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The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised

of several distinct regions, some of which act as a hub for stress-induced

changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is

especially affected by chronic exposure to stress, which results in alterations

to the corticotropin-releasing factor (CRF)-signaling pathway, including

CRF receptors and upstream regulators. Stress increases cellular excitability

in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic

current (mEPSC) amplitude, altering the resting membrane potential, and

diminishing M-currents (a voltage-gated K+ current that stabilizes membrane

potential). Rodent anterodorsal and anterolateral BNST neurons are also

critical regulators of behavior, including avoidance of aversive contexts and

fear learning (especially that of sustained threats). These rodent behaviors are

historically associated with anxiety. Furthermore, BNST is implicated in stress-

related mood disorders, including anxiety and Post-Traumatic Stress Disorders

in humans, and may be linked to sex differences found in mood disorders.

KEYWORDS

corticotropin-releasing factor (CRF), bed nucleus of the stria terminalis (BNST),
chronic stress, neuroplasticity, CRF1R and CRF2R, PACAP (pituitary adenylate
cyclase-activating polypeptide), PAC1

Introduction

Mood disorders such as anxiety and depression can be triggered or exacerbated by
stress, so much research has focused on brain regions that are altered by exposure to
chronic or acute stressors. Over the past decade, a region of the extended amygdala,
the bed nucleus of the stria terminalis (BNST), has been established as a key player
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in the stress response. In rodents, the BNST is ventral and
anterior to the amygdala proper. Brain anatomy differs in
humans, where the BNST is surrounded by the internal
capsule, suprascapular pallidal tissue, basal forebrain region, and
preoptic area (Avery et al., 2016). The BNST is interconnected
with several limbic structures. BNST subnuclei receive inputs
from the amygdala, hippocampus, and nucleus accumbens.
BNST integrates these inputs and sends projections to the
hypothalamus via opposing circuits that tightly regulate the
Hypothalamo-Pituitary Adrenal (HPA) axis response (Maita
et al., 2021). These structural and functional connections
between the BNST and the HPA axis are relatively well-
established, suggesting a major role for the BNST in stress-
related behavior. Furthermore, BNST sends projections back to
limbic areas, and these reciprocal connections play a significant
role in learning (Asok et al., 2018) and expressing (Maita et al.,
2021) sustained fear states.

Cellular level studies have demonstrated stress-induced
synaptic changes in BNST neurons. Neuroplastic changes in
the BNST are necessary for fear learning, wherein exposure
to sustained or unpredictable aversive stimuli causes changes
at the synaptic level (Conrad et al., 2011; Haufler et al., 2013;
Goode and Maren, 2017; Goode et al., 2019). Several recent
studies have demonstrated synaptic and electrophysiological
changes after exposure to chronic stress (Makino et al.,
1994; Vyas et al., 2003; Forray and Gysling, 2004; Hammack
et al., 2009; McElligott et al., 2010; Conrad et al., 2011;
Ventura-Silva et al., 2012; Dabrowska et al., 2013, 2016;
Partridge et al., 2016; Snyder et al., 2019; Hu et al.,
2020a,b). Much of these changes occur within corticotropin-
releasing factor (CRF)-expressing neurons. This review will
give a brief overview of the stress-related neural circuitry
and microcircuitry of the BNST, and then will detail studies
investigating synaptic changes in CRF+ neurons in the BNST
during fear learning and after exposure to stress. This link
between stress and neuroplastic changes to CRF functioning in
BNST is important for understanding stress-related disorders
in humans, including mood disorders such as anxiety, post-
traumatic stress disorder (PTSD), and major depressive disoder,
as well as substance abuse disorders. Finally, sex differences
in CRF-signaling in the BNST observed in both rodents and
humans may hint at mechanisms underlying sex differences in
human mood disorder.

Corticotropin-releasing factor and the
stress response

Corticotropin-releasing factor (CRF), a 41 amino-
acid peptide neuromodulator (Rivier et al., 1983), is a
hypophysiotropic hormone that is a major component of
the stress response. At the behavioral level, CRF administered
into the Central Nervous System (CNS) of rodents via

intracerebroventricular (ICV) infusion increases avoidance of
innately aversive contexts, such as bright lights and open spaces
in the open field (OF) test (Sutton et al., 1982). These avoidance
behaviors in rodents are decreased by anxiolytic drugs, and
thus are historically associated with anxiety. Importantly,
exposure to stress similarly causes increased avoidance of
aversive contexts.

CRF-expressing neurons densely populate the
paraventricular nucleus (PVN) of the hypothalamus (De
Souza, 1987). When released from the PVN, CRF (also referred
to as CRH) stimulates the release of adrenocorticotrophic
hormone (ACTH) from the anterior pituitary, ultimately
increasing systemic corticosteroids, glucocorticoids, and
mineralocorticoids, and activating the stress response, a process
thoroughly reviewed by Owens and Nemeroff (1991). CRF also
modulates the HPA axis indirectly, via actions in areas such as
the amygdala and BNST.

Several components of the CRF-signaling pathway are
implicated in the stress-response. CRF can bind at two
G-protein coupled receptor subtypes, CRFR1 and CRFR2,
which are dispersed throughout the brain, including the
BNST, hippocampus, and anterior and lateral hypothalamus
(Chalmers et al., 1995). In the PVN, CRFR1 expression is
surprisingly low (Potter et al., 1994) to moderate, while
CRFR2 is moderately expressed in the medial PVN (Chalmers
et al., 1995). CRFR1-expressing neurons in the PVN receive
inputs from neighboring hypothalamic interneurons, and, to
a lesser extent, the BNST, lateral septum, preoptic area, and
supraoptic nucleus (Jiang et al., 2018). Importantly, experiments
measuring CRFR expression rely on in situ hybridization,
which measures somatic mRNA and not synaptic protein
expression, where CRFRs typically localize (Swinny et al., 2003;
Liu et al., 2004). The CRF signaling pathway is modulated
by upstream regulator pituitary adenylate cyclase activating
polypeptide (PACAP) and its receptor PAC1, which regulates
avoidant behavior (Hammack et al., 2009; Kocho-Schellenberg
et al., 2014). Striatal-enriched protein tyrosine phosphatase
(STEP) is a known upstream inhibitor of CRF, and is also
implicated in the stress-response (Hammack et al., 2009; Hu
et al., 2020a,b).

As reviewed by Shekhar et al. (2005), the basolateral
amygdala is known to exhibit increased sensitivity after stress,
likely due to CRF-driven long term potentiation, promoting
increased avoidance responses. Several recent studies have
suggested the extended amygdala, especially the BNST, also
plays an integral role in mediating the maladaptive effects of
chronic stress (Lebow and Chen, 2016). CRF-producing neurons
are enriched in the anterolateral and anterodorsal subnuclei of
BNST, and there is strong evidence that neuroplasticity in BNST
CRF neurons drive the stress-response (Critchlow et al., 1963;
Karandrea et al., 2000; Bangasser et al., 2005; Perry et al., 2005;
Gourley and Taylor, 2009; Hammack et al., 2009; Dabrowska
et al., 2013; Marcinkiewcz et al., 2016; Partridge et al., 2016).
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Corticotropin-releasing factor in the
bed nucleus of the stria terminalis

Overview
The BNST is innervated by limbic structures including

the amygdala, hippocampus, nucleus accumbens, and medial
prefrontal cortex, as well as the dorsal raphe and ventral
tegmental area (VTA). These inputs synapse onto the highly
complex and heterogenous system of interneurons within
the BNST. BNST subnuclei consist of varying cell types
with diverse molecular signals, electrophysiological responses,
receptor expression, local connectivity, and distal connectivity
(Gungor and Pare, 2016). The majority of BNST neurons
are GABAergic, and either inhibit local BNST projections or
project to other areas, including the hypothalamus (Dabrowska
et al., 2016; Giardino et al., 2018), dorsal raphe nucleus, VTA
(Dabrowska et al., 2016), and nucleus accumbens (Dong et al.,
2001; Taha and Fields, 2005). Given these unique anatomical
connections, Lebow and Chen (2016) proposed a “valence
surveillance” hypothesis where the BNST responds to external
stimuli with either positive or negative valence. The BNST then
integrates this information to regulate avoidance behavior via
hypothalamic projections and reward-driven behavior through
projections to the VTA and nucleus accumbens. As reviewed
by Maita et al. (2021), subnuclei from both the anterior
and posterior regions of the BNST strongly innervate the
hypothalamus, synapsing mainly at two hypothalamic regions
that are known to regulate homeostatic functions, social
behaviors, and the stress response: the lateral hypothalamus
(LH) and the PVN.

The BNST can be divided into anterior and posterior
regions, which can be further split into 12–18 subnuclei
according to anatomical divisions in rats. The anatomy of
the mouse BNST subnuclei are debated because they are less
distinct than what is observed in rats. This review utilizes
anatomical characterizations from Dong and Swanson (Dong
et al., 2001; Dong and Swanson, 2003, 2004a,b, 2006a,b,c). The
posterior BNST is made up of the principal, transverse, and
intrafascicular subnuclei, and is known to regulate mating and
reproductive behaviors, as well as homeostatic functions such as
osmotic regulation and thirst. The anterior region includes the
oval, anteromedial, dorsomedial, magnocellular, anterolateral,
anteroventral/ventral, rhomboid, juxtacapsular, and fusiform
nuclei (Allen Mouse Brain Atlas, 2004). The anterior BNST is
critical for the behavioral consequences of chronic stress, and is
highly connected to the HPA axis (Gungor and Pare, 2016).

The anterior medial group of the BNST includes four
subnuclei that are involved in the stress response and
fear learning. These subnuclei include the anteromedial
nucleus, which receives most of the inputs to the BNST,
notably, glutamatergic inputs from the basomedial amygdala,
glutamatergic inputs from the ventral subiculum implicated in
anxiolysis (Glangetas et al., 2017), and GABAergic inputs from

the medial amygdala implicated in fear conditioning (Haufler
et al., 2013). The dorsomedial and magnocellular nuclei play a
major role in hypothalamus inhibition, via GABAergic outputs
to the PVN (Dong and Swanson, 2006b). Lastly, a population
of glutamatergic neurons in the anteroventral nucleus have an
excitatory effect on PVN (Gungor and Pare, 2016), and may be
important for the valence surveillance role of the BNST (Lebow
and Chen, 2016). However, unlike the anterior BNST, there is no
evidence that CRF signaling regulates the anterior medial group.

Corticotropin-releasing factor-expressing
subnuclei in the anterior bed nucleus of the
stria terminalis

CRF-signaling in the anterior BNST, especially the
anterodorsal and anterolateral regions, is a well-established
component of the stress response (Lebow and Chen, 2016).
CRF-expressing neurons project within the BNST, creating
microcircuit connections between subnuclei, and to external
projections, including the hypothalamus (Figure 1). Both
CRFR1 and CRFR2 receptors are highly expressed throughout
the BNST (Chalmers et al., 1995). The oval nucleus (ovBNST)
is an anterodorsally-located subnucleus populated by a

FIGURE 1

Corticotropin-releasing factor (CRF) and receptor expression in
the anterodorsal region of the BNST. Coronal diagram of the
mouse anterior BNST, based on the Allen Brain Atlas. Blue circles
represent CRF-expressing neurons and green circles represent
CRF receptor-expressing neurons. Arrows indicate projections
while blunted arrowheads indicate inhibitory projections. AC,
anterior commissure; al, anterolateral nucleus; am,
anteromedial nucleus; fu, fusiform nucleus; HYP, hypothalamus;
LS, lateral septum; ju, juxtacapsular nucleus; ov, oval nucleus.
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majority-population of CRF-expressing GABAergic neurons
(Forray and Gysling, 2004). The ovBNST CRF neurons project
to and inhibit areas involved in both avoidance and reward
behaviors, including the LH (Giardino et al., 2018), PVN, dorsal
raphe nucleus (Dabrowska et al., 2016), VTA (Dabrowska
et al., 2016), and nucleus accumbens (Dong et al., 2001; Taha
and Fields, 2005). Dopamine receptor-expressing neurons in
the ovBNST, some of which co-express CRF (Giardino et al.,
2018), are activated by dopaminergic inputs from the VTA
and dorsal raphe nucleus (Park et al., 2013). The ovBNST
has been more highly researched relative to other subnuclei,
likely due to its homogeneity and relatively straightforward
microcircuitry. The rhomboid and juxtacapsular nuclei are
also anterodorsal nuclei populated by GABAergic interneurons
that inhibit CRF+ neurons in the ovBNST and amygdala
(Dong and Swanson, 2003). The juxtacapsular nucleus also
contains GABAergic CRF+ neurons that project to the LH and
to CRF+ ovBNST neurons (Francesconi et al., 2009; Giardino
et al., 2018).

Several key limbic areas also synapse onto the anterolateral
nucleus, including the ventral subiculum, dorsal raphe, and
amygdala (Gungor and Pare, 2016). CRF+ ovBNST neurons
synapse onto CRFR1-expressing anterolateral BNST neurons
(Dong and Swanson, 2004a). Opposing circuitry in the
anterolateral BNST regulates the stress response (Gungor and
Pare, 2016). While most BNST subnuclei are thought to promote
avoidance, stimulation of the anterolateral BNST decreases
corticosterone release and inhibition increases behavioral fear
responses, suggesting a role in inhibiting HPA axis responses
(Gungor and Pare, 2016). The CRF-expressing neurons in
the ovBNST and anterolateral BNST, especially, are critical
components of the rodent response to sustained stress during
both chronic stress and fear learning paradigms.

Some anteroventral neurons are also involved in the
stress response and fear learning. These neurons express
serotonin receptors and receive inputs from the dorsal raphe
nucleus (Marcinkiewcz et al., 2016). Ventrally-located fusiform
nucleus neurons express CRF, releasing it onto the CeA,
PVN, nucleus accumbens, and PAG (Dong et al., 2001).
Unlike the glutamatergic inputs to the ovBNST, CRF neurons
in the fusiform nucleus receive mainly noradrenergic fibers
from the brain stem and locus coeruleus (Dong et al., 2001).
Microcircuitry between BNST subnuclei is complex. Dense
projections from the ovBNST innervate the fusiform nucleus,
and less dense projections innervate the anterolateral BNST,
and rhomboid nucleus. The fusiform nucleus also sends
dense projections, which innervate the dorsomedial BNST and
anterolateral BNST (Dong et al., 2001). CRF-expressing CeA
neurons synapse throughout the ventral subnuclei of the BNST,
releasing CRF onto both CRF- and CRF+ BNST neurons
(Partridge et al., 2016).

The BNST is highly heterogeneous and is modulated by
many other neurotransmitters and neuromodulators beyond

CRF, some of which affect CRF signaling and the stress response
(Kash et al., 2015). For example, opiate-like neuropeptide
Nociceptin/Orphanin FQ has anxiolytic properties (Rodi
et al., 2008), but BNST neurons expressing its precursor,
Prepronociceptin (Pnoc), are mainly GABAergic, and promote
arousal and avoidance behaviors. There is little overlap between
CRF and Pnoc expression in the BNST (Rodriguez-Romaguera
et al., 2020). Dynorphin, a second neuropeptide with opioid
action, may interact synergistically with CRF signaling to
promote avoidance behavior (Bruchas et al., 2009). A third
neuromodulator, calcitonin gene-related peptide (CGRP) may
also act synergistically with CRF in the anterolateral BNST;
CGRP may increase CRF+ anterolateral BNST neuron activity
and CRFR1 inactivation reduces acoustic startle potentiation
caused by CGRP infusion (Sink et al., 2013a; Gungor and Pare,
2014). By contrast, Neuropeptide Y may oppose CRF function
in the BNST (Kash and Winder, 2006). Further investigation
is required to understand how CRF signaling overlaps and
interacts with other neuromodulator signaling pathways in
BNST to mediate the stress response.

Neuroplasticity in the
corticotropin-releasing
factor-signaling pathway

Activation of the whole BNST increases avoidance behavior
(Dong et al., 2001) while lesions decrease stress-induced
avoidance behavior (Hammack et al., 2004). CRF infusion
directly into the BNST also increases avoidance behaviors
(Sahuque et al., 2006). More recent studies using circuit-level
approaches to modulate specific BNST cell populations show
that most BNST neurons, including the CRF+ population,
increase avoidance behaviors when activated (Kim et al., 2013;
Gungor and Pare, 2016; Marcinkiewcz et al., 2016; Giardino
et al., 2018; Giardino et al., 2018; Yamamoto et al., 2018; Hu
et al., 2020a). Optogenetic activation of neurons expressing
dopamine receptor 1 (Drd1), which is reported to colocalize
with CRF in ovBNST neurons, increases avoidance in open
field and elevated plus maze (EPM) tests (Kim et al., 2013; Hu
et al., 2020a) and increases respiration, a physiological sign of
stress (Kim et al., 2013). By contrast, inhibition of these ovBNST
neurons is rewarding, and decreases avoidance and respiratory
rate (Kim et al., 2013). Another population of CRF-expressing
BNST neurons project to the LH. Activation of these neurons
is also aversive (Giardino et al., 2018). These data suggest that
a major mechanism underlying maladaptive behavioral stress
responses may be modulation of BNST CRF + neurons. Much
work has attempted to address this question through a variety
of different behavioral outcomes, stress procedures, and cellular
approaches. The following sections will detail these studies.
Unfortunately, many of these studies only used male rodents
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(unless otherwise specified). As described later in the review,
several components of the CRF signaling pathway may differ
between males and females.

Sustained fear learning recruits the bed
nucleus of the stria terminalis

In addition to avoidance behaviors, stress exposure alters
the fear response through BNST CRF+ neurons. During fear
learning, acute stressors, such as foot-shock, are associated
with conditioned stimuli, such as a cue or context. The rodent
central amygdala (CeA) is activated by cues that predictably and
immediately precede the stressor, such as a tone that plays under
10 s prior to a foot-shock. These cues are said to elicit short-
term or phasic fear. By contrast, the rodent BNST is activated by
unpredictable cues and sustained cues that are said to elicit long-
term or sustained fear. Sustained cues are those that precede
a temporally distant stimulus, such as a tone that warns of
a foot-shock that occurs over 30 s later. Unpredictable cues
inconsistently precede aversive stimuli, such as a tone that only
sometimes precedes shock (Shackman and Fox, 2016; Goode
and Maren, 2017; Goode et al., 2019).

Lesions to the BNST reduce expression of contextual
fear learning in both male and female rats (Urien et al.,
2021). However, the story becomes more complex when
looking at specific subnuclei. Following fear conditioning, both
associated context-exposure and cue-exposure elicit opposite
changes in responsivity from BNST neurons: firing increases
in anteromedial BNST neurons and decreases in anterolateral
BNST neurons (Haufler et al., 2013).

Interestingly, in humans, unpredictable long-duration
threat (Alvarez et al., 2011) and late anticipatory phases prior
to threat (McMenamin et al., 2014) also induce BNST activity.
The disparate functional roles assigned to the rodent CeA and
BNST- phasic and sustained fear, respectively- may not apply
to primates. Short term threat elicits BNST activity in humans
(Choi et al., 2012; Klumpers et al., 2015) and non-human
primates (Shackman and Fox, 2016) and the CeA may also be
activated by sustained fear (Shackman and Fox, 2016).

In rodents, CRF is at least partially responsible for
BNST regulation of fear learning. Male mice exposed to
contextual fear conditioning exhibited higher CRF expression in
anterolateral BNST neurons (Urien et al., 2021). Overexpression
of CRF in the BNST (Sink et al., 2013b) and activation
of a dorsal raphe nucleus projections onto CRF+ BNST
neurons improve cued and contextual fear recall (Marcinkiewcz
et al., 2016). Furthermore, inhibition of CeA projections onto
CRF+ dorsolateral BNST neurons disrupts sustained contextual
fear learning (Asok et al., 2018). These effects are projection-
specific: depletion of CRF from VTA-projecting neurons,
including those in the anterior BNST, increases freezing during
cued fear learning (Dedic et al., 2018). However, VTA CRF
depletion may cause increased sensitivity to stress because

subjects also exhibited higher freezing to an unpaired tone
(Dedic et al., 2018). Acute stressors improve connectivity in
fear-learning pathways, permitting improved acquisition of cue-
shock associations (Goode and Maren, 2017; Goode et al., 2019).
This effect is BNST-dependent, as this enhancement is blocked
when BNST is inhibited during training (Bangasser et al.,
2005). There is also evidence of sex differences in neuroplastic
changes to the BNST during fear learning. Male rats, but
not females, display upregulated immediate early gene, Arc,
in the anterolateral BNST after expression of contextual fear
conditioning (Urien et al., 2021). Future studies must consider
sex differences as a factor when investigating neuroplasticity
after fear conditioning.

Both acute and chronic stress paradigms used in rodents can
alter BNST neuroplasticity. However, acute and chronic stress
paradigms have significantly different translational validity. In
humans, repeated, chronic stress exposures are more likely to
precipitate mood disorders such as anxiety and major depressive
disorder than a single, acute stress exposure. In rodents, chronic
stress paradigms expose rodents to stressful experiences over
periods of several days to weeks. By contrast, acute stressors
are strongly aversive stimuli that, after a limited number of
exposures, produces sensitization to similar or weaker stimuli.

Acute and chronic stress exposures can cause different
neural responses. For example, acute stress enhances fear
learning, but exposure to chronic stress appears to decrease
synaptic strength in the BNST and impair fear learning
(Conrad et al., 2011). Given the better translational validity
for understanding the etiology of mood disorders such as
anxiety and major depressive disorder, we will focus specifically
on the effects of chronic stress in this review. Many chronic
stress paradigms can induce maladaptive behavioral states in
rodents. However, several of these chronic stress paradigms
were designed in, optimized for, and only are effective in inbred
strains of male rodents. Given sex differences in CRF signaling
in the BNST, the next section will explain several historically
used chronic stress paradigms and then highlight more recently
developed paradigms that permit the study of stress in both male
and female rodents.

Chronic stress paradigms

Several different chronic stress paradigms (Table 1) are
used in rodents. These paradigms exploit a variety of innately
stressful conditions to elicit behavioral and neuroendocrinal
stress-responses, including increased avoidance and HPA
axis activation. One often used approach is to mimic
chronic stress via a pharmacological intervention, such as
chronic administration of corticosterone, the primary adrenal
corticosteroid produced in rodents. Chronic corticosterone
administration via subcutaneous injection, slow-release pellet
implantation, (Makino et al., 1994) or drinking water (David
et al., 2009; Gourley and Taylor, 2009; Dieterich et al., 2019)
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TABLE 1 Behavioral paradigms commonly used to induce stress-response in rodents.

Paradigm Summary Stressor type Sex Total duration Daily duration

Chronic restraint stress Daily episodes of restricted movement Physical M+F 5–30 days 5–180 min

Chronic corticosterone Continuous administration of corticosterone
dissolved in drinking water

Pharmacological M+F 21–35 days O/N

Chronic variable mild stress Daily exposure to randomized micro- stressors,
i.e., predator odor, restraint stress, poor housing

Varies M+F 14–60 days 3–4 h

Chronic non- discriminatory social
defeat stress

Daily physical bouts with aggressor mouse and
co-habituation

Social, physical,
emotional

M+F 10 days 5–10 min
+ O/N

Social instability stress Unstable social hierarchy through cage-mate
changes

Social M+F 30 days O/N

Chronic social defeat stress Daily physical bouts with aggressor mouse and
co-habituation

Social, physical M 10 days 5–10 min
+ O/N

Vicarious social defeat stress Female mice witness social defeat of male mice Social, emotional F 10 days 5–10 min

Paradigms vary by methodology, type of stressor, duration and in which sex the paradigm effectively elicits a stress-response. More invasive techniques described in the main text. F,
female; M, male; O/N, overnight.

results in increased avoidance behaviors and increased CRF
levels. However, corticosterone administration only causes these
behavioral effects in male rodents (Mekiri et al., 2017; Yohn
et al., 2019).

Another paradigm is chronic immobilization or restraint
stress (RS). Chronic RS is a simple, easily replicated physical
stress paradigm, wherein rodents are subject to daily episodes
of restricted movement. The paradigm is easily adjusted;
episode duration typically varies between 15 and 180 min
and the number of exposures ranges between 5 and 30 days
(Pare and Glavin, 1986). Other widely used paradigms, such
as chronic variable mild stress (CVMS) and unpredictable
chronic mild stress (UCMS) use exposure to changing daily
stressors, so subjects do not habituate to any one stimulus.
Examples include social stressors such as singly housing rodents
or introducing unfamiliar cage-mates to disrupt the existing
hierarchy of the cage, and physical stressors such as altering
light/dark schedules, restricting food or water, or creating
aversive housing conditions by wetting the bedding or tilting
the cage. Repeated cage-changes, which removes familiar odors
and nests, is also a commonly used stressor as are exposure
to predator sounds or odors (Hill et al., 2012; Monteiro et al.,
2015; Willner, 2017; Antoniuk et al., 2019). The CVMS and
UCMS paradigms utilize a varying schedule of these short-term
stressors, typically one or two different stressors per day over
the course of weeks. Other variations of these paradigms also
exist that use the same stressors repeatedly and/or over long
periods of time.

Early life stress paradigms also use a variety of stressors on
rodents within their first weeks, to reliably produce a stressed
phenotype later in life. Stressors include early weaning, maternal
separation, handling, and impoverished housing environments
(Schmidt et al., 2011). Early life stress, as well as forced swim
stress, during which rodents undergo daily placement in an
inescapable swimming chamber, more reliably alter motivated
or reward-driven behavior, rather than avoidance behaviors
(Yankelevitch-Yahav et al., 2015). Importantly, CVMS, UCMS,

early life stress, and forced swim stress can be used to produce a
stress response in both male and female rodents.

Another behavioral chronic stress paradigm, Chronic Social
Defeat Stress (CSDS), uses social and physical stressors by
instigating daily physical defeat bouts by larger, aggressive
mice, and then co-housing mice with their aggressor, separated
by a divider (Golden et al., 2011). CSDS results in both
susceptible and resilient phenotypes in inbred C57BL6/J male
mice, which may in part represent the spectrum of human
responses to stressors. After exposure to stress, susceptible male
mice exhibit increased social avoidance, spending less time with
a novel rodent in the Social Interaction Test (SIT) compared to
control counterparts. Resilient subjects have undergone CSDS
but behave comparably to controls in the SIT and other tests
of avoidance and do not exhibit stress-induced hippocampal
neuroplasticity seen in susceptible subjects (Lee et al., 2021).
Future experiments should consider whether neuroplasticity in
CRF+ BNST neurons affects stress resilience after social stress.

CSDS works well in male rodents, but aggressive males
will more often display mounting behaviors when presented
with a female intruder. Female-female aggression can be elicited
via ovariectomy of female mice (DeBold and Miczek, 1984).
Aggressor male mice can also be provoked to attack females
via chemogenetic activation of the ventral medial hypothalamus
(Takahashi et al., 2017) or application of male urine to the
anogenital region (Harris et al., 2018). Most recently, a variant
of CSDS called Chronic Non-discriminatory Social Defeat Stress
(CNSDS) was developed to simultaneously perform chronic
stress experiments in both male and female rodents. In CNSDS,
aggressor mice are driven to attack both sexes when both a
male and a female mouse are simultaneously placed into their
home cage (Yohn et al., 2019). Importantly, CNSDS results in
susceptible and resilient phenotypes in both sexes, and increases
avoidance while decreasing reward behaviors (Yohn et al., 2019;
Dieterich et al., 2021).

Another paradigm that is effective in both sexes,
Social Instability Stress, elicits chronic stress by creating

Frontiers in Behavioral Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.903782
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-903782 July 27, 2022 Time: 15:25 # 7

Maita et al. 10.3389/fnbeh.2022.903782

an unpredictable social environment via repeated changes
to the social hierarchy, housing unfamiliar mice together
(Schmidt et al., 2007, 2010). Another paradigm is Vicarious
Defeat Stress, where mice can be exposed to emotional
and social, but not physical, stressors by observing a male
undergoing CSDS and then being co-housed with the
observed aggressor, but separated by a clear, perforated
divider (Sial et al., 2016).

Stress-induced neuroplasticity in the
bed nucleus of the stria terminalis

Several of the chronic stress paradigms described above
lead to long-lasting behavioral changes in part due to stress-
induced alterations to BNST neurons. Chronic RS leads to
neuroplastic changes, including increased BNST volume and
dendritic arborization, that facilitate avoidance behavior in male
rats (Vyas et al., 2003). Different chronic stress paradigms can
also cause upregulation of glutamate (Dabrowska et al., 2013;
Hu et al., 2020b), GABA (Ventura-Silva et al., 2012), and NMDA
(Ventura-Silva et al., 2012; Dabrowska et al., 2013) receptors in
the BNST, altering responses to both excitatory and inhibitory
inputs (Ventura-Silva et al., 2012). Both chronic social
isolation and chronic corticosterone administration induce
long term depression (LTD) in glutamatergic anterolateral
BNST neurons and blunt long term potentiation (LTP)
in anterodorsolateral BNST neurons (Conrad et al., 2011).
Therefore, chronic stress exposure may activate a positive
feedback mechanism by reducing activity in the anterolateral
and anterodorsolateral BNST, thereby disinhibiting CRF release
from the PVN, and ultimately decreasing corticosterone
release from the anterior pituitary (Gungor and Pare, 2016).
However, electrophysiological responses to chronic stressors
are heterogenous; in lateral regions of the BNST, stress
differentially dysregulates norepinephrine, acetylcholine, and
glutamate-facilitated LTD (McElligott et al., 2010). Importantly,
chronic stressors induce LTP in CRF+ neurons, which act as
interneurons that disinhibit the hypothalamus by increasing
inhibition of other GABAergic inputs to the hypothalamus
(Gungor and Pare, 2016; Figure 2).

Different chronic stress paradigms and early-life stress can
lead to long-lasting increases of CRF and complex alterations
in CRF signaling components in BNST. Corticosterone
administration increases CRF mRNA in the dorsolateral and
ventral BNST (Makino et al., 1994), while CVMS and early
life stress result in increased CRF signaling in the BNST of
male mice (Forray and Gysling, 2004; Hu et al., 2020a,b). CRF
binds at two receptor subtypes, CRFR1 and CRFR2, which
are Gs-protein coupled membrane receptors. Using in situ
hybridization, Ventura-Silva et al. (2012) found that UCMS
decreases CRFR1 mRNA in the dorsomedial and fusiform nuclei
of the BNST, but increases CRFR2 mRNA in the principal

nucleus of male mice. The changes in levels of these receptors
may serve to balance the stress response. One theory is that
CRFR1s are associated with an increased endocrine stress-
response, while CRFR2s are associated with deceleration of
the stress response. Therefore, conclusions from Ventura-Silva
et al. suggest stress decreases CRF-signaling sensitivity. Several
studies provide evidence for this theory; CRFR1 antagonism in
the BNST reliably blocks the behavioral effects of CRF infusion
(Sahuque et al., 2006) and chronic (Hu et al., 2020a) and
early life stress (Hu et al., 2020a,b), while CRFR2 antagonism
does not block CRF-infusion induced avoidance behavior in
the EPM (Sahuque et al., 2006). In fact, CRFR2-deficient mice
demonstrate increased avoidance behavior (Bale et al., 2000).
ICV infusion of a CRFR2 antagonist increases cFOS and CRF
expression in fear-related circuitry (Skorzewska et al., 2011).
Opposing evidence, however, indicates that CRFR2 activity may
be aversive and increase avoidance behavior. When a CRFR2
antagonist is co-infused with CRF into the BNST, it blocks
CRF-induced avoidance in the conditioned place preference
test (Sahuque et al., 2006). ICV administration of a CRFR2
antagonist attenuates RS-induced avoidance in rats undergoing
ethanol withdrawal (Valdez et al., 2003). CRFR2 activity in the
amygdala and hypothalamus activates the HPA axis under basal
conditions and heightens RS-induced avoidance (Jamieson et al.,
2006). Therefore, further investigation is needed to understand
the differential roles of CRF receptors and their interactions with
stress.

A compensatory negative feedback system may further
complicate the interactions between CRF, CRFRs, and stress,
because CRFRs are prone to upreglation and downregulation,
dependent on CRF concentrations. CRF knockout in VTA-
projecting neurons increases CRFR1 in the VTA of male mice
(Dedic et al., 2018). In the BNST, overexpression of CRF
decreases CRFR1 levels (Sink et al., 2013b) and CRFR1 mRNA
expression (Regev et al., 2011). CRF-binding in BNST may
induce both internalization and downregulation of CRFR1
(Perry et al., 2005). Experimental questions about how stress
alters CRFRs should consider how stress indirectly changes
CRFR expression via fluctuations in CRF. Importantly, all of
these described experiments used male rodents. As discussed in
later sections, CRF receptor expression differs between sexes,
so further investigation is required to understand how sex
differences affect CRF signaling.

Binding at either CRFR1 or CRFR2 triggers signal
transduction pathways resulting in increased protein kinase A
(PKA) production (Litvin et al., 1984; Chen et al., 1986; Battaglia
et al., 1987). PKA-signaling pathways may lead to activation
in the BNST through phosphorylation of glutamate receptors
(Uematsu et al., 2015). Importantly, early life stress and CVMS
paradigms result in increased CRF and PKA expression in the
BNST (Hu et al., 2020a,b). PKA antagonism ameliorates the
effects of CVMS on avoidance behaviors (Hu et al., 2020a).
Taken together, evidence suggests that PKA is important for
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FIGURE 2

Proposed mechanism of stress-induced neuroplasticity in the anterodorsolateral BNST. In the stressed brain, alterations to CRF G-protein
coupled receptors alter sensitivity to CRF binding in undetermined ways. BNST CRFR1 expression is reduced and CRFR2 expression is increased,
resulting in altered sensitivity to CRF binding from external projections, such as the CeA. Binding triggers a signaling cascade resulting in
increased PKA, which promotes phosphorylation of glutamate receptor GluR1 and phosphorylation of the KCNQ channel. These parallel
phosphorylation pathways increase excitability in the ovBNST by increasing mEPSCs and resting membrane potential, respectively. A second
pathway regulates CRF signaling, wherein stress increases CRF mRNA, increases upstream regulator PACAP and its receptor PAC1, and
decreases upstream inhibitor STEP mRNA and protein production. Increased excitability in ovBNST likely increases GABAergic inhibition of
anterodorsal BNST subnuclei that project to the hypothalamus, disinhibiting the PVN. The PVN then releases increased levels of CRF to the
anterior pituitary, which activates the stress response in the body. adBNST, anterodorsal BNST; CRF, corticotropin-releasing factor; CRFR1, CRF
receptor 1; CRFR2, CRF receptor 2; GluR1, glutamate receptor 1; ovBNST, oval nucleus of the BNST; PACAP, pituitary adenylate cyclase
activating polypeptide; PAC1, PACAP receptor 1; PKA, protein kinase A; PVN, paraventricular nucleus of the hypothalamus; STEP,
striatal-enriched protein tyrosine phosphatase.

the regulation of stress-induced synaptic changes that produce
long-lasting behavioral changes.

Another component of CRF signaling involves CRF-binding
protein (CRF-BP), which is a membrane-associated protein
proposed to bind to and dimerize CRF, clearing it from the
bloodstream (Behan et al., 1995). The function of CRF-BP, and
its interaction with stress, is not fully understood. CRF-BP-
deficient mice exhibit increased baseline avoidance behavior and
a slowed return to homeostasis after exposure to stress (Karolyi
et al., 1999). Klampfl et al. (2016) found that inhibition of
CRF-BP in the BNST impairs maternal care in lactating dams
exposed to stress. This finding promotes a simple mechanism,
where inhibition of CRF-BP increases free CRF. However,
opposing evidence found by Vasconcelos et al. (2019) suggest
the role of CRF-BP is not straightforward: CRF-BP antagonism
restores social approach in male rats exposed to intermittent
social defeat. This finding supports an alternate hypothesis that
CRF-BP amplifies CRF signaling, perhaps by lengthening the
half-life of CRF or promoting binding at CRFRs (Ketchesin
and Seasholtz, 2015). Research on CRF-BP in the BNST is
lacking, and future studies are required to determine whether
these differences are due to dual mechanisms, compensatory
mechanisms, sex differences, or another explanation. Future
investigations are also required to determine whether stress
affects the levels of CRF-BP in the BNST.

Stress also alters CRF-signaling via interactions with the
upstream regulators PACAP and STEP. PACAP binds to
its receptor PAC1 to act as an upstream regulator of the
CRF signaling pathway. PACAP signaling is necessary and

sufficient for the behavioral and endocrine stress-response
and regulates avoidance behavior (Hammack et al., 2009;
Kocho-Schellenberg et al., 2014). Importantly, CVMS increases
PACAP and PAC1 in BNST of male rodents (Hammack et al.,
2009; Hu et al., 2020a,b). Furthermore, PACAP signaling
increases avoidance behavior and endogenous corticosterone
levels while PAC1 antagonism reduces avoidance behavior
(Roman et al., 2014). STEP acts as an upstream regulator
by inhibiting CRF-signaling. CVMS decreases STEP levels
in BNST (Hammack et al., 2009; Hu et al., 2020a,b) and
chronic RS reduces STEP mRNA (Dabrowska et al., 2013)
in anterolaterally located subnuclei. RS-induced decreases in
STEP result in increased LTP in BNST neurons of male rats
(Dabrowska et al., 2013), likely via attenuation of pathways
that end in dephosphorylation of NMDARs (Olausson et al.,
2012). Ultimately, stress increases CRF expression in the BNST
by increasing upstream promotor PACAP and PAC1, while
decreasing inhibitor STEP.

The described stress-induced changes to the CRF-signaling
pathway are at least partially responsible for changes to
BNST neuronal excitability. Overall, evidence indicates that
stress increases excitability of BNST neurons. RS-induced
neuroplasticity alters LTP firing rates in CRF+ BNST neurons
(Dabrowska et al., 2013). Chronic unpredictable or variable
stress in male rodents increases excitability in anterolateral
and anterodorsolateral regions of the BNST, as measured
by increased amplitude of miniature excitatory postsynaptic
currents (mEPSC; Hu et al., 2020a,b) and evoked inhibitory
postsynaptic currents (IPSCs; Partridge et al., 2016). Chronic
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RS also generates increased evoked excitatory postsynaptic
currents (Dabrowska et al., 2013). Both chronic RS and CVMS
cause alterations to the resting membrane potential (Snyder
et al., 2019; Hu et al., 2020a,b), and decrease M-currents (Hu
et al., 2020a,b), which help maintain membrane homeostasis
via potassium channels. This stress-induced excitability can
also be observed by increased expression of the neuronal
activity marker cFOS expression in BNST (Ventura-Silva
et al., 2012; Hu et al., 2020a,b). Taken together, these data
demonstrate that stress exposure results in long-lasting changes
in synaptic properties of BNST neurons through activating
CRF signaling. CRF in the absence of stress (repeated ICV
infusions) decreases LTP of intrinsic neuronal excitability,
decreasing firing threshold and increasing temporal fidelity
of firing, in the juxtacapsular BNST (Francesconi et al.,
2009). Chronic unpredictable stress also increases connectivity
between CRF+ neurons in the CeA and BNST (Partridge
et al., 2016). Therefore, increased stress-induced excitability
in CRF+ BNST neurons may also sensitize fear circuitry,
driving increased avoidance and startle behaviors historically
associated with anxiety.

In summary, chronic stress can result in long-lasting
increases in BNST CRF expression, modify CRFR density
in the BNST, and alter components of CRF-signaling to
ultimately increase neuronal excitability. Increased activation
of GABAergic CRF+ BNST neurons likely increases inhibition
of other BNST projections to the hypothalamus, ultimately
disinhibiting the HPA axis (Figure 2). These stress-induced
synaptic changes to CRF+ neuron activity result in long-lasting
behavioral changes in rodents.

Implications for
corticotropin-releasing factor bed
nucleus of the stria terminalis in
reward processing

In addition to regulating avoidance behaviors, neuroplastic
changes to CRF + BNST neurons may also have implications for
reward-related behaviors. Stimulation of adBNST projections
to the VTA (Dong and Swanson, 2004a) is rewarding, and
promotes place-preference (Kim et al., 2013). Some evidence
indicates that CRF is implicated in the valence surveillance
role of the BNST, by both promoting avoidance and regulating
reward circuitry. CRF+ BNST neurons synapse at dopaminergic
VTA neurons, which express both CRFR1s (Dedic et al., 2018)
and CRFR2s (Rinker et al., 2017). CRF released from the
BNST plays a neuromodulatory role in the VTA, inducing
bimodal electrophysiological responses in VTA neurons (Wanat
et al., 2013; Williams et al., 2014). More specifically, CRFR1-
binding in VTA drives an increase in EPSCs at low CRF
concentrations and CRFR2-binding drives attenuation of EPSCs
and potentiation of IPSCs at high CRF concentration (Williams

et al., 2014). Behaviorally, CRF infusion to the VTA reduces
motivation in a progressive ratio task (Wanat et al., 2013)
and reduces reward-evoked dopamine release from the nucleus
accumbens. However, simultaneously stimulating the BNST
reverses this effect on dopamine release (Wanat et al., 2013).

CRF is also implicated in multiple processes that drive drug
and alcohol abuse: negative valence avoidance behavior during
withdrawal, and positive valence reward-processing behavior
during drug approach and drug use. CRF+ BNST inputs
to the VTA at CRF1Rs are necessary for binge-like ethanol
consumption in a mouse model of ethanol dependence (Rinker
et al., 2017). Interestingly, some evidence indicates that stress
exposure in rodents results in neuroplastic changes similar to
those found in rodent models of drug and alcohol abuse, as
reviewed by Cui et al. (2013) and Harris and Winder (2018). Like
chronic stress, ethanol withdrawal increases CRF in the BNST
(Olive et al., 2002). CRFR2 binding typically reduces EPSCs and
amplifies IPSCs, which are diminished in rat VTA neurons after
chronic cocaine self-administration (Williams et al., 2014). Both
chronic stress and alcohol exposure disrupt norepinephrine
signaling at CRF neurons in the BNST (Snyder et al., 2019).
Changes at the synaptic level, such as reduced activity in
CRF+ VTA-projecting BNST neurons (Silberman et al., 2013)
may also lead to long-lasting mood-related symptoms of
withdrawal known to drive excessive alcohol intake.

Bed nucleus of the stria terminalis
neuroplasticity in humans

Direct evidence of neuroplasticity in the human BNST is
lacking, due to difficulties using non-invasive techniques to
measure synaptic changes in deep brain regions. Diffusion
Tensor Imaging (DTI) and functional Magnetic Resonance
Imaging (fMRI) can be used to measure activity and functional
connectivity of the BNST (Avery et al., 2014). Some studies
measure differences in brain activity at baseline versus during
exposure to fearful stimuli. Similar to what is observed in
rodents, threat exposure elicits BNST activity in humans
(Alvarez et al., 2011; Choi et al., 2012; McMenamin et al., 2014;
Klumpers et al., 2015).

Other studies comparing subjects with stress-related mood
disorders to healthy control subjects demonstrate that BNST
is associated with maladaptive stress in humans. Humans with
diagnosed anxiety disorders (Buff et al., 2016, 2017; Brinkmann
et al., 2017) or high anxiety scores (Brinkmann et al., 2018)
exhibit amplified BNST activity when exposed to unpredictable
threat. Unpredictable threat cues also elicit greater BNST
response in subjects with high social anxiety scores and
in veterans with PTSD, when compared to less anxious
controls. When shown unpredictably neutral or threatening
images, subjects with PTSD or social anxiety disorder show
greater connectivity between the BNST and the hippocampus,
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amygdala, insula (Feola et al., 2021b), ventromedial prefrontal
cortex (Clauss et al., 2019; Feola et al., 2021b) and cingulate
cortex (Clauss et al., 2019), compared to control subjects.
Altered BNST connectivity is also associated with other
psychiatric disorders, including schizophrenia (Feola et al.,
2021a) and alcohol use disorder (Flook et al., 2021).

Finally, increased functional connectivity is found in
caudate and striatum areas that are highly associated with
the BNST upon threat exposure; however, spatial resolution
limitations make it unclear whether these changes are occurring
in BNST (McMenamin and Pessoa, 2015). Bi-directional
changes in efficacy in functional connections may indicate
neuroplasticity at these regions in humans, though further
investigation is required to determine whether changes are
localized at the BNST.

Sex differences in
corticotropin-releasing factor
signaling in the bed nucleus of the
stria terminalis

The BNST in male and female rodents is anatomically
diverse, varying in size, receptor affinity and expression,
cell type, and interconnectivity. Sex differences in synaptic
properties of BNST neurons may help explain behavioral
differences after stress exposure in male and female rodents.

Rodent studies have demonstrated gonadal hormones can
promote divergence in BNST size. Although the total BNST
volume does not differ between sexes, several subdivisions show
bidirectional sexual dimorphism in volume and neuron number.
Suppression of gonadal hormones during development, via
orchiectomy or androgynization shortly after birth, decreases
sex-dependent size differences in medial anterior and medial
posterior regions of the rat BNST which are typically smaller and
larger, respectively, in males (del Abril et al., 1987; Guillamon
et al., 1988; Segovia and Guillamon, 1993). Neuron number is
also greater in the anterolateral region of female rats and altering
gonadal hormone levels through androgynization results in a
decrease in neuron numbers to below those of control males
(Guillamon et al., 1988). Gonadal hormones not only indirectly
influence BNST size but play a direct role in BNST action. In the
BNST of male rats, estrogen receptor (ER) α, (Wu et al., 2009),
aromatase (Tabatadze et al., 2014) and androgen receptors
(Herbison, 1995; Brock et al., 2015) are more densely expressed
relative to female rats. Testosterone action is not only limited
by decreased AR expression, but cytochrome P-450 aromatase
in females is less efficient at converting testosterone to estrogen
(Roselli et al., 1996).

Disparities in receptor affinity in CRF + BNST neurons
help to further explain differences in sensitivity to stress and
stress hormones. The Gsα subunit of G-proteins couples more
effectively with CRFR1 in females, compared to males, causing

a larger neuronal response (Bangasser et al., 2010). Conversely,
CRF binding at CRFR2 is greater in some subnuclei in males,
which may have stress-suppressive effects (Weathington et al.,
2014). Receptor affinity may explain greater sensitivity to stress,
and more intense and persistent HPA-axis activation in females
(Critchlow et al., 1963; Kant et al., 1983; Williams et al.,
1985; Brett et al., 1986). This hypothesis is complicated by
evidence that stress-induced corticosteroid release is greater in
male rats, relative to females (Karandrea et al., 2000, 2002).
Other components of the CRF signaling pathway differ between
sexes, including whole-brain differences that likely affect the
dense population of CRF neurons in the BNST. Female rats
express higher levels of PAC1 mRNA compared to males.
PAC1R antagonism affects female, not male, cued fear learning
(Kirry et al., 2018), and plays a significant role in stress-
induced plasticity (Hammack et al., 2009; Hu et al., 2020a,b).
Sex-specific sensitivity in PACAP signaling is also evident in
humans, wherein female, compared to male, PTSD patients have
a stronger correlation between the risk and severity of PTSD and
the single nucleotide polypeptide (SNP) for CRFR2 and the SNP
for PACAP (Ressler et al., 2011).

The human BNST also exhibits differences based on sex as
defined by the type of gonads present, a phenomenon that may
explain why cisgender women are twice as likely to develop
mood disorders, including PTSD (Breslau, 2001; Kessler et al.,
2003), a mood disorder highly associated with the BNST (Lebow
and Chen, 2016). The BNST in men and women differs in
size. One subnucleus of the human BNST, the central nucleus,
is larger in males and contains twice as many somatostatin
neurons relative to females. Most interestingly, transgender
women (assigned male at birth) have a female-typical, smaller
central nucleus with fewer somatostatin neurons, and vice
versa (Zhou et al., 1995; Kruijver et al., 2000; Pol et al.,
2006; Swaab, 2007). However, these studies cannot remove the
confounding factor of elevated chronic psychosocial stressors
experienced by trans individuals, which would influence BNST
connectivity and neuroplasticity. There also appear to be sex
differences in functional connectivity; DTI and fMRI indicate
that 76% of brain structures have greater BNST structural
connectivity in females, rather than males (Avery et al., 2014).
Sex differences are evident in the BNST and in key components
of stress-induced neuroplasticity, including CRF, PACAP, and
their associated receptors. Sex differences at baseline may result
in differing synaptic sensitivity to stress. Further investigation
is required to understand how stress differentially alters the
synapse of BNST CRF+ neurons in males and females.

Summary

Exposure to chronic stress results in long-lasting changes
to synaptic properties of CRF-expressing neurons in the BNST.
This neuroplasticity is associated with behavioral changes in
rodents, including increased avoidance of aversive contexts.
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These behaviors are historically associated with anxiety and
are sensitive to anxiolytic drug interventions. The cross-species
applications of this mechanism are evident, as stress and
anxiety are also associated with the human BNST and CRF-
signaling pathways. Research on stress-induced neuroplasticity
is timely, especially as the current worldwide COVID-19
pandemic, and the resulting economic, financial, social and
healthcare troubles, have increased chronic stress-related mood
disorders such as anxiety and depression (Lee et al., 2020;
Salari et al., 2020). This increase further intensifies the already
urgent need for research on the neural circuitry responsible
for chronic stress-related maladaptation (Binder and Nemeroff,
2010). Currently, there is evidence that deep brain stimulation of
the BNST ameliorates stress-related mood disorders, including
obsessive compulsive disorder (Winter et al., 2018), anorexia
nervosa, and major depressive disorder (Blomstedt et al., 2017).
Therapeutic approaches that more specifically disrupt stress-
induced changes to CRF signaling in the BNST could prevent
or ameliorate the long-term effects of chronic stress exposure
(Sanders and Nemeroff, 2016).
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