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The role of peripheral biomarkers following acute physical exercise on cognitive
improvement has not been systematically evaluated. This study aimed to explore
the role of peripheral circulating biomarkers in executive performance following acute
aerobic and resistance exercise. Nineteen healthy males completed a central executive
(Go/No-Go) task before and after 30-min of perceived intensity matched aerobic and
resistance exercise. In the aerobic condition, the participants cycled an ergometer
at 40% peak oxygen uptake. In the resistance condition, they performed resistance
exercise using elastic bands. Before and after an acute bout of physical exercise,
venous samples were collected for the assessment of following biomarkers: adrenaline,
noradrenaline, glucose, lactate, cortisol, insulin-like growth hormone factor 1, and brain-
derived neurotrophic factor. Reaction time decreased following both aerobic exercise
and resistance exercise (p = 0.04). Repeated measures correlation analysis indicated
that changes in reaction time were not associated with the peripheral biomarkers
(all p > 0.05). Accuracy tended to decrease in the resistance exercise condition
(p = 0.054). Accuracy was associated with changes in adrenaline [rrm(18) = −0.51,
p = 0.023], noradrenaline [rrm(18) = −0.66, p = 0.002], lactate [rrm(18) = −0.47,
p = 0.035], and brain-derived neurotrophic factor [rrm(17) = −0.47, p = 0.044] in
the resistance condition. These findings suggest that these peripheral biomarkers do
not directly contribute to reduction in reaction time following aerobic or resistance
exercise. However, greater sympathoexcitation, reflected by greater increase in
noradrenaline, may be associated with a tendency for a reduction in accuracy after
acute resistance exercise.

Keywords: cognition, brain, reaction time, executive function, catecholamines

INTRODUCTION

Acute aerobic exercise at light/moderate intensity improves cognitive performance (Chang et al.,
2012; McMorris, 2021). The effects of acute resistance exercise on cognitive performance have
received increasing attention, and recent reviews have suggested that resistance exercise also

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 853150

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2022.853150
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnbeh.2022.853150
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2022.853150&domain=pdf&date_stamp=2022-03-15
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.853150/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-853150 March 9, 2022 Time: 15:9 # 2

Ando et al. Acute Exercise and Cognition

has the potential to improve cognitive performance (Soga et al.,
2018; Wilke et al., 2019). It is widely speculated that an increase
in arousal is responsible for these improvements in cognitive
performance (Chang et al., 2012; Ando et al., 2020; McMorris,
2021). However, the mechanism(s) responsible for cognitive
improvement following acute aerobic and resistance exercise
remain unclear. Specifically, the role of peripheral biomarkers
following acute physical exercise on cognitive improvement has
not been systematically evaluated.

Adrenaline and noradrenaline are important for the adaptive
response to physiological stressors through the activation of
the sympathoadrenomedullary system (Danese et al., 2018).
In this context, there is some evidence in the literature
that acute physical exercise increases circulating catecholamine
concentrations (Pontifex et al., 2019; McMorris, 2021). Although
peripheral adrenaline and noradrenaline do not easily traverse the
blood-brain barrier (Cornford et al., 1982), increased circulating
adrenaline and noradrenaline activate β-adrenoceptors on the
afferent vagus nerve, which terminates in the nucleus tractus
solitarii (NTS) within the blood-brain barrier (McGaugh et al.,
1996). Noradrenergic cells in the NTS also project to the locus
coeruleus and stimulate noradrenaline synthesis and release to
other regions of the brain (McMorris, 2016). Thus, increased
circulating adrenaline and noradrenaline may, at least in part,
lead to an improvement in executive performance.

Blood glucose is the primary source of energy for the brain
(Gold, 1995) and recent studies indicate that increased blood
lactate after high-intensity interval exercise is associated with
attentional or executive performance (Tsukamoto et al., 2016;
Hashimoto et al., 2018; Herold et al., 2022). These findings
suggest that enhanced lactate metabolism may contribute to
executive improvements. However, the role of blood lactate
following acute light intensity aerobic and resistance exercise
is relatively unknown. Similarly, in response to acute stress,
cortisol is released by the adrenal cortex and is regulated by
the hypothalamic–pituitary–adrenal (HPA) (Costello et al., 2018).
Tsai and colleagues reported that alterations in cortisol level
after resistance exercise are associated with electrophysiological
activity (i.e., P3 amplitude) (Tsai et al., 2014). These findings
suggest that alterations in circulating cortisol level could be linked
to executive performance following acute physical exercise.

Acute resistance exercise increases peripheral insulin-like
growth hormone factor 1 (IGF-1) (Rubin et al., 2005; Rojas
Vega et al., 2010; Tsai et al., 2014, 2018). Acute aerobic (Huang
et al., 2014; Tsai et al., 2018), and resistance (Marston et al.,
2017) exercise increases peripheral brain-derived neurotrophic
factor (BDNF). Rodent studies suggest that increases in IGF-
1 are related to improvements in learning and spatial memory
after a period of training (Ding et al., 2006; Cassilhas
et al., 2012). In contrast to adrenaline and noradrenaline,
BDNF crosses the blood–brain barrier in both directions
(Pan et al., 1998) and it has also been speculated that
elevated BDNF might contribute to improvements in executive
performance/memory after acute physical exercise (Ferris et al.,
2007; Griffin et al., 2011; Piepmeier and Etnier, 2015; Borror,
2017). Indeed, improvement in executive performance was
associated with exercise-related changes in BDNF (Hwang

et al., 2016). However, IGF-1 and BDNF appears to play a
crucial role in angiogenesis, synaptogenesis, and neurogenesis
following long-term exercise (Cotman and Berchtold, 2002;
Voss et al., 2011; Nieto-Estevez et al., 2016) and further studies
are necessary to understand whether transient increases in
IGF-1 and BDNF contribute to an improvement in executive
performance following acute physical exercise.

Acute light aerobic exercise has been suggested to improve
executive performance (Chang et al., 2012), and peripheral
adrenaline and noradrenaline concentrations increase after
acute light aerobic exercise (i.e., 40% maximal oxygen uptake)
(McMurray et al., 1987). If changes in peripheral biomarkers,
such as adrenaline and noradrenaline, are associated with
alterations of the performance of executive functioning, it seems
reasonable to hypothesize that an association between peripheral
biomarkers and executive functioning can be observed even after
light-intensity physical exercise. Lactate production in response
to acute exercise depends on type of exercise (i.e., aerobic or
resistance) (Hashimoto et al., 2021). Acute light aerobic exercise
does not increase blood lactate concentration (Ivy et al., 1980).
Conversely, resistance exercise at low intensity using elastic
bands appear to increase blood lactate (Yasuda et al., 2014).
Furthermore, an acute bout of resistance exercise, but not
aerobic exercise, is a physiological stimulus for acute increases
in IGF-1 (Gregory et al., 2013). These suggest that changes
in some peripheral biomarkers (e.g., lactate and IGF-1) may
be greater after resistance exercise relative to aerobic exercise.
Hence, comparing the effects of aerobic and resistance exercise
on executive performance and peripheral biomarkers can help
to elucidate the common or divergent molecular mechanisms
driving changes in cognitive performance after different types of
acute physical exercises (i.e., aerobic vs. resistance exercises).

Accordingly, this study sought to investigate the relationship
between peripheral circulating biomarkers and executive
performance following acute, intensity matched, aerobic and
resistance training exercise. We tested the hypothesis that: (i)
acute aerobic and resistance exercise would improve executive
performance, (ii) peripheral biomarkers would be associated
with this performance, and (iii) the differential effects of aerobic
and resistance exercise on peripheral biomarkers would delineate
the specific contribution of these biomarkers to improvement in
executive performance.

MATERIALS AND METHODS

Participants
Nineteen healthy males volunteered to participate in this study
[age: 22.5 ± 2.3 year; body weight: 1.71 ± 0.06 m; body mass:
66.2 ± 7.6 kg; peak oxygen uptake (V̇O2peak): 48.2 ± 7.1 ml
kg min−1]. All participants were physically active and met the
following criteria: (i) right handed as assessed by the Edinburgh
Handedness Inventory (Oldfield, 1971); (ii) low-risk status for
physical exercise-related adverse events assessed by Physical
Activity Readiness Questionnaire (Warburton et al., 2011); and
(iii) no history of cardiovascular, cerebrovascular, or respiratory
disease (self-report). All participants gave their written informed
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consent prior to participation. Sample size was calculated using
G-power (version 3.1) (Faul et al., 2009) based on our pilot
data which suggested that a reduction in reaction time (RT)
after aerobic exercise at 40% V̇O2peak was ∼28 ms (Cohen’s day
effect size of 0.4). Accordingly, a minimum of 15 participants
were required to achieve a power of 80% with an alpha of 0.05.
The participants were instructed to abstain from any strenuous
exercise for 24 h and food, caffeine and alcohol for 12 h prior to
the laboratory visit. All experimental procedures adhered to the
standards set by the latest revision of the declaration of Helsinki,
except for registration in a database, and were approved by the
ethics committee of Fukuoka University (2015-09-01).

Cognitive Task
Central executive function was assessed using a Go/No-Go task.
The task was completed on a laptop computer (Let’s note CF-
R4, Panasonic, Osaka, Japan) placed 80 cm from the participants.
The participants performed the cognitive task sitting on a chair.
The details of the cognitive task are described in detail elsewhere
(Ando et al., 2013). Briefly, the participants were required to
either respond (Go trial) or not (No-Go trial) according to the
stimulus. A shift-key on the keyboard was used to perform the
cognitive task. The participants pressed the key using the right
index finger. A total of 30 trials were completed. Both RT and
accuracy of the task were used to assess executive performance.
Omitting a response in a Go trial or performing an incorrect
response in a No-Go trial was regarded as an error trial. Accuracy
of the task was calculated as number of correct response/total
number of trials.

Experimental Procedure
This study employed a within-participants pre-test post-test
crossover comparison in line with the taxonomy provided by
Pontifex et al. (2019). The experiment was performed over
three non-consecutive days with intervals of at least 3 days
between experimental sessions. Throughout the experiment, the
ambient temperature was maintained at 22◦C and the relative
humidity was controlled approximately at 50%. On the first
day, the participants practiced the cognitive task until they were
familiar with the task to minimize the impact of a learning effect.
Thereafter, the participants performed a maximal exercise test
to exhaustion on a cycle ergometer (75XLII, COMBI Wellness,
Tokyo, Japan). After a warm-up period at 10 W for 1 min,
the test was initiated with 20 W increments every minute in a
ramp manner. Participants were instructed to maintain a cadence
of 60 revolutions per min (rpm), and the test was terminated
when they were unable to maintain a cadence of >40 rpm.
Minute ventilation, oxygen uptake, fraction of end-tidal CO2,
and O2 were recorded using a gas analysis system (ARCO-2000,
ARCO System, Chiba, Japan), and V̇O2peak was determined as the
highest value attained over the course of 1 min. Exercise intensity
at 40% V̇O2peak (90 ± 13 watts) was subsequently calculated for
aerobic exercise.

On the second and third days of the experiment, the
experiments were performed on the same time to minimize
circadian effects. At the beginning of the experiment, venous
blood sample was collected from the antecubital vein for the

analyses of adrenaline, noradrenaline, cortisol, IGF-1, and BDNF
analysis. The left earlobe was pricked with a safety lancet and
2 µL capillary blood was collected for glucose and lactate
analysis. Systolic blood pressure and diastolic blood pressure were
measured from the right arm in a sitting position (HEM-705IT,
Omron Healthcare, Kyoto, Japan). Mean arterial pressure (MAP)
was subsequently calculated. Then, the participants performed
the first cognitive task. After the cognitive task, the participants
performed either aerobic or resistance exercise for 30 min.
The order of exercise type was randomly counterbalanced.
Immediately after the exercise, venous and capillary blood
samples were collected, and blood pressure was measured. Then,
the participants performed the second cognitive task.

Several studies have compared the effects of aerobic and
resistance exercise on cognitive performance using a randomized
crossover design (Pontifex et al., 2009; Alves et al., 2012;
Harveson et al., 2016; Dunsky et al., 2017). However, exercise
intensity is one of the key factors that determine the exercise-
cognition interaction (Chang et al., 2012) and these previous
studies did not attempt to match heart rate (HR) between the
aerobic and resistance exercise. This is most likely attributed
to the challenges associated with matching HR during both
aerobic and resistance exercise. Thus, following extensive pilot
tests, we attempted to match ratings of perceived exertion (RPE)
(6–20 Borg scale) (Borg, 1975) between aerobic and resistance
exercise. In the aerobic exercise condition, the intensity was set
at 40% V̇O2peak. Mean HR corresponded to 58.7 ± 6.0% age-
predicted maximal HR in the aerobic condition and 52.7 ± 7.5%
in the resistance condition. Thus, exercise intensity of the aerobic
exercise was considered light according to the ACSM guidelines
(Riebe et al., 2018). In the resistance condition, the participants
performed resistance exercise using elastic bands (Spoband 55,
YKC, Tokyo, Japan). We used elastic bands for the resistance
exercise as they are low-cost, portable, have a low risk of injury,
and are easily accessible. The findings may be practically useful
for exercise prescription at home, or in other settings. The validity
of intervention was confirmed by a previous study (Roh et al.,
2020). The resistance exercise program was designed to use all
major muscle groups (Hofmann et al., 2016). The resistance of the
band was 10.3 kg when the length of the band was doubled. The
participants performed an exercise program incorporating 42
difference exercises (see Supplementary Table 1). This program
targeted the following muscle groups: shoulder, chest, back,
arms, abdomen, hip, and legs, and included three types of
muscle contractions (concentric, eccentric, and isometric) and
both multi- and single joint movements. After brief instruction
for each program, and participants completed 10 reps of each
exercise. The duration of the exercise program was 30 min.

Measurement
Heart rate was recorded continuously using a heart rate
monitor (RS800CX; Polar Electro Oy, Kempele, Finland). RPE
was recorded before and immediately after exercise. Blood
glucose concentration was measured by glucose oxidase method
using blood glucose monitor (Glutest Ace, Sanwa Kagaku,
Nagoya, Japan). Blood lactate concentration was determined
by the lactate oxidase method, using an automated analyzer
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(Lactate Pro, Arkray, Kyoto, Japan). Blood sample volume was
∼15 ml for each measurement, and both plasma and serum
samples were collected. Plasma samples were obtained from
heparinized blood samples by centrifugation at 3,000 rpm for
15 min and stored at −80◦C until analysis. Plasma adrenaline
and noradrenaline concentrations were determined using a
high-performance liquid chromatography system (Shimadzu,
Kyoto, Japan). Serum samples were obtained from the venous
blood by centrifugation at 3,000 rpm for 15 min and stored
at −80◦C until analysis. Serum cortisol was measured by
commercial radioimmunoassay kit (Immunotech, Marseille,
France). Serum IGF-1 concentration was determined using an
immunoradiometric assay (IGF-1 IRMA Daiichi, TFB, Tokyo,
Japan) and a Wallac 1460 Gamma Counter (Wallac, Turku,
Finland). Serum BDNF concentration was measured using
the Quantikine Human BDNF Immunoassay (R&D systems,
Minneapolis, United States). Due to collection issues resulting in
too small sample volumes, the concentration changes of BDNF
from two participants (one in the aerobic condition and one in
the resistance condition) could not be determined. Adrenaline,
noradrenaline, cortisol, IGF-1, and BDNF concentrations were
measured at the SRL Clinical Laboratory (Tokyo, Japan). All
samples were analyzed in duplicate. Intra- and inter-assay
coefficients of variance were 2.8 and 2.6% for adrenaline, 1.0 and
1.4% for noradrenaline, 1.7 and 1.6% for cortisol, and 3.5 and
3.0% for IGF-1.

Data and Statistical Analysis
The distribution of data was assessed using descriptive methods
(skewness, outliers, and distribution plots) and inferential
statistics (Shapiro-Wilk test). We performed a two-way repeated-
measures ANOVA [Exercise Type (aerobic, resistance) × Time
(pre, post)] for all variables, followed by Bonferroni-corrected
paired t-tests for normally distributed data or the Wilcoxon
signed rank test for non-normally distributed data. All the RT
values were plausible, and within the expected ranges, based
on our previous studies (Ando et al., 2013; Komiyama et al.,
2015). Effect sizes are presented as partial eta-squared (ηp

2)
in the main effects and interactions. Statistical analyses were
performed using SPSS (Statistical Package for the Social Sciences)
version 25.0 (SPSS Inc., Chicago, IL, United States). We also
performed repeated measures correlation analysis (Bakdash and
Marusich, 2017; Marusich and Bakdash, 2021) between executive
performance (both RT and Accuracy) and peripheral biomarkers.
Raincloud plots were created using the JASP version 0.16
(JASP team, Amsterdam, Netherlands). Data are expressed as
mean ± SD or median (interquartile range). The significance
level was set at p < 0.05.

RESULTS

Figure 1 illustrates RT and accuracy of the Go/No-Go task.
A significant main effect of Time was observed in RT
[F(1,18) = 5.02, p = 0.038, ηp

2 = 0.22]; however, no effect
of Exercise Type [F(1,18) = 0.07, p = 0.792, ηp

2 = 0.004],
or interaction [F(1,18) = 0.06, p = 0.812, ηp

2 = 0.003] was

observed. There were no significant main effects of Exercise Type
[F(1,18) = 0.41, p = 0.530, ηp

2 = 0.02] and Time [F(1,18) = 0.01,
p = 0.939, ηp

2 = 0.000] on the accuracy of the Go/No-Go task.
However, there was a trend toward a significant interaction effect
[F(1,18) = 4.41, p = 0.050, ηp

2 = 0.20].
Table 1 summarizes HR, RPE, MAP, and peripheral

biomarkers. For HR, we found a significant interaction
between Exercise Type and Time, and HR was significantly
greater during aerobic exercise than that during resistance
exercise (p = 0.004). RPE increased after aerobic and resistance
exercise. Both adrenaline and noradrenaline increased after both
aerobic and resistance exercise, but there were no differences
between the modalities (all p > 0.05). Glucose significantly
decreased after aerobic and resistance exercise (main effect of
Time, p = 0.001). Although lactate increased after both aerobic
(p = 0.045) and resistance (p < 0.001) exercise, it was higher after
resistance exercise (p < 0.001). Cortisol decreased after aerobic
and resistance exercise (main effect of Time, p = 0.002). IGF-1
was elevated following resistance exercise (p = 0.003), but not
after the aerobic exercise (p = 0.36). There was a trend for BDNF
to be higher after exercise (main effect of Time, p = 0.06).

Table 2 displays the results of repeated measures correlation
analysis. Reduction in RT was not associated with changes in any
of the circulating biomarkers (all p > 0.05). Conversely, accuracy
was associated with changes in adrenaline [rrm(18) = −0.51,
p = 0.023], noradrenaline [rrm(18) = −0.66, p = 0.002], lactate
[rrm(18) = −0.47, p = 0.035], and BDNF [rrm(17) = −0.47,
p = 0.044] in the resistance (Figure 2), but not aerobic (all
p > 0.05), condition.

DISCUSSION

The major findings of this study were: (1) executive performance
improved (i.e., reduced RT) after acute RPE-matched aerobic and
resistance exercise, while accuracy of the executive task tended to
be impaired after resistance exercise; (2) acute physical exercise
resulted in alterations in peripheral biomarkers; (3) reduced RT
was not correlated with alterations in peripheral biomarkers;
and (4) accuracy was associated with increases in peripheral
adrenaline, noradrenaline, lactate, and BDNF after resistance, but
not aerobic, exercise.

Previous studies using electroencephalogram suggest
increases in arousal following both aerobic (Kamijo et al., 2004)
and resistance (Tsai et al., 2014) exercise. Acute physical exercise
has also been implicated in altering brain circuits involving
neurotransmitters (Pontifex et al., 2019; McMorris, 2021).
This suggests that executive improvement after acute physical
exercise may be related to increased central neurochemical
activity. We observed reduced RTs and increases in adrenaline
and noradrenaline after both aerobic and resistance exercise.
As the increases in both adrenaline and noradrenaline were
comparable after aerobic and resistance exercise, it is plausible
that the activation of the sympathoadrenomedullary system
was also relatively similar following the two types of exercise.
Nevertheless, alterations in RTs were not correlated with
alterations in peripheral adrenaline and noradrenaline. The

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 853150

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-853150 March 9, 2022 Time: 15:9 # 5

Ando et al. Acute Exercise and Cognition

FIGURE 1 | Raincloud plots showing the distribution of reaction time [(A) aerobic condition, (B) resistance condition] and accuracy of the Go/No-Go task [(C)
aerobic condition, (D) resistance condition]. Plots and lines represent individual data (left). The lower and upper hinges on the boxplots represent the first and third
quartile with the median (center). Illustration of data distribution (right).

catecholamine hypothesis describing the exercise-cognition
interaction is intriguing (Cooper, 1973). However, the specific
mechanism(s) by which acute physical exercise improves
executive performance warrant further investigation. We
observed a tendency for accuracy to be decreased after
resistance exercise (p = 0.054). Furthermore, lower accuracy
was associated with a greater increase in peripheral adrenaline
and noradrenaline after resistance exercise. Although we did
not assess adrenaline and noradrenaline level directly in the
brain, excess noradrenaline appears to impair prefrontal cortex
function including cognitive function in the brain (Arnsten,
2011). Therefore, the present findings may suggest that greater
sympathoexcitation has the potential to be associated with
accuracy in a Go/No-Go task.

Executive performance improves during exercise after
skipping breakfast (Komiyama et al., 2016), which suggests
that energy substrates may compensate for reduced availability
of blood glucose. It is possible that lactate is used by the
brain (Quistorff et al., 2008), and increases in blood lactate
concentration appear to provide energy that contributes to
improvements in attentional and executive performance after
high intensity exercise (Tsukamoto et al., 2016; Hashimoto
et al., 2018; Herold et al., 2022). Conversely, Coco et al. (2009,
2020) have shown that increase in blood lactate concentration
have adverse effects on attentional and executive performances.

We observed no associations between reduction in RT and
alterations in lactate or glucose. The findings are inconsistent
with others (Tsukamoto et al., 2016; Hashimoto et al., 2018;
Herold et al., 2022). It is likely that these heterogeneous
findings are attributable to methodological differences. First,
the exercise intensity was higher (high intensity interval
exercise: 80—90% and 50–60% of maximal workload) in
previous studies (Tsukamoto et al., 2016; Hashimoto et al.,
2018), compared to the intensity used in the current study
(40% V̇O2peak). Given that blood lactate substantially increases
after high intensity, contribution of blood lactate to cognitive
improvement after acute physical exercise may be dependent
on the degree of increase in blood lactate. Second, Hashimoto
et al. (2018) directly measured brain blood lactate uptake, while
blood lactate was measured from the antecubital vein in the
present study. This may also explain the lack of a significant
correlation between executive improvement and increase
in blood lactate.

In the resistance condition, the trend toward impaired
accuracy was modestly associated with blood lactate. Blood
lactate uptake in the brain becomes significantly elevated when
arterial lactate increases, for instance, in response to strenuous
physical exercises (Quistorff et al., 2008). In the present study,
increases in blood lactate was limited up to around 3 mmol L−1

in most cases. Hence, the amount of blood lactate uptake in
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TABLE 1 | Heart rate (HR), MAP, and peripheral biomarkers before and after acute aerobic and resistance exercise.

Variable Aerobic Resistance P-value

Main effect Interaction

Pre Post Pre Post Exercise type Time

HR, bpm 70 ± 5 116 ± 12*** 67 ± 14 104 ± 14*** ## F(1,18) = 7.20,
p = 0.015,
ηp

2 = 0.29

F(1,18) = 355.16,
p < 0.001,
ηp

2 = 0.95

F(1,18) = 8.52,
p = 0.009,
ηp

2 = 0.32

RPE 6 (6–7) 12 (10–13) 6 (6–7) 13 (11–13) F(1,18) = 2.77,
p = 0.114,
ηp

2 = 0.13

F(1,18) = 345.20,
p < 0.001,
ηp

2 = 0.95

F(1,18) = 3.09,
p = 0.096,
ηp

2 = 0.15

MAP, mmHg 88 ± 4 88 ± 8 88 ± 8 86 ± 8 F(1,18) = 0.75,
p = 0.398,
ηp

2 = 0.04

F(1,18) = 0.67,
p = 0.423,
ηp

2 = 0.04

F(1,18) = 1.27,
p = 0.275,
ηp

2 = 0.07

Adrenaline, pg/mL 37 ± 14 69 ± 23 27 (18–59) 59 ± 28 F(1,18) = 1.32,
p = 0.226,
ηp

2 = 0.07

F(1,18) = 98.89,
p < 0.001,
ηp

2 = 0.85

F(1,18) = 1.88,
p = 0.187,
ηp

2 = 0.10

Noradrenaline, pg/mL 351 ± 90 523 ± 170 377 ± 147 548 (437–674) F(1,18) = 2.19,
p = 0.156,
ηp

2 = 0.11

F(1,18) = 23.31,
p < 0.001,
ηp

2 = 0.56

F(1,18) = 0.65,
p = 0.430,
ηp

2 = 0.04

Glucose, mg/dL 83 ± 6 80 ± 7 84 ± 8 81 ± 7 F(1,18) = 0.40,
p = 0.538,
ηp

2 = 0.02

F(1,18) = 14.70,
p = 0.001,
ηp

2 = 0.45

F(1,18) = 0.05,
p = 0.822,

ηp
2 = 0.003

Lactate, mmol/L 1.1 ± 0.3 1.2 (1.1–1.4)* 1.1 (1.0–1.2) 2.8 (2.3–3.2)***
###

F(1,18) = 48.57,
p < 0.001,
ηp

2 = 0.73

F(1,18) = 102.62,
p < 0.001,
ηp

2 = 0.85

F(1,18) = 36.59,
p < 0.001,
ηp

2 = 0.67

Cortisol, µg/mL 15 ± 5 11 (10–15) 16 ± 5 12 (9–19) F(1,18) = 1.18,
p = 0.292,
ηp

2 = 0.06

F(1,18) = 13.31,
p = 0.002,
ηp

2 = 0.43

F(1,18) = 0.008,
p = 0.932,

ηp
2 = 0.000

IGF-1 ng/mL 211 ± 56 209 ± 51 203 ± 45 213 ± 40** F(1,18) = 0.10,
p = 0.752,
ηp

2 = 0.01

F(1,18) = 3.48,
p = 0.079,
ηp

2 = 0.16

F(1,18) = 12.10,
p = 0.003,
ηp

2 = 0.40

BDNF, pg/mL 27,465 ± 6,281 28,694 ± 7,099 29,094 ± 5,695 29,988 ± 7,488 F(1,16) = 1.67,
p = 0.215,
ηp

2 = 0.09

F(1,18) = 3.98,
p = 0.063,
ηp

2 = 0.20

F(1,18) = 0.069,
p = 0.796,

ηp
2 = 0.004

Values are mean ± standard deviation or median (interquartile range).
***p < 0.001, **p < 0.01, *p < 0.05 vs. pre. ###p < 0.001, ##p < 0.01 vs. aerobic exercise.
HR, heart rate; RPE, ratings of perceived exertion; MAP, mean arterial pressure; IGF-1, Insulin-like growth hormone factor 1; BDNF, Brain-derived neurotrophic factor.

TABLE 2 | Repeated measures correlation between cognitive performance (reaction time and accuracy) and peripheral biomarkers.

Variable Aerobic Resistance

Reaction time Accuracy Reaction time Accuracy

Adrenaline rrm(18) = −0.25, p = 0.285 rrm(18) = 0.24, p = 0.31 rrm(18) = −0.36, p = 0.118 rrm(18) = −0.51, p = 0.023*

Noradrenaline rrm(18) = −0.30, p = 0.199 rrm(18) = 0.11, p = 0.641 rrm(18) = 0.15, p = 0.533 rrm(18) = −0.66, p = 0.002**

Glucose rrm(18) = −0.12, p = 0.606 rrm(18) = −0.28, p = 0.224 rrm(18) = −0.10, p = 0.67 rrm(18) = 0.21, p = 0.383

Lactate rrm(18) = −0.24, p = 0.303 rrm(18) = 0.28, p = 0.236 rrm(18) = −0.18, p = 0.437 rrm(18) = −0.47, p = 0.035*

Cortisol rrm(18) = 0.12, p = 0.605 rrm(18) = 0.00, p = 0.996 rrm(18) = −0.12, p = 0.616 rrm(18) = 0.28, p = 0.229

IGF-1 rrm(18) = −0.19, p = 0.423 rrm(18) = 0.03, p = 0.912 rrm(18) = −0.07, p = 0.762 rrm(18) = −0.40, p = 0.081

BDNF rrm(17) = −0.24, p = 0.332 rrm(17) = 0.33, p = 0.163 rrm(17) = −0.01, p = 0.956 rrm(17) =−0.47, p = 0.044*

**p < 0.01, *p < 0.05.

the brain is presumably minimal, and it is less likely that blood
lactate directly impaired the accuracy. Our findings suggest that
there is a large inter-individual variability in accuracy of a task
probing executive functioning after acute resistance exercises (see
Figure 1D). Furthermore, accuracy seems to be more impaired
in individuals who showed more pronounced physiological

alterations (i.e., higher level of peripheral blood lactate) in
response to an acute bout of resistance exercises (see also
Figure 2C). In general, the latter finding fits to the observations of
Coca and colleagues who reported that high levels of lactate have
detrimental effects on attentional and executive performance
(Coco et al., 2009, 2020). However, given the inconclusive results
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FIGURE 2 | Repeated measure correlations between the accuracy of the Go/No-Go task and peripheral circulating biomarkers [(A) adrenaline, n = 19; (B)
noradrenaline, N = 19; (C) lactate, N = 19; and (D) brain-derived neurotrophic factor, N = 18] in the resistance condition. Plots represent individual data. Lines show
the rrm fit for the participants. Same colors represent data from the same participants.

in the literature, further studies are warranted to investigate
whether lactate acts as a possible mediator of exercise-induced
changes in executive performance.

The HPA system is sensitive to acute physiological stress
including exercise (Gaffey et al., 2016; Williams et al., 2019).
In the present study, cortisol decreased after both aerobic
and resistance exercise. Hill et al. (2008) reported that low
intensity aerobic exercise (i.e., 40% maximal oxygen uptake)
decreased circulating cortisol level (Hill et al., 2008). Tsai
et al. (2014) also reported decrease in cortisol level after
moderate resistance exercise (Tsai et al., 2014). The present
results are in line with these observations. We observed no
association between executive improvement and in the change
in cortisol after acute aerobic or resistance exercise. Tsai et al.
(2014) suggested that arousal level might be modulated by
alteration in cortisol. However, alterations in cortisol were not
associated with alterations in executive performance. These
findings suggest cortisol may not be directly associated with
executive performance after acute physical exercise.

Consistent with the literature acute resistance, but not
aerobic, exercise increased peripheral IGF-1 (Rubin et al.,
2005; Rojas Vega et al., 2010; Tsai et al., 2014; Tsai et al.,
2018). BDNF also tended to increase after both aerobic and
resistance exercise. Although this is not always the case,
previous studies have reported that BDNF increases after
exercise at higher intensities (Ferris et al., 2007; Winter et al.,
2007). Therefore, given the relatively low exercise intensity
of the present study, the absence of significant increases in
BDNF are perhaps not surprising. We observed no association
between executive performance and alterations in IGF-1 and
BDNF. Previous studies reported no association between
alterations in IGF-1 and executive performance after acute
resistance exercise (Tsai et al., 2014, 2018). Similarly, increases
in IGF-1 after exhaustive exercise have previously been
shown to be unrelated with executive performance (Sudo
et al., 2017) and alterations in BDNF were not associated
with executive performance and neurophysiological variables
after acute physical exercise (Tsai et al., 2016). In contrast,
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significant associations were observed between alteration in
BDNF and performance in executive and memory tasks after
acute physical exercise (Winter et al., 2007; Lee et al., 2014;
Skriver et al., 2014). Thus, although alterations in BDNF
appears not to be directly associated with improvement in
executive performance after acute physical exercise, BDNF
may contribute to memory performance. Given that IGF-1
and BDNF are associated with angiogenesis, synaptogenesis,
and neurogenesis after long-term exercise (Cotman and
Berchtold, 2002; Voss et al., 2011; Nieto-Estevez et al., 2016),
it is reasonable to think that alterations in IGF-1 or BDNF
may play a minor role in executive performance following
acute physical exercise. Nevertheless, further studies are
required to clarify the contribution of IGF-1 and BDNF
to cognitive performance (e.g., memory performance) after
acute physical exercise. In the resistance condition, the
trend toward an impairment in accuracy was moderately
associated with BDNF. Previous studies indicated that increase
in BDNF is dependent on exercise intensity (Ferris et al.,
2007; Winter et al., 2007). Thus, like the association between
impaired accuracy and blood lactate, accuracy could be more
impaired in those individuals showing more pronounced
alterations in specific biomarkers in response to a given
exercise intensity.

The present study was not without limitation. First, despite
attempting to match exercise intensity between the aerobic and
resistance exercise, there were significant differences in HR (∼12
beats min−1). We also found inter-individual differences in HR
across both conditions. Second, we observed a trend toward an
impairment in accuracy and the association between accuracy
and peripheral biomarkers only in the resistance condition.
Given that dose-response is important to examine exercise-
cognition interaction (Herold et al., 2019, 2020), the results
may be attributable to these differences in relative exercise
intensity. Third, since we did not include a control condition,
we cannot rule out the possibility that time-related factors
including practice effects and circadian change of peripheral
biomarkers. However, the participants were familiarized with
the cognitive task and exercise duration was only 30 min.
Thus, the effects may be small, if any. Fourth, we estimated
sample size based on the primary outcome (i.e., RT). This
might lead to low statistical power to detect the association
between cognitive performance and peripheral biomarkers.
Indeed, we observed no significant correlations between the
reductions in RTs and peripheral biomarkers following acute
aerobic and resistance exercise. The present results suggest
that these peripheral circulating biomarkers are not capable
of indicating the level of executive performance after exercise.
However, the effects of acute physical exercise on cognitive
performance are multifaceted and probably determined by
the integration of several physiological factors. Perhaps, some
of these peripheral biomarkers may contribute to executive
improvement in a synergistic manner. Fifth, we did not
take consider the impact of other potential confounding
factors including nutritional status, habitual physical activity,
and psychological factors (e.g. motivation, concentration, and
fatigue). Finally, we collected venous and capillary blood

samples immediately after aerobic and resistance exercise.
The timing of the measurement is commonly used in the
literature. However, concentrations of peripheral biomarkers
appear to change depending on the time elapsed after
physical exercises (e.g., Griffin et al., 2011; Gregory et al.,
2013; Hashimoto et al., 2018), and the association between
executive performance and peripheral biomarkers are likely to
be influenced by the timing of measurement (e.g., immediately
or 15 min after exercise). This should be considered in
future studies.

CONCLUSION

In conclusion, despite observing a reduction in RT in the
Go/No-Go task following both aerobic exercise and resistance
exercise, we observed no significant correlations between
these reductions and peripheral adrenaline, noradrenaline,
glucose, lactate, cortisol, IGF-1, or BDNF. These results suggest
that alterations in these peripheral circulating biomarkers
do not directly contribute to improved RT after aerobic and
resistance exercise. However, greater sympathoexcitation,
reflected by greater increase in noradrenaline, may be
associated with a tendency for a reduction accuracy after
acute resistance exercise.
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