Fewer human corrections than error frames are enough to fix the
tracking failures and achieve 100% accurate tracking results. A 100% accuracy: all the frames’ OR values are above 0.5; label effort: the percent ratio of frames
needs to be corrected to keep 100% accuracy. N = 3 videos.

applied. The manual annotation needed in the first frame will
not modify the model parameters but will tell SNAP-Track what
the tracking target is. In this way, SNAP-Tracker can express
much more stable performance in open conditions compared
with other model-based tracking methods. To demonstrate the
stable performance of SNAP-Tracker in open-conditions without
enough training samples, we tested SNAP-Tracker and two other
representative deep learning methods, DLC (Mathis et al., 2018)
and LEAP (Pereira et al., 2019), on the mouse dataset (Figure 3).
We used PE as the evaluation criterion of accuracy in this
experiment and set the successful threshold at 20 pixels. The
accuracy was the ratio of successful frames. When tested in
close conditions, where the test dataset came from the same
video as the training dataset (Figure 3A), SNAP-Tracker and
the other two deep learning methods showed good performance
(Figure 3B). It is worth noting that the two model-based
deep learning methods displayed increasing accuracies with the
increment of training data. However, the performance of SNAP-
Tracker was independent of training due to the model-free
tracking strategy, and we expressed its accuracy with a horizontal
red dashed line in the figure for a better comparison. When
it came to open conditions, test datasets had different feature
distributions from the training dataset, such as different videos
under similar environments or different videos with different
conditions (foot illumination, roller colors, and head directions)
(Figure 3C). It is evident in Figure 3D that the performance of
model-based deep learning methods dropped sharply due to the
lack of model fine-tuning with test data; only DLC did not show
bad accuracy in the first situation in which the test dataset was
the most similar to the training dataset. However, SNAP-Tracker
could exhibit better and stable performance in different open

conditions (Figure 3D). Furthermore, to clearly tell DLC and
LEAP what to be tracked in the test video, we have added the
first annotation of test videos, and the SNAP-Tracker was used
for tracking, in each corresponding DLC and LEAP training
session (Supplementary Figure 3). Compared with before (line
with dots in Supplementary Figure 3), by training with one
additional frame, the first annotation of test videos (smooth
line in Supplementary Figure 3) could improve the accuracy
but slightly. Therefore, SNAP-Tracker can be used directly with
relatively stable performance, offering a choice for tasks with
varying conditions.

Broader Applicability of Siamese
Network-Based All-Purpose-Tracker
Siamese Network-based All-Purpose-Tracker can have good
applicability across different behavioral tracking paradigms. To
demonstrate the broader applicability of SNAP-Tracker, we
applied it in five other videos with different species and tasks
coming from published data and made further analyses based
on the primary tracking results (Figure 4). In this experiment,
we used PE and the threshold of 20 pixels as the evaluation
criterion of accuracy and defined the accuracy as the ratio
of successful frames. We showed the averaged accuracy of 10
trails on each dataset (Supplementary Figure 4) and typical
cases demonstrating the corresponding comparison with the
ground truth (Supplementary Videos 3–7). In the individual
tracking task of zebrafish, SNAP-Tracker can accurately track
one of a collective of 5 zebrafish (the cyan bounding box
and blue trajectory in Figure 4A), and we could obtain the
swimming speed of the animal according to the tracking
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FIGURE 3 | Stable performance of SNAP-Tracker in open conditions. (A) In the close condition, training and test frames come from the same video. (B) The
accuracy of three methods in the close condition with different scales of the training set. The tracking accuracy of DLC (dare blue) and LEAP (light blue) increases
with more training frames. SNAP-Tracker (red) is independent of training, and its performance is comparable to the other two. Accuracy: the ratio of frames with PE
value lower than the threshold of 20 pixels. (C) In four kinds of open conditions, the test video can be a different one with similar environmental conditions (the first
row) or has different illumination (the second row), different roller colors (the third row), different head directions (the last row). (D) In open conditions, the accuracies
of DLC and LEAP both drop significantly even trained with the highest number of training frames. However, SNAP-Tracker can still keep relatively good performance
due to its independence to training.
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FIGURE 4 | Broader applicability of SNAP-Tracker. (A) Top: In the case of individual tracking among five zebrafish, the cyan box indicates the target fish, and the
blue line shows its moving trajectory. Bottom: The plot shows the variation of swimming speed (in pixel per frame) of the zebrafish. (B) Top: In the case of mouse
pupil tracking, the box shows the pupil of a glutamate knockout mouse. Bottom: The plot reveals the variation of pupil area (in pixel2). (C) Top: In tracking the
chimpanzee finger with complex background information, it is easy to locate the finger position accurately. Bottom: Tapping behavior can be observed in the
movement speed plot (in pixel per frame). (D) Top: When analyzing the courtship behavior of a peacock spider, we tracked the tips of the pair of third legs and head.
Bottom: The open angle between two third legs, a sign of the “Fan” dance, is speculated. (E) Top: In tracking two blue-capped cordon-blues, we tracked the
positions of their heads with different color boxes. Bottom: The plot represents the movement of heads with corresponding colors, which exhibits the interactive
bobbing behaviors of birds. (F) The bar plot shows the ratios of human correction in tasks. Percentages of human correction (black) in the five tasks are 0.2, 0.4, 3.6,
3.8, and 1.1% respectively. The average human correction is 0.9 ± 1.7%.

trajectory (Figure 4A). Besides individual tracking, tracking
particular body parts of an animal, such as the contraction and
dilation of pupils, is also essential in neuroscience. In the tracking
of mouse pupils (Keenan et al., 2016), we could quickly identify
the state of the pupil via the area of the inscribed ellipse of
each bounding box, which could reveal the role of glutamate
by comparing the difference between wild type and glutamate
knockout mouse (Figure 4B). In another case of tracking the
finger of a chimpanzee with a more complex background (Hattori
et al., 2013), we could also get an accurate trace of the finger and
infer the tapping frequency between alternative keys (Figure 4C).
More than that, SNAP-Tracker could also be used for more
sophisticated behavioral analysis, for example, the courtship
behavior of peacock spiders (Girard et al., 2011) and blue-capped
cordon-bleu (Ota et al., 2015). By tracking the pair of third
legs and the head of a peacock spider, we could speculate the
open angle between two third legs, which served as a constituent
of “Fan” dance, a representative courtship posture of peacock
spiders (Figure 4D). Similarly, by tracking the positions of the

heads of two blue-capped cordon-bleu, we could extract out
the interactive bobbing behavior between them from the video
(Figure 4E). We recorded the number of corrections needed to
keep 100% accuracy during tasks and found that none of the
human corrections in five tasks was larger than 4% (Figure 4F).
On average, human correction only occupied a tiny portion
(0.9 ± 1.7% on average). Taken together, with a reasonable
number of human corrections, users can apply SNAP-Tracker
widely in various tracking tasks.

Tracking With Detection Mode
As shown above, the need for human correction will increase
with the elongation of tracking frames (Figure 2B). A strategy
that can liberate human efforts is required in longer videos with
more complex conditions. Therefore we developed a “tracking
with detection” mode by providing SNAP-Tracker with an
additional detection module. In its brief framework (Figure 5A),
the automatic tracking results from the basic SNAP-Tracker
serve as the training dataset for the detection module, and the
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FIGURE 5 | Tracking with detection mode. (A) In the tracking with detection mode, a video can be tracked by the auto-tracking mode first, as described above.
Then the detection module can be trained by these annotation results and help improve the automatic tracking with higher accuracy. Iteratively, it is possible to track
a long video stably with the well-trained detection module. We set the threshold at 0.3 for output confidence activating the detection module to avoid compromising
processing speed. (B) The comparison of labeling efforts between the tracking with detection mode of SNAP-Tracker (red) and DLC (blue). The accuracy of DLC is
positively related to the number of training images, which requires manual annotation. While for the detection module of SNAP-Tracker, the primary tracking module
can provide most annotations, achieving similar accuracy with fewer human laborious by almost two magnitudes. Accuracy: the ratio of frames with PE value lower
than the threshold of 20 pixels. (C) An example of autocorrection by the detection module. The tracking with detection mode can (the black line) prevent failures that
happen in the tracking-only mode (the gray line). X-axis: Frame number of the video; Y-axis: overlap rate with the evaluation threshold of 0.5.

detection module can help improve the accuracy of the basic
auto-tracking module. After iterative training, the well-trained
detection module can take the place of human correction when
a tracking shift happens. Notably, the detection module only
functions when the output confidence level of SNAP-Tracker
is lower than the predefined threshold; users can set a higher
threshold for better accuracy or a lower threshold for faster
processing. In our experiment, we set the activation threshold
at 0.3. A significant difference of the “tracking with detection”
mode of SNAP-Tracker from DLC compared with a “tracking by
detection” deep learning method is that SNAP-Tracker itself can
offer tracking results as training data, saving much hand-labeling
efforts. To demonstrate the efficiency of the “tracking with
detection” mode of SNAP-Tracker, we tested the performance
(with the criterion of PE) of SNAP-Tracker and another “tracking
by detection” method with a synthetic free-running mouse video
consisting of the seven videos (Figure 5B). We found that
the “tracking with detection” mode can perform well with few
label efforts (red lines in Figure 5B). However, the “tracking
by detection” method (blue lines in Figure 5B) needed two
magnitudes higher label efforts to achieve comparable accuracy.
It should be clarified here that label effort has a different source
in each method. Specifically, the label efforts of DLC equaled its

training samples, while we took the human correction numbers as
the label efforts for SNAP-Tracker. The “tracking with detection”
mode can improve tracking efficiency compared with the basic
SNAP-Tracker. In a typical tracking case of mouse foot, the
“tracking with detection” mode (the black line in Figure 5C)
could avoid tracking errors that happen under the regular mode
(the gray line in Figure 5C). To sum up, the “tracking with
detection” mode can replace the role of human intervention to
complete more complex tracking tasks, which are suitable for
dealing with larger datasets.

DISCUSSION

This article presents a model-free tracking software, SNAP-
Tracker, which shows robust performance under various
conditions. The software has already been pretrained with
publicly available datasets and requires no more parameter fine-
tuning when used in practical tasks, which greatly reduces the
burden of users. Considering the user communities with different
backgrounds, we have integrated the software into a compact
and easy-to-use GUI. The “tracking with detection” mode of
SNAP-Tracker is more automated with the help of a detection
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module, and we can apply it in more complex conditions. In a
word, SNAP-Tracker can be a practical choice in different kinds
of behavioral tracking analysis. We will discuss the characteristics
of SNAP-Tracker from the following aspects.

Benefits and Drawbacks of Deep
Learning
The benefits of using deep learning in behavioral analysis are
apparent as those in other CV fields. Compared to traditional
CV methods, deep learning methods can achieve much more
accurate performance at the human level and even beyond. So
deep learning is the current trend in many fields, and popular
tracking software packages use deep learning. Nevertheless, we
should notice problems such as high computational consumption
and overfitting in deep learning methods cautiously (Mathis
and Mathis, 2020). Researchers have made contributions to
decreasing training efforts and increasing processing speed. DLC
(Mathis et al., 2018) was built in the way of transfer learning upon
DeeperCut (Insafutdinov et al., 2016), a previously established
model. Soon after, LEAP tried to improve the processing speed
by applying a network with much fewer layers at the price of
accuracy (Pereira et al., 2019). The more recent DeepPoseKit
made considerable progress in both speed and robustness by
using a multiscale deep-learning model (Graving et al., 2019).
Even so, laborious annotations and network fine-tuning are
inevitably needed, which can be much severe if the tracking
task contains multiple individuals (Graving et al., 2019). With
enough training samples, deep learning methods can perform
very well. However, if there are not enough training samples,
the performance of deep learning methods will be affected. The
situation in practical neuroscience research could be much more
challenging. The annotation of biological samples is a well-
known arduous task, requiring expertise and much time. For
example, when observing the courtship behavior of songbirds
(Ota et al., 2015), scientists are interested in only a tiny portion of
the whole video frames. Making annotation is time-consuming,
and training in this few-shot situation is challenging. Another
problem we have to resolve is the performance loss in “open”
conditions. Environmental conditions, such as illumination, in
practice can change during the task, but we cannot label a training
set including all possibilities. In some particular tasks, such as
screening mutant mice (Brown et al., 2000), the animal’s behavior
is complex to be predefined. Thus, training in this situation will
be a challenge. The idea of model-free tracking is a recently
introduced solution to circumvent these drawbacks, which is the
designing strategy of SNAP-Tracker.

Model-Based and Model-Free Tracking
The model-based and model-free dichotomy is familiar in the
CV tracking field. Although idTracker (Pérez-Escudero et al.,
2014), idTracker.ai (Romero-Ferrero et al., 2019) were used in
individual tracking, and DLC (Mathis et al., 2018), LEAP (Pereira
et al., 2019), and DeepPosekit (Graving et al., 2019) were designed
for pose estimation, all of them and many other tracking tools in
ethology belong to model-based tracking (Worrall et al., 1991),
which require prior knowledge of the objects before tracking.

For model-based tracking, targets in the frames of a video are
detected first by object detection or segmentation methods and
then connected along the temporal series to generate the moving
trajectory. We call this pipeline “tracking by detection”; the
strategy of tracking by detection can increase tracking accuracy,
but at the cost of processing speed and generalization. Differently,
model-free tracking (Zhang and Van Der Maaten, 2013) is
independent of the target’s prior modeling, and users can apply
the method directly to broader tasks. Without premodeling, users
can define the tracking target’s template in the first frame and
then let the software finish tracking to the end frame by frame.
In this way, SNAP-Tracker can be a universal method suitable for
various behavioral missions.

Individual Tracking and Pose Tracking
According to the analyzing resolution, we can classify behavioral
analysis into different stages, from coarse to fine (Pereira et al.,
2020), which can be summarized into two classes, individual
tracking and pose tracking. They are the critical consideration
for users to decide the options of tracking tools. In general,
the spatiotemporal trajectory of single or multiple individuals
is enough to answer questions (Berdahl et al., 2013; Mersch
et al., 2013; Seibenhener and Wooten, 2015). To simplify the
tracking of multiple individuals in a group, researchers usually
labeled the targets with artificial markers (Ohayon et al., 2013;
Shemesh et al., 2013), which might potentially affect animal
behaviors (Dennis et al., 2008). By defining the model of each
individual, idTracker (Pérez-Escudero et al., 2014) and its deep
learning version idTracker.ai (Romero-Ferrero et al., 2019) make
tracking unmarked targets possible. In more complex situations,
researchers have to extract detailed pose information of the
targets (Khan et al., 2012; Guo et al., 2015; Ota et al., 2015), which
raises the difficulty of tracking. Representative methods, DLC
(Mathis et al., 2018), LEAP (Pereira et al., 2019), and DeepPoseKit
(Graving et al., 2019), display exemplary performance in pose
estimation by utilizing the outstanding feature extraction ability
of deep-learning network. However, the amount of tracking
individuals is still limited due to the increased computation time.
Moreover, it requires exhaustive annotating efforts to establish
a training dataset with the growing individuals (Graving et al.,
2019). Individual tracking and pose tracking are closely related.
On the one hand, tracking an individual or a local body is always
performed to crop active areas of the object to achieve better pose
tracking. On the other hand, pose tracking can be regarded as
high dimensional individual tracking in some ways, tracking key
points of animals (Dell et al., 2014). Therefore, accurate tracking
is the foundation of behavioral analysis, and this is the theoretical
basis for SNAP-Tracker to be applied in broader tasks.

Overall, SNAP-Tracker perfectly achieves a balance between
applicability and accuracy. The pretrained deep Siamese network
makes SNAP-Tracker track the object accurately by comparing
the similarity between the template and the target. The
model-free tracking strategy equips SNAP-Tracker with broader
applicability demonstrated by the experiments above in this
article. Strictly speaking, the problem of manual annotation is
not thoroughly solved, but the most attractive characteristic of
SNAP-Tracker is that it requires only one annotation to start the
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tracking procedure. Users can correct accidental tracking failures
by hands in regular mode or by the detection module in the
“tracking with detection” mode. For the convenience of users, we
designed the detection module is in a close loop, in which the
tracking module offers elementary results as training data to the
detection module, and the latter can help increase the accuracy of
tracking. There is still some weakness of the SNAP-Tracker that
should be solved to improve further the usability and accuracy
of SNAP-Tracker, such as the setting of optimal hyperparameters
(Dong et al., 2021) and the tracking failures when the target is
occluded (Dong et al., 2017). We have considered some of these
in the subsequent improvement of SNAP-Tracker.

CONCLUSION

In conclusion, we provide a tracking method in a model-free
fashion. Users can easily apply it to various tasks without heavy
data annotations. We hope that our tool can lower the barrier to
using deep learning methods in animal behavioral analysis and
help solve practical tracking problems in related fields.
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