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Major depression is a significant medical issue impacting millions of individuals
worldwide. Identifying factors contributing to its manifestation has been a subject
of intense investigation for decades and several targets have emerged including
sex hormones and the immune system. Indeed, an extensive body of literature has
demonstrated that sex hormones play a critical role in modulating brain function and
impacting mental health, especially among female organisms. Emerging findings also
indicate an inflammatory etiology of major depression, revealing new opportunities
to supplement, or even supersede, currently available pharmacological interventions
in some patient populations. Given the established sex differences in immunity and
the profound impact of fluctuations of sex hormone levels on the immune system
within the female, interrogating how the endocrine, nervous, and immune systems
converge to impact women’s mental health is warranted. Here, we review the impacts
of endogenous estrogens as well as exogenously administered estrogen-containing
therapies on affect and immunity and discuss these observations in the context of
distinct reproductive milestones across the female lifespan. A theoretical framework
and important considerations for additional study in regards to mental health and major
depression are provided.

Keywords: estrogen, sex differences, major depressive disorder, peripheral immune system, mood

INTRODUCTION

Mood disorders, including major depressive disorder (MDD), are a significant global health issue
(Krishnan and Nestler, 2008). Worldwide lifetime prevalence of mood disorders has been reported
to be nearly 10% (Steel et al., 2014), and in 2010, the nearly 300 million global cases of MDD
accounted for 8.2% of all disease-induced years lived with disability (Ferrari et al., 2013a). In the US
alone, one in six adults will receive an MDD diagnosis in their lifetime and more than 13 million

Abbreviations: 5-HT, serotonin; E2, estradiol; ABC, age-associated B cell; CNS, central nervous system; ER, estrogen
receptor; HRT, hormone replacement therapy; IL, interleukin; Ig, Immunoglobulin; LPS, lipopolysaccharide; MDD, major
depressive disorder; NK, natural killer (cell); rTMS, repetitive transcranial magnetic stimulation; SSRI, selective serotonin
reuptake inhibitor; TNF, tumor necrosis factor.
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Americans experience a major depressive episode with severe
impairment each year (Kessler et al., 2005; Ferrari et al.,
2013b; Brody et al., 2018). Annual costs associated with this
condition are estimated at ∼$210 billion (Greenberg et al.,
2015). MDD is generally considered a brain-targeted disease
associated with persistent sadness, guilt, anhedonia (reduced
interest in rewarding stimuli), despair, and in some cases, suicide
(Krishnan and Nestler, 2008). Due to a happenstance discovery of
psychiatric patients showing improved mood when treated with
monoamine oxidase inhibitors (Schildkraut, 1965), MDD has
historically been associated with deficiencies in serotonergic (5-
HT), dopaminergic, and noradrenergic signaling within limbic,
reward, and brainstem structures (Krishnan and Nestler, 2008).
Problematically, available pharmacologic treatments targeting
these presumed dysregulated monoamine systems are associated
with delayed and inadequate symptom alleviation in a large
proportion of patients (Trivedi et al., 2006; Al-Harbi, 2012; Akil
et al., 2018). This led the field to conclude that the pathology
of MDD is more complex than previously appreciated, that the
neurotransmitters thought to underlie MDD-associated brain
pathology may not be the sole contributors to its presentation,
and that the therapeutic interventions targeting these systems will
likely remain insufficient at imparting symptomatic relief.

Emerging data strongly implicate additional mechanisms
in the manifestation of mood disorders. As a result, many
researchers have begun considering biological factors that could
significantly contribute to the development and persistence of
MDD. One of these factors is that of genetic sex and the
accompanying differences in sex hormone secretion across the
lifespan. A substantial amount of research attention has been
paid to the role of sex hormones, especially the steroid hormone
estrogen, in driving development of MDD in women (Wharton
et al., 2012; Eid et al., 2019). In addition to sex hormones,
converging data amassed over the past few decades also support
significant immune contributions to brain function and mood
(Leonard, 2010; Dantzer, 2018). Indeed, it is now accepted
that inflammatory cascades mediated by innate and adaptive
arms of the immune system significantly contribute to MDD, at
least in some patient subsets (Maes, 2011; Wohleb et al., 2016;
Herkenham and Kigar, 2017). Sex differences in the susceptibility
to certain infections, the presence of sex hormone receptors on
immune cells, and shifts in the function of the immune system
during distinct periods of the reproductive lifespan all point to a
critical role of sex hormones in modulating immunity (Pennell
et al., 2012; Klein and Flanagan, 2016).

Given the known sex differences in the prevalence of mood
disorders, emerging support for the immune system’s role in
mediating susceptibility or resilience to psychosocial stress, and
the potentially profound impacts of sex hormones (especially
estrogens) on impacting immunity, the consideration of neuro-
immuno-endocrine interactions in the context of mood and
MDD across the female lifespan, is warranted. Here, we will
review evidence regarding the mood impacts of these factors
individually, describe shifts in immune responses during key
reproductive milestones, highlight a few examples of potential
autoimmune consequences of estrogenic stimulation in females,
and summarize the small but growing collection of findings

exploring the convergence of sex, sex hormones and immune
function in the context of mood and MDD. Finally, we present
important experimental considerations when the convergence of
these factors is investigated.

MANIFESTATION OF DISORDERED
MOOD ACROSS THE FEMALE
LIFESPAN: ROLE FOR ESTROGENS

Women shoulder a disproportionate burden of mood disorders
and the role of estrogen in modulating mood has been well
studied. Estrogens are generally thought to improve mood
in many, but not all, circumstances. Below, we highlight
major observations driving this conclusion. Though a thorough
discussion of this extensive literature is beyond the scope of the
current review, the reader is directed to several excellent reviews
specifically addressing this topic (Wharton et al., 2012; Altemus
et al., 2014; Eid et al., 2019; LeGates et al., 2019).

Sex Differences in Depression
Differences in the prevalence of MDD, phenotypic manifestations
of depression, and the efficacy of antidepressant therapy between
the sexes are well established (Altemus et al., 2014; LeGates et al.,
2019). Rates of MDD are substantially higher among females
compared to males (Weissman and Klerman, 1977), though this
sex difference appears to be critically dependent on age. Prior to
puberty, boys are more likely to have a mood disorder than girls
(Faravelli et al., 2013). This incidence shifts during the pubertal
transition as girls display depression at a rate double that of boys
between the ages of 15 to 19 (Faravelli et al., 2013). MDD is nearly
twice as prevalent in adult women than men, at rates of 10.4
and 5.5%, respectively (Brody et al., 2018). However, following
reproductive senescence during the fifth decade of life, aging
men and women tend to have similar prevalence rates of mood
disorders (Faravelli et al., 2013).

Throughout life, men and women may also differ in their
MDD endophenotypes. Results of several studies, including
the large-scale Sequenced Treatment Alternatives to Relieve
Depression (STAR∗D) trial, indicate that women display higher
rates of atypical and anxious depressive phenotypes. These are
characterized by increased appetite, weight gain, comorbid eating
disorder, rumination, hypersomnia, gastrointestinal complaints,
and a higher rate of past suicide attempts relative to male patients
(Marcus et al., 2008; Shors et al., 2017). Men are more likely
to display comorbid substance use coping strategies and have
higher rates of successful suicide, likely due to their use of
more lethal means (e.g., firearms). Reports of irritability and
the melancholic depressive subtype are similar in both men and
women (Marcus et al., 2008).

Finally, though MDD treatments are available, barriers
to treatment access as well as intervention type playing a
role in the realization of symptom relief (LeGates et al.,
2019) leaves the affective symptoms of many patients poorly
controlled. Indeed, a recent study assessing nearly 250,000
depressed adults noted that only about 30% of MDD patients
obtained pharmacological antidepressant treatment within three
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months of diagnosis (Waitzfelder et al., 2018), and of those,
antidepressant efficacy is often delayed and highly variable
(Trivedi et al., 2006; Al-Harbi, 2012; Akil et al., 2018). Sex
may account for some of this variability as women appear to
experience better symptom remission from selective serotonin
(SSRI) or norepinephrine reuptake inhibitors, while men respond
better when treated with tricyclic antidepressants (LeGates et al.,
2019). Sex differences were not readily observed among adult
patients with refractory bipolar/MDD undergoing repetitive
transcranial magnetic stimulation (Huang et al., 2008). This
observation appears to be age- and hormone status-dependent.
Older women may display a poor response to rTMS (Huang
et al., 2008) or the SSRI, venlafaxine (Thase et al., 2005),
and this effect was reversed by estrogen supplementation.
Sex differences in response to newly developed, fast-acting,
glutamatergic-modulating, antidepressant interventions such as
ketamine, are only beginning to be assessed. Emerging findings
suggests conflicting results. Some groups have reported needing
lower ketamine doses in female rats to impact affective behaviors
under basal conditions while others report that male mice may
be more responsive than females following exposure to stress
(Saland et al., 2017; Okine et al., 2020). This is noteworthy given
the recent Federal Drug Administration approval of nasally-
administered esketamine for MDD patients treatment-resistant
to traditional antidepressant interventions FDA (2019). It is
also important to note that these sex-specific antidepressant
treatment responses could also be explained, at least in part,
by differences in the observed MDD endophenotypes in men
versus women described above; further interrogation of this
possibility is needed.

Hormone Effects on Depression and
Mood During and After the Reproductive
Years in Women
These observations along with the dynamic shifts in reproductive
capacity that take place across the female lifespan implicate
ovarian hormones in modulating mood and mood disorders in
women. Indeed, between 10 and 80% of women experience mood
disruptions that are related to their menstrual cycle, (Baker and
Driver, 2007), and 3-8% of women can experience premenstrual
dysphoric disorder, characterized by extreme premenstrual
anxiety, decreased mood, and irritability (Robakis et al., 2019).
These observations have been reported for the past several
decades in both human and preclinical populations, though
not all studies have consistently found an association between
cycle stage and affect (Moos et al., 1969; Laessle et al., 1990;
Jenkins et al., 2001; D’Souza and Sadananda, 2017; Sundström-
Poromaa, 2018; Zhao et al., 2021). As well, the peripartum period
is associated with dynamic shifts in sex hormone levels, and
one of the most common complications of pregnancy, observed
to impact one in seven mothers, are postpartum mood and
anxiety disorders (Wenzel, 2016; Luca et al., 2019). Among
menopausal women, (Maartens et al., 2002; Bekku et al., 2006;
Gordon et al., 2016; Soares, 2017; Gracia and Freeman, 2018) and
ovariectomized rodents (de Chaves et al., 2009; Li et al., 2014;
Schoenrock et al., 2016), in whom levels of key sex hormones are

substantially lower, increased anxiety and depressive behaviors
have been noted.

Effects of Exogenous Estrogen
Therapies on Mood
Estrogen-containing treatments have been shown to improve
mood or attenuate depressive symptoms in humans (Schmidt
et al., 2000; Soares et al., 2001; Poromaa and Segebladh, 2012;
Maki et al., 2019) and to reverse at least some ovariectomy-
induced pro-depressive changes in rodents (Bernardi et al.,
1989; Galea et al., 2001; Walf and Frye, 2009; Schiller et al.,
2013; Li et al., 2014; Hiroi et al., 2016), suggesting pro-
resilience benefits. Estrogens, especially the most potent naturally
circulating estrogen 17β-estradiol (E2), are known to induce
dendritic spine plasticity and neuronal complexity, facilitate
neurogenesis, regulate brain region volume and activity levels,
and impact key neurotransmitter and growth factor systems
implicated in depression, to name just a few examples (Galea
et al., 2001; Maki and Resnick, 2001; Brinton, 2009; Walf and
Frye, 2009; Wharton et al., 2012; Marrocco and McEwen, 2016;
Engler-Chiurazzi et al., 2017). Yet, not all studies report beneficial
impacts of exogenously administered estrogens on mood. Several
studies have noted increased depression among women taking
hormonal contraceptives (Duke et al., 2007; Skovlund et al., 2016;
de Wit et al., 2020) though collective findings generally suggest
that contraception exerts minimal effects on mood (Robakis et al.,
2019). The realization of neurobiological and behavioral effects of
estrogen-containing treatments depends on a number of factors
including, but not limited to, age of the organism, etiology and
duration of hormone depletion, type of estrogen, treatment route
of administration, treatment regimen, and functional domain
targeted (Engler-Chiurazzi et al., 2017). Consideration of these
factors is of key importance when assessing mood-impacting
effects of this hormone.

EVIDENCE OF IMMUNE IMPACTS ON
THE DEVELOPMENT AND
PERSISTENCE OF DEPRESSION

The immune system supports the body’s response against
infection, injury, and disease. This complex network of
intercommunicating, interactive cells and their secretory factors
coordinates across multiple organs to mount a rapid and
appropriate response to a threat to homeostasis through complex
signaling cascades and activation/regulation sequences; the
reader is directed to several excellent reviews that thoroughly
describe the complexities of this system in detail (Chaplin,
2010; Marshall et al., 2018). Understanding of the complexity
of neuroimmune mechanisms within the central nervous system
(CNS) has grown rapidly in recent years. Although once
considered “immune privileged”, a compelling body of literature
indicates that the CNS and the peripheral immune systems
engage in bidirectional communication, profoundly influencing
one another during homeostasis and in pathological/diseased
states (Lucas et al., 2006; Pavlov et al., 2018), including those
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associated with chronic stress and MDD (Dantzer, 2018).
Microglial cells, the resident immune cells of the CNS, represent a
particularly well-studied neuroimmune cascade mediator. Their
actions as well as the contributions of other key CNS components
(i.e., astrocytes, oligodendrocytes, perivascular macrophages,
neurons, and endothelial cells) to the local neuroinflammatory
cascade in response to CNS perturbation have been extensively
described elsewhere (Ousman and Kubes, 2012; Ransohoff et al.,
2015; Morimoto and Nakajima, 2019). Therefore, we will focus
our discussion on the contributions of peripheral immune
components to mood and MDD.

The peripheral innate immune response is characterized by
rapid and non-specific activation of pattern/danger recognition
receptors on innate immune cells to initiate phagocytosis of
non-self antigens, secrete a variety of signaling factors including
cytokines and chemokines, and/or function as antigen presenting
cells to trigger adaptive immune activation (Chaplin, 2010;
Marshall et al., 2018). Inflammation driven by innate immune
system components, particularly macrophages, in modulating
mood is now well established (Adzic et al., 2018). Chronic
inflammation is implicated in a variety of mood disorders,
leading to the emergence of the “macrophage/monokine theory
of depression” (Dey and Hankey Giblin, 2018). For instance,
depressive phenotypes have been consistently reported both
among patients receiving proinflammatory cytokine treatment
regimens and in preclinical models (Pryce and Fontana, 2017).
As well, elevated levels of circulating cytokines, principally tumor
necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, have been
repeatedly reported among some subsets of depressed clinical
populations (Dowlati et al., 2010; Köhler et al., 2017). Elevated
levels of these inflammatory biomarkers are often associated with
poor responsiveness to 5-HT targeting interventions (Arteaga-
Henríquez et al., 2019), and anti-depressant treatment has
been shown to reduce proinflammatory cytokine levels among
treatment-responders or in preclinical models of immune
challenge (Roumestan et al., 2007; Arteaga-Henríquez et al.,
2019). Finally, compared to placebo, antidepressant treatment
with co-administration of agents of anti-inflammatory action,
such as non-steroidal anti-inflammatory drugs, statins, or
cytokine inhibitors, improved depressive symptoms and MDD
remission rates (Köhler-Forsberg et al., 2019). Mood benefits
among depressed patients were even realized when these
anti-inflammatory agents were administered as monotherapies
(Köhler-Forsberg et al., 2019).

The complement system, an innate Immune arm that
amplifies the recruitment signals initiated by other innate
immune players, labels non-self antigens to facilitate immune-
induced attack on these cells and mitigates the spread of the
infection via membrane dysfunction-induced cell death (Rus
et al., 2005), is also impacted by stress and depression. Indeed,
levels of C3c and C4 complement as well as several other positive
acute phase proteins including α1-antitrypsin and haptoglobin
are elevated in depressed populations, while negative acute phase
proteins like albumin are reduced (Kronfol and House, 1989;
Maes et al., 1992b; Song et al., 1994).

The adaptive immune arm represents a delayed, antigen-
specific response that targets intracellular infection/damage,

amplifies and also resolves inflammatory cascade responses,
and facilitates antigen memory (Chaplin, 2010; Marshall et al.,
2018). Though evidence supporting a role for the peripheral
adaptive immune system in modulating mood was slower to
evolve due in part to the historical perception that lymphocytes
are largely absent from brain parenchyma, T and B cells have
also been implicated in response to CNS injury and disease, in
the control of some normal brain functions and more recently,
in MDD (Maes, 2011; Herkenham and Kigar, 2017; Dantzer,
2018). Indeed, many adaptive immune cells express the cellular
machinery to respond to stimulation by the stress hormone,
cortisol, and elevated cortisol levels, like those associated with a
host of mood disorders, tend to be immunosuppressive (Gruver-
Yates et al., 2014; Kovacs, 2014). Importantly, chronic stress is
known to affect lymphocyte numbers/function in both humans
suffering from mood disorders and in preclinical populations
exposed to stressful conditions (Yin et al., 2000; Domínguez-
Gerpe and Rey-Méndez, 2001; Frick et al., 2009; Scheinert et al.,
2016). Lymphocytes are also profoundly impacted by 5-HT, at
least in the periphery (Herr et al., 2017).

That peripherally derived T cells are now appreciated to be
present in healthy brain parenchyma and can also infiltrate
CNS tissue in response to injury or autoimmune disease has
fostered major interest in the role of antigen-specific adaptive
immunity in normal and abnormal brain function, including
within the context of chronic stress and depression (Fletcher,
2010; Maes, 2011; Filiano et al., 2017; Herkenham and Kigar,
2017; Rayasam et al., 2018). Several seminal observations among
depressed patient populations reported increased numbers of T
helper/inducer cells and shifted ratios of CD4+/CD8+ T cells
(Darko et al., 1988; Schleifer et al., 1989; Maes et al., 1990).
Further, studies in lymphocyte-deficient mice (nude, scid or
Rag−/− mice) have noted deficits in adaptability to stress and
reconstitution with lymphocyte populations generally implicated
the absence of T cells in mediating these deficits in a subset-
specific way (Cohen et al., 2006; Beurel et al., 2013; Rattazzi et al.,
2013; Brachman et al., 2015; Clark et al., 2016). For example,
(primarily) T lymphocytes from stress-exposed mice can modify
the behavioral response to stress when adoptively transferred
into lymphocyte deficient subjects (Brachman et al., 2015). T
cells also robustly respond to glutamatergic signaling (Ganor and
Levite, 2012), a neurotransmitter system that is emerging as a key
contributor to MDD and a principle target for novel, fast acting
antidepressants (Wang Y. T. et al., 2021).

The B cell component of the adaptive immune system may
also play an important role in modulating both normal CNS
function as well as the response to stress. Historically there
were inconsistencies with regards to whether B cells were
changed in depressed populations. However, methodological
advances in measurement of these populations has revealed
blood B cell number alterations in the context of mood
disorders, including chronic academic stress, MDD, bipolar
disorder, and panic disorder (Darko et al., 1988; Maes et al.,
1992b; Schleifer et al., 2002; Robertson et al., 2005; Pavón
et al., 2006; McGregor et al., 2016; Ahmetspahic et al., 2018).
Further, some studies have reported B cell responsiveness among
MDD patients given monoamine-modulating antidepressant
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interventions (Hernandez et al., 2010; Ahmetspahic et al., 2018).
These observations have been successfully recapitulated in a
recently published preclinical study leveraging the chronic social
defeat stress model (Lynall et al., 2021). Indeed, pioneering
work from the Clathworhy group (Lynall et al., 2021) reported
that chronic stress increased splenic B cell activation and
increased meningeal monocytes, while meningeal B cell counts
were reduced. From a mechanistic perspective, like T cells, B
cells have been shown to express 5-HT receptors and the 5-
HT transporter, indicating that these cells may even take up
this key MDD-associated neurotransmitter and transport it to
distant sites (Meredith et al., 2005; Herr et al., 2017). Whether
the brain is one of these is yet to be determined. As well,
growth factors, such as brain derived neurotrophic factor, have
been implicated in the manifestation of MDD (Yang et al.,
2020), and their stimulation is critical for B cell development
(Schuhmann et al., 2005; Fauchais et al., 2008). Given the crucial
role of B cells in antigen presentation to T cells, their ability to
facilitate T cell activation, and emerging understanding of their
immunoregulatory impacts, additional exploration of their role
in the response to stress is warranted.

Key functional activities of B cells, such as antibody secretion,
may also be altered by stress in an antibody subclass-specific
way (Kronfol and House, 1989; Joyce et al., 1992; Song et al.,
1994; Gold et al., 2012). For example, relative to mentally
healthy control subjects, Gold and colleagues (Gold et al.,
2012) noted that depressed populations displayed reductions
in serum IgA, but not IgM or IgG levels, while Joyce et al.
(Joyce et al., 1992) reported increased IgA. Methodological
differences between sample populations and measurement
approaches may account for some of the discrepancy between
these studies. The critical role of hypothalamic-pituitary-
adrenal axis dysregulation and altered cortisol secretion in
the manifestation of MDD is well established (Krishnan
and Nestler, 2008). Physiological states associated with high
levels of circulating cortisol, such as hypercortisolism (Sarcevic
et al., 2020) or treatment of patients with corticosteroid-based
interventions, shifts serum antibody profiles relative to healthy
controls (Griggs et al., 1972; Settipane et al., 1978). As well,
neuronal surface autoantibody expression has been implicated
in a number of neuropsychiatric conditions, MDD included
(Zong et al., 2017).

ESTROGENIC IMPACTS ON IMMUNE
FUNCTION DURING DISTINCT
REPRODUCTIVE MILESTONES ACROSS
THE FEMALE LIFESPAN

Sex differences in immunity are well documented, and hormone
influences, including those of estrogens, have been shown to
impact immune function throughout adulthood (Pennell et al.,
2012; Klein and Flanagan, 2016). Immunological impacts of
genetic sex and of estrogenic stimulation across key reproductive
milestones are described in the following sections and have been
summarized in Figure 1.

Mechanisms of Estrogen Regulation of
Immunity
Estrogenic signaling is regulated by two nuclear estrogen
receptors (ER), ERα and ERβ, both of which are expressed
on a variety of immune cell types and tissues. For instance,
ERα is widely expressed in bone marrow thymocytes and
hematopoietic cells, while ERβ expression appears to be limited
to the thymus, lymphocytes in lymph nodes, and the spleen in
mid-gestational fetuses (Khan and Ansar Ahmed, 2015; Moulton,
2018; Rubinow, 2018; Zhang et al., 2020). Estrogens regulate
immune cell number and function likely via an ER-dependent
mechanism. When human lymphocytes were administered
17β-E2, CD45 and CD45RO isoform RNA expression were
increased, an effect that was blocked with co-treatment of ER
antagonists (Zhang et al., 2020). Less potent naturally circulating
estrogens also appear to exert similar regulatory effects on
immune cells. For example, estriol, at levels similar to the first
trimester of pregnancy (2 ng/mL), increased levels of venous
blood CD4+FoxP3+ T regulatory cells and decreased levels
of CD4+RORC+ Th17 lymphocytes were seen in women of
reproductive age (Shirshev et al., 2019).

Sex Differences in Immunity During Early
Life and Puberty
Some subtle sex differences in childhood immunity have been
reported. For example, splenocyte response to cell surface-
receptor-independent mitogenic combination of phorbol ester
and ionomycin was greater in female mice at 3 weeks old, but
was greater for 4-6 week old male mice (Rosen et al., 1999).
Furthermore, a study on healthy Asian children noted that male
babies showed 8% more natural killer (NK) cells at birth than
females, while female newborns showed higher levels of CD3+
T cells (Lee et al., 1996). Between 1 and 6 years of age, girls had
somewhat higher numbers of lymphocytes, B cells, and CD3+,
CD4+, and CD8+ T cells, while boys had higher NK, activated T
cells, and CD4+ T cell counts (Lee et al., 1996). In contrast, Lisse
et al. found that West African boys show higher levels of CD8+
cells and lower CD4+/CD8+ ratios than girls (Lisse et al., 1997).
Despite the discrepancy between these studies, prior to the onset
of puberty, it is generally thought that the immune systems of
male and female organisms exhibit few robust sex differences in
immune cell counts or function (Robinson et al., 2014; Sharma
et al., 2019). Indeed, splenic expression of some innate immune
response genes was greater in pre-pubescent male mice, though
the differences were not statistically significant and expression of
adaptive immune response genes was generally similar between
the sexes (Lamason et al., 2006). There also appear to be no sex
differences in the vaccine response during childhood (Vom Steeg
et al., 2019). This variability in the literature warrants future study
to clarify the extent to which these observations replicate across
study populations and translate to impact immunity overall
during childhood.

The pubertal transition to reproductive capacity and the
associated dramatic increases in sex hormone levels marks a
period of substantial change in the immune system, changes
that may exert functionally significant effects with regard to
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FIGURE 1 | Key immune system impacts of estrogen at distinct female reproductive milestones. Immune function is profoundly impacted by genetic sex and
variations in estrogen. Though a few subtle differences have been reported during childhood, prior to puberty onset immune cell counts are generally similar between
males and females and any differences appear to have little functional impact on overall immunity. However, beginning with adolescence and the onset of
menstruation, marked sex differences in immune cell ratios and response profiles emerge. Generally, females display a more robust inflammatory response to
immune challenge, rendering them potentially more resilient to the negative consequences of infection but also more susceptible to certain autoimmune conditions.
High concentrations of estrogen, whether they be due to natural shifts in circulating levels across the cycle or via administration of estrogen containing exogenous
treatments, appear to exert cell-type specific effects with regards to key immune players, generally potentiating adaptive immunity. Falling estrogen levels with the
transition to reproductive and immunosenescence also imparts profound consequences for immunity and is associated with dramatic shifts in peripheral immune cell
profiles, autoimmune disease manifestation, and susceptibility to immune challenge.

immune function in developing children. For instance, studies
have noted increased numbers of circulating NK cells, CD4+ T
cells, and B cells among girls, but higher CD8+ T cell numbers
among adolescent boys as well as distinct response profiles
of cultured peripheral blood mononuclear cells derived from
male vs. female donors to phytohaemagglutinin stimulation (Lee
et al., 1996; Uppal et al., 2003; Abdullah et al., 2012). There
are numerous functional consequences of these puberty-induced
sex differences in response to antigen challenge. Inflammatory
responses to infection or toll-like receptor stimulation appear to
be stronger in females than in males (Seillet et al., 2012; Robinson
et al., 2014), with females showing increased gene expression
of interferon-gamma, lymphotoxin beta granzyme A, IL-12
receptor beta2, and granulysin (Hewagama et al., 2009). Similar
findings have been found preclinically where, in post-pubertal
mice, following stimulation with ovalbumin and anti-CD3/CD28
antibodies, IL-4, IL-5, IL-13 were all significantly higher in female
bronchial lymph node cells than in male cells (Okuyama et al.,
2013). Additionally, IL-5 production from stimulated CD4+ T
cells was significantly increased in females compared to males.
Viral challenge with the mimetic polyinosinic:polycytidylic acid
induced greater sickness behavior in post-pubertal males than
females (Sharma et al., 2019). However, changes in body
temperature and central c-fos expression were more prevalent in

female mice, and gonadectomy both worsened sickness behavior
and altered temperature in both sexes. Efficiency of vaccination
has also been tested in murine models with adult female mice
having greater antibody response to the vaccination and an
increased number of antigen-specific hepatic CD8+ T cells
compared to young mice (Vom Steeg et al., 2019). Another
functional consequence relates to the prevalence of immune-
associated diseases, especially asthma. Indeed, despite having
similar numbers during childhood, adult females exhibit a 6.2%
prevalence of asthma while males exhibit a 4.3% prevalence
(Vink et al., 2010). Evidence supports that asthma responses and
estrogen are largely correlated (Melgert et al., 2007) and that
estrogen contributes to the innate macrophage polarization, thus
leading to greater allergy response (Keselman et al., 2017).

Immune Variation Across the Ovulatory
Cycle of Reproductively Capable
Organisms
Innate immune cell number and function display a complex
pattern throughout the menstrual cycle. For example, peripheral
levels of NK cells along with their cytotoxic potential became
heightened during the luteal phase, when estrogen levels begin to
decline but progesterone levels tend to be high (Lee et al., 2010).
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Monocyte numbers also appear to peak during the luteal phase
while circulating neutrophil levels decline during menstruation
(Pennell et al., 2012). Overall, estrogen seems to enhance, while
progesterone and androgens tend to suppress proinflammatory
innate immune responses (Roberts et al., 2001; Musabak et al.,
2003; Arruvito et al., 2008; Shepherd et al., 2020).

Adaptive immunity also displays dynamic changes across the
menstrual cycle. Estrogens generally have stimulatory effects on
lymphocyte presence, concentration, and function (Lee et al.,
2010; Oertelt-Prigione, 2012; Pennell et al., 2012; Rodriguez-
Garcia et al., 2013; Moulton, 2018) though cell type and tissue-
specific effects of estrogen stimulation have also been suggested
(Pung et al., 1985; Chen et al., 2015). For instance, increased
levels of estrogen are thought to stimulate overall CD4+ Th2
cytokine production in females (Ackerman, 2006; Pennell et al.,
2012; Shah, 2012). Peripheral regulatory T cell counts were shown
to be higher during the follicular phase when estrogen levels are
typically highest (Moulton, 2018). Wegienka et al. (2011) noted
that blood levels of the less potent naturally circulating estrogen,
estrone, were positively correlated with regulatory T cell counts
in asthmatic women. Peripheral blood CD3+ and CD4+ T cell
percentages decrease in the luteal phase, when estrogen levels are
low relative to those of progesterone (Lee et al., 2010). Inhibitory
effects of estrogens have also been noted within certain immune
cell subtypes. Indeed, estrogen exposure inhibits Th1 cytokine
proliferation and Th17 differentiation (Chen et al., 2015).

Though information regarding B cell changes across the
menstrual cycle is more limited, converging evidence suggests
that estrogen stimulates B cell differentiation and activation,
increases B cell numbers, and enhances their function (Verthelyi,
2001; Oertelt-Prigione, 2012; Moulton, 2018). For example,
B cell activation by 17β-E2 generally induces higher levels
of Ig synthesis (Franklin and Kutteh, 1999; Pennell et al.,
2012) specifically in B cells found in bone marrow and the
spleen (Moulton, 2018). In mice treated with sustained slow-
release 17β-E2-containing silastic implants (4-6 mg) resulting in
levels comparable to those achieved during murine pregnancy,
numbers of antibody-secreting plasma cell numbers increased
dramatically, and secretion of various immunoglobulins and
autoantibodies increased (Verthelyi and Ahmed, 1998). This
estrogen-driven B cell hyperactivity may contribute to the
development of autoimmune diseases (Pennell et al., 2012).

Sex hormone type also appears to influence female immunity
in a cell subtype-specific way. Indeed, while it is widely accepted
that estrogens usually correspond with an increased CD4+
Th2 cell response, androgens promote CD4+ Th1 and CD8+
cell responses (Ackerman, 2006; Pennell et al., 2012; Guven
Yorgun and Ozakbas, 2019). As for progesterone, increased
levels during the luteal phase sometimes correspond to increased
NK cell levels, unchanged Th1/Th2 ratios, decreased CD3+
and CD4+ T cell percentages, and increased serum levels
of the anti-inflammatory IL-1 receptor antagonist (Lee et al.,
2010; Vetrano et al., 2020). Despite this, in one study, serum
CD4+/IL10+ regulatory T cells displayed heightened responses
when progesterone levels were elevated in the late follicular
and luteal phases (Weinberg et al., 2011). These findings
reveal the significance of distinguishing between the different

immune cell subtypes in how they react to steroid hormone
stimulation in distinct target tissues and in response to various
immunological challenges.

Pregnancy-Associated Impacts to the
Immune System
Tight regulation of the maternal immune response are key
contributors to pregnancy success; historically, immune
responses during pregnancy were thought to be suppressed to
allow for a semi-allogeneic fetus (Racicot et al., 2014). However,
this previously held notion has been reevaluated as additional
findings implicating sex hormone regulation of immune
responses have emerged in recent years (Mor and Cardenas,
2010). Indeed, immune contributions to the development of the
decidua and placenta and the maintenance of the maternal-fetal
interface is required for a successful pregnancy (Hsu and Nanan,
2014). Nair et al. (2017), and there is growing appreciation that
dynamic shifts in maternal sex hormone levels may, at least
in part, contribute to observed shifts in gestational immunity
(Robinson and Klein, 2012). Uterine immune cells, including NK
cells, macrophages, T cells, dendritic cells, mast cells, and B cells,
are necessary for the normal formation of placenta beds and
appear to play a key role in converting high-resistance, low-flow
vessels to low-resistance, high-flowing vessels in spiral arteries in
the placental bed (Faas and De Vos, 2018). Maternal monocytes
and macrophages obtain a unique phenotype throughout
pregnancy that allows them to retain immunological tolerance
and permit hormone–immune cell interactions, both of which
are required for progression of the fetus inside the uterus
(Mendoza-Cabrera et al., 2020).

It is thought that the increase in steroid hormone levels
throughout pregnancy modulates inflammatory responses at
the maternal fetal interface, and E2, estriol, and progesterone
influence the transcriptional signaling of those responses
(Robinson and Klein, 2012). During the first trimester, levels
of placental-derived estrogen increase sharply and contribute
significantly to the development of organs and other bodily
systems in the fetus. T cell subsets are profoundly affected by
these changes. Early in pregnancy, the increase of regulatory
T cells supports the development of a semi-allogeneic fetus
protected from maternal immune rejection by restraining
inflammation during the shift from proinflammatory to anti-
inflammatory immunity (Krop et al., 2020). CD25+/CD4+ T
regulatory cell numbers reach a peak during the second trimester,
and it is thought that these cells allow the maternal immune
system to respond to the developing fetal organs within the uterus
(Somerset et al., 2004; Lima et al., 2017). Further, appropriately
titrated T cell populations early in pregnancy may contribute
to fetal viability. Indeed, when Lissauer and colleagues (Lissauer
et al., 2014) evaluated circulating T cell subsets across distinct
pregnancy stages, they observed that about 60% of Th17 cells in
the body during pregnancy were found during the first trimester
of pregnancy, though no changes in Th1 or Th2 T cell subsets
were noted across the gestational and postpartum period. Th1
and Th17 cells numbers were elevated among women with
recurrent miscarriage, suggesting that these cell types may serve
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as important targets to improve gestational success (Lissauer
et al., 2014). Memory T cells are also increased during the first
trimester and promote fetal-maternal tolerance (Kieffer et al.,
2019). It is thought that insufficient numbers of memory CD4+ T
cells contribute to pregnancy complications such as preeclampsia,
gestational diabetes, and premature labor (Lim et al., 2019).
Following pregnancy, it can take three to four months for cells to
return to normal function after delivery, and inhibition of helper
T cells and NK cells appears to last for the first few months.

Like T cells, B cells also support the semi-allogeneic fetus
while protecting the mother and fetus against infection (Muzzio
et al., 2013). Regulatory B cell numbers similarly increase
during the first trimester, limiting proinflammatory responses
(Esteve-Solé et al., 2018). B cell activation factors, which
facilitate the inflammatory response, are also increased, likely in
support immune tolerance of the semi-allogeneic fetus (Wang
L. et al., 2021). B cells also appear to impact immunity
during later stages of pregnancy and following parturition. Lima
and colleagues examined healthy pregnancies and determined
the degree of activation of different B cell subsets, reporting
increases in CD38+ and IgD markers of B cell activation
during the third trimester of pregnancy and postpartum period
(Lima et al., 2016).

Immune Shifts During Female
Reproductive Senescence and Aging
Aging plays a significant role in modulating the function of the
immune system and is associated with deterioration of immunity
seen in the elderly (Fulop et al., 2017). Immunosenescence
cascades have been reviewed elsewhere (Xu et al., 2020)
but in brief, key immunosenescence characteristics include
inflammaging, lymphopenia, higher susceptibility to infection
and poor vaccine response (Ghosh et al., 2014). Within the
adaptive immune system, aging is associated with an increase
in differentiated memory T cells, effector T cells, senescent
CD8+CD28− T cells, and age-associated innate-like B cells,
but a decrease in most B cell subsets and the ratio of
CD4:CD8 T cells, to name just a few examples (Weyand and
Goronzy, 2016). Collectively, these and other senescence-related
changes diminish the ability of the immune system to protect
against certain infections and cancers and may accelerate the
development of certain diseases, rendering older populations at-
risk for a host of immunological challenges. It was historically
presumed that this senescence-associated shift in immunity
occurred at a similar rate and manner, regardless of sex (Aiello
et al., 2019). However, rising life expectancies have revealed
that men and women experience these consequences along
different trajectories; emerging evidence suggests sex-specific
and potentially profound consequences of immunosenescence
(Gubbels Bupp et al., 2018; Márquez et al., 2020). Indeed, it is now
appreciated that female innate immune systems appear to age at
a faster rate, whereas the adaptive immune systems of men age at
a faster rate (Ghosh et al., 2014).

Age-related shifts in reproductive function likely influence
the function of the immune system during aging, and the
sex-specific nature of this transition period may account for

differences in male and female immunosenescence. Indeed, while
men experience andropause, a gradual reduction in circulating
testosterone over the course of several decades (Kevorkian, 2007),
women experience a more accelerated transition. Menopause
marks a period of reproductive senescence in a woman’s life when
the ovarian oocytes have become depleted, and sex hormones
are no longer produced by the ovaries (Keppel and Wickens,
2004). As a result, the menstrual cycle becomes irregular and
eventually terminates while levels of estrogens and progestins
drastically decline. Natural menopause is a normal part of aging
that typically occurs in the fourth and fifth decade of life and
can take place over the course of only a few years. Still others
undergo surgical menopause to remove the ovaries when there
is an increased likelihood of cancer, infection or endometriosis
(“Medical Causes of Menopause”), resulting in an accelerated
reproductive senescence.

The distinct trajectory of female reproductive senescence has
important impacts with regard to immune function during aging.
In comparison to men of a similar age or to reproductively
capable women, post-menopausal women are disproportionately
affected by certain autoimmune disorders and have an increased
susceptibility to infection with aging (Fairweather et al., 2008;
Gubbels Bupp et al., 2018; Maglione et al., 2019). Estrogen
deficiency has been implicated in many senescence-associated
changes seen in the immune cells, such as the increase in
proinflammatory markers IL-1, IL-6 and TNF-α (Gameiro
et al., 2010), and low levels of estrogen are linked to higher
levels of IL-17 produced by Th17 cells (Molnár et al., 2014).
Following menopause, women undergo various changes in the
levels of innate immune cells. Whereas the number of NK
cells increases, their cytotoxic capacity is diminished (Albrecht
et al., 1996; Ghosh et al., 2014; Toniolo et al., 2015). Further,
the number of macrophages, neutrophils and dendritic cells
decreases (Ghosh et al., 2014; Toniolo et al., 2015). Macrophages
are vital, as they aid in the conversion of proinflammatory
phenotypes to anti-inflammatory phenotypes, and estrogens
help to prevent the effects of proinflammatory agents on the
functions of macrophages by accelerating the resolution phase of
inflammation in these cells (Toniolo et al., 2015; Villa et al., 2015).
E2 also seems to decrease the rate of apoptosis in neutrophils as
following menopause, neutrophils numbers have been shown to
decrease as the rate of apoptosis increases (Chen et al., 2016).

Menopause is also associated with significant shifts in
adaptive immunity. As reviewed in Gubbels Bupp et al. (2018),
some studies report a decrease in total lymphocyte counts in
postmenopausal women (Giglio et al., 1994; Kamada et al.,
2000), while other studies have shown that numbers of some
lymphocyte subsets are significantly higher in postmenopausal
women (Chen et al., 2016; Abildgaard et al., 2020). Further, levels
of functioning CD4+ T and B cells decrease, while numbers
of exhausted and senescent cells rise, whether the etiology of
menopause is surgical or transitional (Giglio et al., 1994; Gameiro
et al., 2010; Gubbels Bupp et al., 2018; Maglione et al., 2019;
Abildgaard et al., 2020; Vrachnis et al., 2021). However, it has also
been shown that thirty days after surgical menopause via total
abdominal hysterectomy and bilateral salpingo-oopherectomy,
patients displayed increased levels of CD8+, but decreased levels
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of B cells and a reduced CD4+/CD8+ T cell ratio (Kumru
et al., 2004). Other conflicting literature has noted a decrease
in naïve CD8+ T cells, but an increase in memory or activated
T cells in postmenopausal women compared to pre-menopausal
women or women taking hormone replacement therapy (HRT)
(Kamada et al., 2000; Engelmann et al., 2016; Vrachnis et al.,
2021). In regards to the function of B cells, E2 enhances certain
aspects of humoral immunity (Gameiro et al., 2010). Aged
women tend to accumulate more innate-like age-associated B
cells (ABCs) than young women and men of any age, and there
is a relationship between ABCs, viral infections, autoimmunity
and a proinflammatory state (Rubtsova et al., 2015; Gubbels Bupp
et al., 2018). ABCs are known to originate from follicular B cells
and show a bias in females, due to hormones and X chromosome-
encoded genes, but the mechanisms that cause the production
and accumulation of ABCs are still unknown and need to be
further investigated (Rubtsova et al., 2015).

Effects of Exogenous
Estrogen-Containing Treatments on
Immune Function
Immune cells not only respond to endogenously secreted
estrogens; estrogen-containing contraceptives, commonly used
for pregnancy prevention, hormonal imbalances, and menstrual
cycle regulation, also impact immunity. For example, compared
to untreated women, women taking the oral contraceptive
pill, Ortho Novum 777 (containing ethinyl estradiol and
norethindrone), had higher Ig levels, implicating these hormones
in promoting B cell activity (Franklin and Kutteh, 1999).
In another small study evaluating respiratory performances
of thirteen asthmatic women, blood regulatory T cell counts
were higher among contraceptive treated women, and this was
associated with less intense asthmatic symptoms (Wegienka
et al., 2011; Vélez-Ortega et al., 2013). Estrogen-containing
contraceptives administered vaginally also impact the local
immune environment. Indeed, Hughes et al. noted that the
NuvaRing R© (0.12 mg etonogestrel/0.015 mg E2 per day) was
associated with increased T cell- related proteins, granulysin and
granzyme B in cervicovaginal fluid, indicating that, similar to
during phases of heightened estrogen in the menstrual cycle,
estrogen has a stimulatory effect on vaginal T cell response
when locally administered. Yet in mice, when the synthetic
estrogen, diethylstilbestrol, was administered subcutaneously for
five consecutive days, T cell proliferation and IL-2 production in
the spleen both declined (Pung et al., 1985), implicating species or
estrogen subtype differences with regards to exogenous estrogen
impacts to immunity.

Though menopausal HRT is commonly prescribed to
attenuate the negative vasomotor and vaginal symptoms of
menopause, it may also be a potential therapeutic option to
modify menopause-related shifts in immune system function
(Ghosh et al., 2014); the complexities associated with HRT
impacts to the brain and immunity have been extensively
reviewed elsewhere (Abdi et al., 2016). As an example,
postmenopausal women taking estrogen and progestin-
containing HRT have been reported to have higher numbers of

lymphocytes and B cells specifically, but maintain low levels of
CD4+ T cells, and exhibit a decrease in CD8+ cells resulting
in an increase in the ratio of CD4+/CD8+ T cells; naïve and
memory/activated T cell numbers generally remained consistent
(Kamada et al., 2000; Yang et al., 2000; Porter et al., 2001;
Kumru et al., 2004). These HRT-induced immune cell impacts
may be effective in alleviating the symptoms associated with
menopause or autoimmune disease, as well as the risk for
developing certain disorders, especially when used within 10
years of experiencing symptoms if the woman is under 60 years
old (Stopińska-Głuszak et al., 2006; Cagnacci and Venier, 2019).
Taken together, these data indicate that exogenous estrogen
treatment has significant immunological consequences, which
may in turn impact women’s susceptibility to systemic infection
or autoimmune disease (see below); additional investigation in
this research domain is clearly warranted.

SEX, ESTROGEN AND AUTOIMMUNITY –
CONSEQUENCES OF ESTROGENIC
IMPACTS TO THE FEMALE IMMUNE
SYSTEM

Though the evidence described above reveals robust sex-specific
differences in immune responses, may at times, provide some
advantages to infection for female organisms, maladaptive
consequences have also been indicated. Indeed, women shoulder
a disproportionate burden of some autoimmune diseases and
several reviews extensively explore the topic of sex differences
in the prevalence of autoimmunity (Lateef and Petri, 2012;
Pennell et al., 2012; Ortona et al., 2016; Moulton, 2018; Keestra
et al., 2021). For instance, with a typical age of disease onset
occurring during puberty, the prevalence of systemic lupus
erythematosus (SLE), an autoimmune condition associated with
widespread inflammation, in prepubertal girls is only double
that of boys; by adulthood, the ratio of female to male patients
has increased to 9:1 (Ngo et al., 2014; Moulton, 2018). Further,
SLE-associated flare-ups during pregnancy are common (Petri,
2020). That estrogen stimulation promotes a Th2 immune
phenotype may further contribute to the increased prevalence
of Th2-mediated autoimmune diseases such as SLE (Ackerman,
2006). For instance, regulatory CD4+ T cells from female SLE
patients showed reduced FoxP3 expression when incubated with
physiological levels of E2, suggesting that high E2 levels may place
women at an increased risk due to the presence of fewer immune
regulatory cells (Singh and Bischoff, 2021). Among SLE patients,
HRT has been found to increase the amount of mild, but not
severe, flares (Lateef and Petri, 2012).

A sex-specific burden of multiple sclerosis (MS), a chronic,
progressive, demyelinating inflammatory autoimmune disease
associated with a myriad of degenerative sensori/locomotor
and cognitive deficits, has also been documented (Goldenberg,
2012). Indeed, a woman’s risk for developing MS increases after
the pubertal transition, an effect linked to increasing levels of
estrogens given that MS symptomology appears to decrease in
intensity during the luteal phase of the menstrual cycle, when
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estrogen levels are low (Moulton, 2018; Keestra et al., 2021).
Additional clarity regarding the contributions of sex hormones
alone and in combination is warranted as perplexingly, some
studies note greater MS symptomology and worsened cognitive
function in the premenstrual phase when sex hormones are
generally at their lowest levels (Guven Yorgun and Ozakbas,
2019; Keestra et al., 2021). As well, though relapse rates increase
significantly by three months post-partum, pregnancy is typically
associated with symptom remission (Confavreux et al., 1998).
Short-term corticosteroid treatment to manage MS symptoms
during late pregnancy is considered safe with regards to fetal
outcomes such as risk of pre-term birth and low birth weight
(Ramo-Tello et al., 2021). Whether this treatment impacts
affective outcomes in the pregnant or post-partum mother is not
clear and represents an important area of investigation, given
that corticosteroid treatments are known to induce psychiatric
symptoms such as mania, depression, psychosis, and cognitive
changes (Brown and Chandler, 2001).

Rheumatoid arthritis (RA) is an autoimmune disease
characterized by joint pain, painful swelling, fatigue and fever due
to the immune system attacking its own healthy tissue (Bullock
et al., 2018). RA is both more common and may be more severe
in women than men (Walker, 2011; Pennell et al., 2012). Like
MS patients, women with RA experience symptom remission
during pregnancy but these effects are short-lived as women often
experience disease aggravation following parturition (Ostensen
et al., 1983). The typical age of RA onset in women is during
the menopausal transition, and an early age at menopause
is associated with an increased likelihood of RA (Goemaere
et al., 1990; Desai and Brinton, 2019). This observation may
be attributed to the loss of endogenous estrogen that women
experience during menopause. Menopausal RA patients taking
HRT do not appear to display increased flare-ups and may
even experience improved disease symptomology (Holroyd and
Edwards, 2009). Similar effects have been demonstrated among
pre-menopausal women, where oral contraceptive use did not
prevent emergence of new disease but did reduce transformation
of cases from mild to severe, suggesting beneficial effects of
exogenously-administered estrogen-containing therapies against
disease progression.

CONVERGENCE OF SEX, ESTROGEN
AND IMMUNITY IN STRESS AND
DEPRESSION

The complexities of how biological sex or sex hormones
and peripheral immunity converge to impact mood are
beginning to be revealed. Sex-specific affective responses to
peripheral inflammatory challenge generally suggest that female
organisms may respond more robustly to immune activation
(Bekhbat and Neigh, 2018). Indeed, inflammatory challenge
with lipopolysaccharide (LPS; bacterial infection mimic) was
associated with mood disruptions in women but not men
(Moieni et al., 2015) and intranasal LPS administration
induced depressive-like behavior and elevated hippocampal
proinflammatory cytokine expression only in female rodents

(Tonelli et al., 2008). However, this effect has not consistently
been observed. For instance, following LPS challenge, while
women displayed greater increases in proinflammatory IL-6 and
TNF-α levels than men and men displayed higher levels of the
typically anti-inflammatory cytokine IL-10, surprisingly affective
consequences were similar among both sex groups (Engler et al.,
2016). Similar observations were noted in preclinical studies
where male and female rodents displayed similar depressive-
like behavioral phenotypes despite robust sex-distinct effects
on inflammatory and growth factor cascades in response to
peripheral immune stimulation (Adzic et al., 2015; Brkic et al.,
2017). Still, other reports suggest that males may be more
susceptible to affective impacts of peripheral immune activation.
Indeed, in male mice exposed to a LPS challenge, depressive-
like behavioral changes along with altered brain proinflammatory
cytokine mRNA levels were observed at 24 h, and hippocampal
apoptosis was shown at 28 days later, effects not observed in
female mice (Millett et al., 2019; Rossetti et al., 2019).

Sex differences in peripheral circulating cytokine levels
among clinically depressed populations or in preclinical models
have also been reported. For instance, higher levels of
C-reactive protein were associated with an increased risk
of depressive transformation, and increased psychopathology
among depressed women was associated with elevated levels
of C-reactive protein where no such association was noted in
depressed men (Köhler-Forsberg et al., 2017; Kim et al., 2021;
Zainal and Newman, 2021). Genetic predispositions related to
the immune system also appear to induce sex-specific risk
factors for development of a depressive phenotype as IL-18
haplotype in women, but not men, is associated with increased
threat-induced central amygdala reactivity (Swartz et al., 2017).
Other cytokines that are associated with depressive phenotypes
in females, or the responsiveness of depressed patients to
antidepressant treatment, include IL-1β, and IL-6 (Carboni
et al., 2019; Kim et al., 2021; Zainal and Newman, 2021).
However, some inconsistencies regarding sex-specific differences
in peripheral inflammation among depressed populations have
been reported. For example, while Piantella and colleagues
(Piantella et al., 2021) agreed with other literature that IL-
6 was associated with higher depressive symptoms in women
exposed to workplace stress, they observed that higher C-reactive
protein levels were associated with depression only in men.
Further, in a study of more than 1,800 patient samples, C-reactive
protein was associated with MDD state only in men (Ramsey
et al., 2016). The experimental heterogeneity associated with
the study population and sample size, the stressor nature and
severity being evaluated, the approach to measure cytokine
levels, the post-stress measurement timeframe, etc., among
evaluations reported in the literature indicate that additional
work is needed to discern the utility of sex-specific cytokine
biomarkers for depression.

Taken together, it appears that immune activation cascades in
response to psychosocial stress differ between males and females,
though whether the consequences of these distinct trajectories
reliably manifest in differential mood-related disruptions
between the sexes is not altogether clear. Further clarification
of the parameters in which sex-specific mood impacts may be
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realized in the context of antigen-driven or sterile immune
challenges is needed.

DISCUSSION: CHALLENGES IN
EXPLORING
NEURO-IMMUNO-ENDOCRINE
INTERACTIONS IN THE CONTEXT OF
MOOD

As summarized above, genetic sex, estrogen, and the immune
system significantly contribute to mood and mood disorders both
individually and as converging, interactive factors (Figure 2). As
this exciting field further develops, consideration of a number
of limitations and challenges to probing these complex
interactions in the context of mental health is warranted.

Consideration of Relevant Biological
Variables
First, though historical representation of both sexes in biomedical
research has been lacking, there is increasing awareness among
researchers regarding the need to consider sex as a biological
variable and moreover consider how biological phenomena
change as reproductive capacity shifts across the lifespan
(Arnegard et al., 2020). Indeed, in 2015, the NIH (2015).
announced requirements for the appropriate consideration of
sex as a biological variable, incorporating this as a review
criteria for all proposals submitted shortly thereafter. This
policy change included requirements for the use of both
sexes within study populations unless strong justification is
provided as to why research questions being assessed could
only be evaluated in one sex (e.g., exploration of ovarian
function would preclude the use of only female organisms) as
well as disaggregation of data analyses to observe sex-related
trends and accurate reporting of data based on sex As part
of NIH’s larger initiative to improve experimental rigor and
reproducibility (Price and Duman, 2020), due consideration of
other relevant biological variables is now also strongly advised
(Lauer, 2016).

At present, the majority of research addressing the
convergence of immune cells and sex or sex hormones on mood
outcomes does not regularly factor in cyclicity stage, parturition
experience, nor circulating levels of steroid hormones. As well,
even when females are included in experimental designs, the
majority of work in this area is conducted in young adult subjects
prior to initiation of age-related immunosenescence cascades,
potentially limiting translatability of the findings to older cohorts.
While due consideration of key biological variables is not without
its methodological challenges, there exists numerous aging or
sex-based research centers of excellence around the United States
(e.g., Nathan Shock Centers of Excellence in the Basic Biology of
Aging, Tulane Center for Excellence In Sex-Based Biology and
Medicine, and several workshops (e.g., International Symposium
on the Neurobiology and Neuroendocrinology of Aging)
providing training in the conduct of aging and/or sex-based
research have been developed in recent years. In addition

to informal laboratory based training, several publications
laying out strategies are readily available (Bale and Epperson,
2017; Joel and McCarthy, 2017; Clayton, 2018). Especially
given the profound age-related shifts in immune function,
there exist numerous opportunities for productive research
collaborations between immunologists, neuroendocrinologists,
and biostatisticians to thoroughly address the convergence of
sex, sex hormones, age, immune function, and stress responses.
Continued progress is still needed (Woitowich and Woodruff,
2019; Arnegard et al., 2020), and additional incentivization
of research specifically aimed at systematically addressing sex
differences and the influence of sex hormones within the scope
of mental health research will likely benefit the field.

Complexities of Evaluating Mood and
Modeling Human Mental Health
Disorders Preclinically
Another significant challenge facing this area of study
is that effectively modeling complex mood disorders
such as MDD in a rodent is difficult (Krishnan and
Nestler, 2008; Nestler and Hyman, 2010; Wang et al.,
2017). Whereas the etiology of MDD can be varied in
humans, ‘depressive-like’ states in rodents are typically
experimentally induced via environmental, experiential, genetic,
pharmacological, physical, social, or surgical manipulations. Many
of the classic induction approaches, developed at the height of
the monoamine hypothesis of depression, were aimed at
revealing antidepressant efficacy novel drugs (Nestler and
Hyman, 2010; Wang et al., 2017). Unfortunately, no single
stress-induction approach fully recapitulates the heterogeneity of
disease susceptibility and no one readout fully captures the
behavioral and neurobiological pathology seen in human
populations, though some newer paradigms have been developed
that display better translational validity. For instance, the
long-leveraged forced swim stressor results in near ubiquitous
floating behavior, thought to be an indicator of behavioral
despair/learned helplessness, while the chronic social defeat
paradigm can effectively discriminate susceptible from resilient
populations (Golden et al., 2011; Bogdanova et al., 2013).

As well, MDD is a psychiatric disorder associated with a
variety of phenotypes, and many symptoms experienced by
human patients (i.e., sadness, guilt, suicide ideation) cannot
be directly evaluated in rodents. When MDD symptomology
can be more effectively recapitulated preclinically (anhedonia,
behavioral despair), the available murine tests of depressive-
like behavior generally only probe one dimension of this
heterogeneity. Evaluating depression phenotypes through the
assessment of other impacted functions, such as cognitive
domains, may provide additional insights (Hales et al., 2014; Price
and Duman, 2020). Further, in contrast with the delayed response
of antidepressants prescribed to patients in the clinic, acute
treatment of mice with antidepressants is sufficient to alleviate
depressive-like behavior in some of the commonly employed
preclinical tests, though again some paradigms show response
timing profiles similar to those observed in clinical populations
(Golden et al., 2011; Willner, 2017).
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FIGURE 2 | Schematic representation of mood-immune convergence across the female reproductive lifespan. A substantial amount of research has been dedicated
to exploring how endocrine and immune factors impact mood separately. For instance, neuroprotective effects of estrogen in regards to MDD are well-established.
Further, inflammatory insult and immune dysfunction are emerging as key contributors to disordered mood. Finally, genetic sex and estrogen clearly modulate
immune system components, having important functional consequences for immunity across the reproductive lifespan. However, insight regarding how these two
systems converge to impact mental health, especially during aging, is currently limited. This knowledge gap may be driven by experimental challenges associated
with exploring these complicated interactions including, but not limited to, heterogeneity associated with the study population and sample size, the species used, the
stressor nature and severity being evaluated, the approach to measure cytokine levels, the post-stress measurement timeframe, to name a few examples. Whether
estrogenic influences on inflammatory activation cascades in the context of ‘sterile’ psychosocial stress-induced immune challenges result in sex-specific
susceptibility to MDD during key reproductive milestones remains to be further interrogated and represents an exciting area of study.

Finally, methods used to induce stress phenotypes in rodents
may confound readouts. For instance, a common behavioral
readout of the chronic variable stress paradigm is sucrose
preference, a measure of anhedonia, the results of which
may be profoundly impacted by metabolic changes associated
with brief food restriction, a commonly leveraged component
of that stress-induction approach (Willner, 2017). As such,
no single preclinical stressor paradigm or test for ‘depression’
fully recapitulates the complexity of the MDD phenotype nor
the response profile to typically prescribed treatments given to
alleviate symptomology.

Selection of the method to induce stress as well as
the approach to determine behavioral, physiological,
and neurobiological responses require careful consideration
of the research question being posed. In alignment with
recent guidance from the NIMH (2019) and in pursuit of
current Research Domain Criteria (RDoC) recommendations
(Maes, 2011), it is advisable to leverage tests where the
underlying neurobiological circuitry is well understood rather
than on the basis of “presumed congruence to human symptoms
of mental illness”. Homological validity, that is capturing
behavioral readouts that are species-relevant, should also
be prioritized. The use of a behavioral battery of readouts
within affective domains rather than a single assessment is
also highly recommended to accurately capture the breadth

and depth of a phenomenon, though test order should be an
important consideration in their deployment (Powell et al.,
2012). Composite behavioral battery z-scores should also be
leveraged to capture overall impacts of stress on an organism as
there is often substantial individual performance variability on
unique readouts, especially among controls (Johnson et al., 2021).
Behavioral readouts are best coupled with physiological readouts
of stress, such as circulating corticosterone levels, metabolic
alterations (such as attenuated weight gain), reduced self-care
and health metrics, and shifts in circadian activity. There
are also logistical complexities in preclinically modeling
depression specifically in female organisms, including whether
to consider stage of estrous cycle and reproductive capacity.
Rigorous research portends the quantification of vaginal lavage
to determine cyclicity and inclusion of Cycle Stage as an
additional factor in statistical assessment of stress responses.
Importantly, Johnson et al. (2021) did not identify a predicitive
relationship between cycle stage and the stress response of
their experimental and control animals. Further, though ‘non-
brain’ measures showed more female-associated variability, a
recent metanalysis of 311 articles did not report large-scale sex
differences in neuroscience outcome measures and failed to
identify increased variability in female rodents due to estrous
cycle (Becker et al., 2016), suggesting that the impact of cycle
stage on stress/neuroscience readouts may be relatively small.
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It is also important to consider that some stress paradigms are
extremely difficult to apply to females and may need significant
modification to be applied to appropriately. For example,
chromogenic activation of the ventromedial hypothalamus was
required to induce male aggressors to attack female test mice
(Takahashi et al., 2017). When addressing age interactions in
response to stress within females, careful consideration of species
differences in the trajectory of reproductive senescence as well
as the biological consequences of surgical hormone depletion
is also warrented (Engler-Chiurazzi et al., 2017). Of note, there
are potentially independent cognitive contributions of ovaries
versus uterus (Koebele et al., 2019) and consideration of the
entire reproducitve system is necessary to comprehensively
discern immune-sex hormone interactions with mood. Finally,
investigators should not limit themselves to studying only
populations that display maladaptive stress response profiles
but should also consider exploration of subjects that display
stress resiliency; important understanding in this domain
is actively being advanced (Russo et al., 2012; Faye et al., 2018).

Sick as a Mouse: Can Rodent Models
Effectively Recapitulate Human
Immunity?
From an immunological perspective, consideration of the
limitations of the experimental model leveraged to study the
convergence of endocrine-immune factors within mental health
is of paramount importance. First, species differences among
humans vs. rodents in the development, total numbers, and
functional ability of a variety of immune cell subsets have
been long established and comprehensively discussed (Mestas
and Hughes, 2004). For example, notable differences in innate
immune responses including neutrophil defensin expression,
toll-like receptor distribution, and macrophage function as
it relates to nitric oxide, and natural killer cell inhibitor
receptors for major histocompatibility complex I molecules
between humans and rodents have been observed (Mestas
and Hughes, 2004). Peripheral leukocyte profiles also vary
by species such that up to 70% of immune cells in human
blood are granulocytes (such as neutrophils) while lymphocytes
make up approximately 30% of cells; monocytes are up to
10%, and other cell populations are more rare (Mestas and
Hughes, 2004; Olin et al., 2018). In contrast, rodents display
some sex differences in total blood leukocyte counts though
importantly in both sexes lymphocytes, at between ∼75-
90% for males and females, respectively, were the dominant
immune cell type in circulation while neutrophil counts
ranged between 24 and 8% (Doeing et al., 2003). Species
differences in adaptive immune responses have also been
reported, including variations in Fc receptor and Ig isotype
expression, the regulation of T and B cell development, and
the functional response of lymphocytes to antigen challenge
(Mestas and Hughes, 2004). The consequences of these
variations may be significant when attempting to address
consequences of immunogens that exhibit host-specific patterns
of infection, such as cytomegalovirus (Mestas and Hughes,
2004; Masopust et al., 2017), leading some researchers to

suggest that rodents poorly recapitulate human injury or disease-
associated inflammatory cascades and to advocate caution in
the utilization of rodent models for immune-focused research
questions (Seok et al., 2013).

As well, research mice are raised in specific pathogen
free vivarium facilities that abide guidelines for cleanliness
from regulatory organizations such as the United States
Department of Agriculture and Association for the Assessment
and Accreditation of Laboratory Animal Care accrediting bodies.
While such practices support the health and welfare of laboratory
rodents and promote reproducibility of data generated in a
variety of fields, it is now recognized that pathogen free mice have
immature immune systems that are functionally distinct from
laboratory mice deliberately exposed to pathogens, from wild
caught or pet-store reared mice, and from the human populations
they are meant to model (Abolins et al., 2017; Masopust et al.,
2017; Tao and Reese, 2017). For instance, adult humans have
differentiated memory CD8+ T cell subsets that are not observed
in laboratory mice raised in typical pathogen-free conditions;
co-housing mice with more antigen experienced pet-store mice
can “humanize” their immune profiles, potentially improving
their translational validity (Beura et al., 2016). Importantly,
antigen exposure history shapes the function of the immune
system (Beura et al., 2016; Tao and Reese, 2017), an important
consideration given that emerging evidence implicates a higher
infection burden with several negative neurological and cognitive
consequences across the aging trajectory. Whether these factors
manifest in functionally significant impacts for immunity as
it relates to mental health is not yet clear and will be an
important area of future study as the field evolves. Increased
interest among both scientists and funding organizations in the
rethinking of the research pipeline, the utilization of “dirty” mice,
and the deploying of novel sequencing methods that capture
the complexity of immune responses to explore key research
questions may reveal more translational insights in the coming
years (Shultz, 2016; Tao and Reese, 2017; Wagar et al., 2018).

Challenges Investigating Mood and
Immunity in Human Populations
Many factors contribute to challenges in successful translation of
preclinical findings to human populations. Here we will highlight
variability in human immune profiles (Brodin and Davis, 2017)
as well as mood disorder manifestations (Altemus et al., 2014).
Immune profiles in middle aged adults evaluated longitudinally
over the course of one year display some intra-individual
variability that varies in magnitude from subject to subject
and may be predictive of overall health (Lakshmikanth et al.,
2020). Immune variability is also prevalent across individuals as
immune profiles of the very young (Olin et al., 2018) and the
very old (Kaczorowski et al., 2017) exhibit more heterogenous
composition than do those of adults. As immune composition
of monozygotic twins become increasingly distinct with time,
the shaping of individual immune profiles is likely due to a
combination of heritable and environmental influences (Brodin
et al., 2015). Further, the numerous and sometimes vague or
opposing diagnostic criteria used to identify clinically depressed
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patients leads to a potentially highly variable subject pool that
likely reflects distinct MDD sub-phenotypes (Zimmerman et al.,
2015; LeGates et al., 2019). To account for this variability
when evaluating variables of interest, a straightforward statistical
solution is to increase sample size (Keppel and Wickens, 2004).
However, many of the seminal papers exploring immune profile
variations among depressed and mentally healthy populations
had stressed/depressed participant numbers of less than 50
(Darko et al., 1988; Maes et al., 1990, 1992a; Petitto et al., 1993;
McGregor et al., 2016; Ahmetspahic et al., 2018). This potential
under-sampling not only presents challenges to replicability of
the significant differences of immune readouts revealed in each
study, but could also indicate a lack of statistical power to detect
more subtle differences (Keppel and Wickens, 2004). However,
many studies do not report observed power nor effect sizes,
limiting the ability to make such determinations. These collective
factors may contribute to potentially large intra-individual
differences that make evaluation of the convergence of mood
and immune function a significant logistical challenge. Robust
assessment of immune-mood-sex interactions with statistically
powerful meta-analysis approaches will become more feasible as
additional investigations are conducted.

CONCLUSION

In summary, collective evidence addressing the unique affective
contributions of genetic sex, sex hormones, reproductive
capacity, and immunity has already expanded the prevailing

‘monoamine theory of depression’ and yielded improved
understanding of the mechanisms driving disordered mood.
Given the complex interactions that take place across the female
lifespan between these systems, due consideration of how these
factors acting in concert may converge to modulate mood is
necessary. This will be made possible by adherence to new
policies in the consideration of key biological variables, the
inclusion of diverse subject populations and the reporting of
findings based on population factors such as sex, reproductive
experience, and age. The goal of this expanded appreciation for
neuro-endo-immune factors in modulating mood is an increased
appreciation for the mechanisms driving the manifestation
of MDD and other mood disorders and revelation of novel,
potentially sex or age-specific therapeutic interventions; we look
forward to this outcome.
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