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Eye Contact in a Reward
Conditioning Task

Hyunchan Lee* and Okihide Hikosaka

Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health (NIH), Bethesda, MD,
United States

For many animals, social interaction may have intrinsic reward value over and above its
utility as a means to the desired end. Eye contact is the starting point of interactions
in many social animals, including primates, and abnormal patterns of eye contact are
present in many mental disorders. Whereas abundant previous studies have shown
that negative emotions such as fear strongly affect eye contact behavior, modulation of
eye contact by reward has received scant attention. Here we recorded eye movement
patterns and neural activity in lateral habenula while monkeys viewed faces in the context
of Pavlovian and instrumental conditioning tasks. Faces associated with larger rewards
spontaneously elicited longer periods of eye contact from the monkeys, even though
this behavior was not required or advantaged in the task. Concurrently, lateral habenula
neurons were suppressed by faces signaling high value and excited by faces signaling
low value. These results suggest that the reward signaling of lateral habenula may
contribute to social behavior and disorders, presumably through its connections with
the basal ganglia.
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INTRODUCTION

Eye contact is a key element of social interactions between conspecifics and even across species.
This is especially true in primates (Mosher et al., 2011). Abnormal patterns of eye contact are a
common behavioral symptom in autism spectrum disorder (Szatmari et al., 2016). Social behavior
is an intrinsic source of natural reward and can release reward-associated neuromodulators (e.g.,
dopamine and serotonin) (Krach et al., 2010; Trezza et al., 2010; Délen et al., 2013). However, there
have been few studies on how eye contact behavior relates to reward and reinforcement learning.

In the primates, interactions are driven by long-term relationships and are thus necessarily
shaped by past experience with outcomes of prior interactions. Although some studies have
suggested that aversive feelings such as fear and avoidance lead to gaze aversion (Schneier et al.,
2011), this effect is not found in all cases (Wieser et al., 2009). Given the complexity of affiliative and
antagonistic behaviors in primate societies, we hypothesized that neuronal networks comprising the
reward system might regulate eye contact together.

What are brain structures likely to contribute to social aspects of gaze behavior? Previous work
in the lab established the role of several basal ganglia structures for learning the emotional value
of non-social objects (Hikosaka et al., 2006, 2019). Among them, the lateral habenula (LHbD) is
highly sensitive to the emotional significance and interacts with brainstem areas and basal ganglia
which can control the release of reward-associated neuromodulators (e.g., dopamine and serotonin)
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(Matsumoto and Hikosaka, 2007; Hikosaka, 2010; Hu et al.,
2020) that could be important in establishing relationships
and engaging in social behavior. We thus hypothesized that
LHb plays a role in establishing eye contact based on prior
emotional experience.

RESULTS

To test this hypothesis, we recorded 33 LHb neurons in two
monkeys (15 in monkey CH and 18 in monkey KI) performing
an active/passive task in which different face images signaled
four different emotional contexts (Figures 1A,B). The entire
population of recorded cells in the LHb showed consistent
responses to the value of each reward stimuli in the task
procedure. We thus expect the significant population of cells in
the LHb would play a role in modulating the gaze duration/eye
contact. In this task, emotional context varied from trial to trial,
governed by the possibility of large or small juice rewards (“Rich”
or “Poor” contexts) and also by the occurrence or absence of an
aversive airpuft stimulus (“Dangerous” or “Safe” contexts). The
airpuff was only delivered in the passive task.

The face images were assigned four distinct emotional
contexts based on task mode (active or passive) and
amount x probability of the outcome. All face stimuli maintained
consistent emotional contexts in both active and passive tasks
(Figure 1B). (1) Rich-Safe (Rwd +, Pun—): monkeys experienced
big rewards in both tasks. (2) Rich-Dangerous (Rwd +, Pun +):
monkeys experienced big rewards in the active task but
punishment in the passive task. (3) Poor-Safe (Rwd—, Pun—):
monkeys experienced small rewards in both tasks. (4) Poor-
Dangerous (Rwd—, Pun +): monkeys experienced small rewards
in the active task and punishment in the passive task. At the time
of face stimulus onset, the expected reward amount was higher
in the Rich-context (Rich-Safe and Rich-Dangerous) compared
with Poor-contexts (Poor-Safe and Poor-Dangerous) (Figure 1D
and Supplementary Table 1).

Each trial started with the appearance of a face image, the
identity of which informed the monkey whether the context of
the current trial was Rich-Safe, Rich-Dangerous, Poor-Safe, or
Poor-Dangerous (Figure 1A). After a free viewing of the face for
1 s, an active or passive cue appeared at the center of the screen
and respective tasks diverged. In the active task, the monkeys
were required to fixate their gaze (700 ms) on the active cue.
After the fixation, one of the “good” or “bad” objects appeared.
The monkeys were then required to make a saccade to “good”
fractal objects to obtain a juice reward and avoid gazing at
“bad” objects to preserve the possibility of reward later in the
trial. After a “bad” object, there was necessarily a “good” object.
When the “bad” objects appeared, after the avoidance for 1 s,
the active cue re-appeared and “good” objects appeared. The
monkeys then could make a saccade to the “good” object to
obtain a juice reward. The good and bad objects were different
between 4 faces or scenes. Each face or scene environment
contained five different fractals (5 fractals/environment x 16
environments/set = total 80 fractals/set) for “good” and “bad”
objects in the active task and “100,” “50,” and “0%” objects

in the passive task. Monkeys could learn these objects within
five blocks (Active task, 192 trials/block + Passive task, 192
trials/block = total 384 trials/block). After five blocks of the
learning, the gaze pattern and neuronal responses of monkeys
were constantly discriminative to the reward value of stimuli
(Rich vs. Poor environments, Good vs. Bad, 100 vs. 0% objects
in Rich contexts). The passive task was a Pavlovian conditioning
procedure entailing three conditioned stimuli (CS) comprising
different outcome probabilities (100, 50, or 0%). In the passive
task, the monkeys were not required to make a saccade to any
object and could freely observe this. Outcomes in the passive
task occurred irrespective of the monkey’s behavior; thus, the
resulting pattern of eye movements can be considered a form of
natural viewing.

Reward History Modulates LHb Activity

and Eye Contact During Face Viewing

At the start of the trial, LHb neurons were significantly inhibited
by Rich faces and excited by Poor faces (Figure 1C). Furthermore,
in Rich trials, the monkeys’ gaze consistently dwelled longer on
the face images than on Poor trials (irrespective of Danger vs.
Safe) (Figure 2A). LHb neurons showed an initial inhibitory
response to every face lasting from 50 to 150 ms. On Rich trials,
monkeys showed an increase to look at the face at all from
100 to 150 ms after the trial started (Figure 2B). After 150 ms
both LHb activity and gaze behavior discriminated between
Rich and Poor faces. Specifically, on Rich trials as compared
to Poor, the monkeys’ gaze dwelled longer inside rectangular
regions around the eye region, evidently for the sake of discerning
what conditions were on the menu for the current trial. Eye
contact behavior did not differ between Dangerous vs. Safe trials
(Figure 2C). Around 450 ms, the monkeys’ gaze shifted from the
eyes to the center of the screen where the active or passive cue
would appear (Figure 2D). The probability of gaze within the
central window was greater on Rich trials than on Poor trials in
a window of 600-1,000 ms. This indicates that the monkey was
more motivated by Rich context faces to see the upcoming cue
and learn whether an active or a passive trial would follow.

Reward History Modulates LHb Activity
and Saccades to Fractal Objects

To assess the impact of task context on reward modulation of
LHb neurons over and above the impact of social stimuli, we
compared neural responses to saccade targets in the active task
and CS fractals in the passive task. In the active task, LHb was
suppressed by good objects that monkeys were required to fixate
on (> 500 ms), and excited by bad objects that monkeys avoided
(Figures 3A-H). In the passive task, Safe contexts, LHb was
excited by the 0% CS (signaling a disappointing reward omission)
and were inhibited to graded degrees by the 50 and 100% CS
(Figures 3LJ). The probability of saccades to CS increased as a
function of reward probability (Figures 3M,N). In the Dangerous
contexts, LHb was similarly excited (Figures 3K,L) and gaze
to CS suppressed by all CS objects regardless of punishment
probabilities (Figures 30,P). Although this finding suggests that
reward expectation exerts a more decisive influence on behavior
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FIGURE 1 | Lateral habenula responses to high- and low-valued faces. (A) Face-based procedure with two distinct behavioral tasks (active and passive).

(B) Examples of face images signaling different conditions. Rich and Poor faces were associated with high-valued and low-valued rewards, respectively. Dangerous
faces (but not Safe faces) were associated with punishment in the passive mode. (C) Population LHb responses to the faces during the free viewing period before
the start of each task. Data were from both monkeys and all recorded LHb neurons averaged across entire sessions. (D) Theoretical reward and punishment
predictions at face onset. Floating bars indicate the minimum to the maximum value of outcomes in each trial at the face onset. The lines in the bars indicate the
mean value of the reward (Rich-Safe, 450 wl; Rich-Dangerous, 300 wl; Poor-Safe, 150 wl; Poor-Dangerous, 100 pl) and punishment (Rich-Safe, 0 ms;
Rich-Dangerous, 25 ms; Poor-Safe, 0 ms; Poor-Dangerous, 25 ms) in each trial at the face onset. The mean values were determined by the average of all
combinations of outcomes in the active and passive conditions (Supplementary Tables 1,2).
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and LHb neurons than punishment expectation, these identical
responses of LHb activities and gaze to punishment objects
could also have a “warning” role whatever the probability of
airpuff occurrence.

DISCUSSION

Reward History and Eye Contact: A
Perspective of Social Skill/Habitual

Behavior

The present study found that the activities of LHb neurons
are modulated by the reward history of environmental stimuli
(Figure 1C). Moreover, the environments that were associated

with greater rewards elicited prolonged gaze periods (Figure 2).
This relationship between reward experience and gaze duration
was consistently observed in both social (faces, Figure 2)
and non-social stimuli (landscape scenes, Supplementary
Figures 1A-C). In the social environment, monkeys eye
contact and face-to-face gaze were strongly modulated by the
history of prior reward experiences. Additionally, the pattern
of LHb activity and gaze behavior was consistently changed
by reward experiences of objects in both natural free viewing
(Figures 3M-P, no action required) and instrumental viewing
(3E-H, action required).

In real life, many animals have inter-species social
gaze/interaction as well as the behaviors within conspecifics.
Significantly, the interactions with human are solid and
crucial to captive or domestic animals (Tuber et al, 1996;
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were from both monkeys and all behaviors averaged across entire sessions.
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FIGURE 2 | Eye gaze to high- and low-valued faces. (A) Normalized eye scan patterns during the free viewing period. Hot colors indicate higher gaze probability.
(B-D) Left, green boxes indicate regions of interest. Middle, probability of gaze within the said region over all trials ever recorded in the active and passive conditions
during the entirety of 138 behavioral sessions. Right, quantification of gaze on the face regions. The average duration of gaze inside the region of interest inside the
following time windows: gaze on the face, 0-1,000 ms (top row), gaze at eyes, 0-1,000 ms (middle row), gaze at screen center, 600-1,000 ms (bottom row). Data

Brosnan and De Waal, 2003; Range et al., 2009; Dettmer et al.,
2016). Here, a social bond and emotional history between
the animals and humans could play critical roles in the social
behaviors of animals beyond their species-specific responses
(Stoeger et al., 2012; Katayama et al., 2019). We thus tested LHb
activities and monkey’s social gaze using human faces. We then
propose that the face and eyes of animals could function as a
goal-oriented rewarding object in social contexts and that LHb
neurons play an important role in learning this behavior through
habitual practice and cultural acclimation.

Consistent with this notion, one study reported that face
patches are not observed in newborn primates (Livingstone et al.,
2017), and experience with faces is necessary to develop normal
face viewing behavior and dedicated face processing modules
in the brain (Arcaro et al, 2017). Moreover, in humans, the
interpretation of eye contact varies widely across cultures (Uono
and Hietanen, 2015). This raises the possibility that the culturally
expected pattern of eye contact behavior is a social skill acquired
over the course of normal social development. A previous study
has reported that macaque monkeys have a strong hierarchical
social structure that dominants monopolize 87% of food in the
social tolerance test (Burkart and van Schaik, 2013). This finding
implies that appropriate social recognition and behaviors based
on their social relationship and culture could be critical sources
to their living on the social structures.

How then does the brain modulate eye gaze based on
emotional histories? We recently suggested that parallel circuits
in basal ganglia play an important role in automatic skills and
habitual eye movements (Hikosaka et al., 2019). These studies
showed that primates spontaneously make saccades to objects
associated with reward over the long term. To facilitate neuronal
plasticity of basal ganglia neurons and establish the automatic
behavior, LHb may play an important role in this form of
learning by relaying reward prediction errors signals to dopamine
neurons. In turn, these dopamine neurons facilitate synaptic
plasticity in basal ganglia neurons, thus paving the way for
automatic behavior.

Hypothetical Network Implementing
Lateral Habenula Modulation of Gaze
Holding

How might neural activity in LHb lead to sustained eye contact
on rewarding objects? A crucial mechanism for stopping eye
movements in the brain is modulated by omnidirectional pause
neurons (OPN) in the raphe interpositus nucleus (Optican and
Pretegiani, 2017). The OPN tonically fire during fixation and
abruptly cease their firings before and during a saccade. Then
OPN can directly control saccadic eye movements by inhibiting
and disinhibiting excitatory/inhibitory burst neurons (EBN/IBN)
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FIGURE 3 | Eye gaze to high- and low-valued objects. (A-D) LHb responses to good and bad objects during the active task. (E-H) Probability of gaze on good and
bad objects during the active task. (I-L) LHb responses to the conditioned stimuli (CS) objects during the passive task. (M=P) Probability of gaze on the CS objects
during the passive task. Data were from both monkeys and all recorded LHb neurons and behaviors averaged across entire sessions.
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(Hikosaka and Kawakami, 1977; Igusa et al., 1980; Nakao et al.,
1980; Yoshida et al., 1982), premotor neurons of the oculomotor
nerve (abducens nerve) (Hikosaka et al., 1977).

In a previous retrograde tracing study in primates, cells
projecting to OPN were found in brainstem areas including
reticular formation, periaqueductal gray, superior colliculus (SC),
and the habenulopeduncular tract (Langer and Kaneko, 1990). SC
is a well-studied brain area that projects to OPN (Yoshida et al.,
2001; Takahashi et al., 2005) and the premotor burst neurons
that control eye movements (Sugiuchi et al., 2005; Izawa et al.,
2007; Takahashi et al,, 2014). Moreover, the basal ganglia-SC
pathway is critical to modulating automatic skills and habitual eye
movements established by reward history (Kim et al., 2015; Amita
and Hikosaka, 2019; Kunimatsu et al., 2021). LHb neurons access

the basal ganglia-SC loop at the level of striatum and dopamine
neurons and are thus well-positioned to modulate emotional
factors driving learning in oculomotor behavior (Figure 4)
(Matsumoto and Hikosaka, 2007; Hong and Hikosaka, 2013).
Whereas the outputs of LHb have been extensively studied in
midbrain dopamine neurons, LHb projections to other brain
stem nuclei are still not clearly appreciated.

Nonetheless, LHb has massive projections to the
periaqueductal gray (Li et al, 1993), reticular formation,
and parabrachial nucleus (Herkenham and Nauta, 1979). These
brainstem areas play an essential role in the motivation of
behavior (Kim et al., 2020) as well as direct motor control of
facial movement and vocalization (Magoun et al., 1937) that
execute quintessentially social gestures. We suggest that this
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FIGURE 4 | Hypothetical network for the influence of emotion on gaze. LHb
neurons regulate dopamine (DA) neurons in substantia nigra pars compacta
and ventral tegmental area through rostromedial tegmental nucleus.
Dopamine neurons in turn send signals to caudate head (CD) nucleus that
projects to superior colliculus (SC) via the external segment of the globus
pallidus (GPe) and substantia nigra pars reticulata (SNr). This basal
ganglia-SC circuit can modulate learning of goal-directed saccadic eye
movements. LHb also has substantial projections to the brainstem structures
such as periaqueductal gray (PAG) and reticular formation (RF). These
brainstem areas can regulate premotor burst neuron (EBN/IBN) and
omnipause neuron (OPN) that control the oculomotor nerve.

LHb-brain stem pathway may play a pivotal role in gaze holding
through the OPN mechanisms and facilitate the execution of
social behaviors in general.

Why Is Eye Contact Important?

Eye contact is a crucial affiliative social behavior that has been
reported from the start of infancy (Ferrari et al., 2009). Primates,
in particular, possess facial features (e.g., prominent irises and
eyebrows, articulate mouth, and facial muscles) optimized to
attract gaze and signal intention and feelings (Zhang et al., 2021).
More broadly, many animals depend on collective behaviors for
survival that must be coordinated and executed at the level of a
pack, flock, swarm, or school (Norris and Schilt, 1988; Stander,
1992). Eye contact might support the organization of gregarious
behavior in many species.

In addition to eyes and faces, hands are a frequent target
of socially guided eye movements (Ninomiya et al, 2020).
A previous study showed that, in monkeys raised without
exposure to faces, eye movements dwelled longer on human
hands than on faces (Arcaro et al., 2017). For captive primates,
the human hand might be an object of critical interest for
predicting rewards, for instance during enrichment activities or
at feeding time.

Like this, there are many social and non-social objects
associated with each reward history in real life. Thus,
sequential behaviors to multiple objects are often required
for attaining goals. For instance, making eye contact can
lead to the discernment of social context, which in turn
can inform subsequent behavior as warranted by the social
goals. In the experiments described here, the monkeys
eye movements dwelled on the central position as well as
the eye regions (Figure 2). This central gaze fixation was
longer for Rich faces than for Poor faces (Figure 2D). In
our task procedure, the center of the face was the region
where the active or passive cue would appear after the free
viewing stage (Figure 1A). Thus, it would be one of the
significant anticipatory gazes for the upcoming targets (i.e.,
active or passive cue). Indeed, the monkeys gaze acquired
the central cue faster in the Rich contexts than in Poor
contexts, implying higher motivation on the former trials
(Supplementary Figures 1D-H).

In summary, the present study found that LHb neuronal
activities represent the reward value of each social and non-
social object sequentially and phasically. We thus suggest that
the sequential LHb neuronal activities and the gazes of monkeys
around the eye region and other prominent reward features in
this study might similarly contribute to monkeys’ interactions
with other animals like a monkey and human interaction as a
sequential goal-directed behavior.

MATERIALS AND METHODS

Two adult rhesus monkeys (both male, 8-years-old, 10-12 kg)
were used for this study. All animal care and experiment
procedures were approved by Animal Care and Use Committee
of the National Eye Institute and complied with the Public Health
Service Policy on the Humane Care and Use of Laboratory
Animals. We recorded 54 single neurons in LHb region
around + 7 mm anterior to the interaural plane and + 1 mm
from midline using a plastic recording chamber and grid with
1 mm spacing. The recording sites were identified by MRI (4.7
T, Bruker). We then found 33 neurons in the LHb that were
sensitive to reward prediction error. The neuronal activities were
inhibited by unexpected reward outcomes and excited by reward
omission and punishment outcomes as shown in the previous
study (Matsumoto and Hikosaka, 2009). The LHb neurons were
recorded from only one grid hole at each hemisphere. The LHb
neurons were distinguished with the surrounding mediodorsal
thalamus region (I mm away from the LHb neurons) which
showed unclear reward prediction error response.

The neurons in both monkeys were recorded with glass-
coated electrodes (diameter 0.38 mm, 1 MQ, Alpha-Omega).
The chamber was tilted posteriorly by 8°. The electrode
was advanced by an oil-driven micro-manipulator (MO-97A,
Narishige). A microelectrode AC amplifier (model 1800; A-M
Systems) was used to amplify the neuronal signals (10 k gain)
and band-pass filtered from 0.1 to 10 kHz (model 3384; Krohn-
Hite). Single neurons were isolated using an online custom
voltage- and time-based window discriminator in the software
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Blip (www.robilis.com/blip/) and collected at 1 kHz along with
monkey’s eye position (EyeLink 1000 Plus, SR Research).

The monkeys were trained to perform the face-based
active/passive task (five blocks) (Figure 1). They were head-fixed
during the task. At the start of a trial, a face (40° x 40°)'
represented one of four contexts appeared (Rich-Safe, big reward
and no punishment; Rich-Danger, big reward and punishment;
Poor-Safe, small reward and no punishment; Poor-Danger, small
reward and punishment) (Figure 1B). We used these human
face images to investigate the effect of reward history on the
social gaze of captive monkeys who are familiar with interaction
with human caregivers. On half of the trials (192 out of 384
total trials), landscape scenes were used instead of faces®’ as
non-social stimuli (Supplementary Figure 1). The total of 384
trials was conducted per cell. There was no difference between
the tasks when the face stimuli were used and the tasks when
scene stimuli were used. After 1 s free viewing of the face/scene
stimulus, either an active (Magenta square) or a passive cue
(Magenta circle) (2 x 2°) appeared at the center of the screen
(Figure 1A middle). The face/scene stimuli stayed on the screen
throughout the entire trial (Figure 1A). The shape of the
cue indicated whether the trial would proceed as an active
or passive task. In the active task, monkeys were required to
fixate (700 ms) on the active cue. After the fixation on the
active cue, either a good or a bad object appeared on the left
or right side of the screen (15 degree). The monkeys could
collect the reward by fixating on the good object that appeared
for 500 ms. They were required to avoid any bad objects that
appeared by not gazing at the object for more than 500 ms.
The volume of the juice reward was adjusted depending on
whether the trial was Rich (600 pl) or Poor (200 pl). In the
active task, reward volume was the same in both the Safe and the
Dangerous contexts (Figure 1B). The passive task was a Pavlovian
conditioning procedure and required no particular behavior from
the monkeys. The monkeys were not needed to fixate on any cue
or object in this condition. Each trial of the passive task started
with a 1 s free viewing epoch of the face/scene stimulus and was
indistinguishable from the preamble to the active task. After the
passive cue appeared at the center screen for 1 s, one of three
objects (fractal images) appeared in the peripheral region of the
face/scene background image. The identity of the fractal stimulus
indicated the probability of the reward/punishment outcome
(100, 50, and 0%). After 1.5 s, monkeys received a reward
(either big or small) in the Rich-Safe and Poor-Safe contexts
and received an airpuff (100 ms) in both Rich-Dangerous
and Poor-Dangerous according to the probabilities previously
foreshadowed by the fractal object. The objects were created using
fractal geometry (Yamamoto et al., 2012). Data were analyzed
using MATLAB (MathWorks) and Prism8 (GraphPad Software)
and presented as mean + standard error of the mean (SEM).
Firing rates were presented by smoothening with a Gaussian
kernel (o = 10 ms). The statistical significances were tested using
a one-way analysis of variance (ANOVA) with Tukey post hoc

'https://fei.edu.br/~cet/facedatabase.html
Zhttps://www.google.com/earth
3https://openaerialmap.org

test. The statistical tests were performed on groups of cells and
behaviors from both monkeys.
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