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Emotion regulation (ER) strategies can influence how a�ective predictions

are constructed by the brain (generation stage) to prearrange action

(implementation stage) and update internal models according to incoming

stimuli (updating stage). However, neurocomputational mechanisms by which

this is achieved are unclear. We investigated through high-density EEG

if di�erent ER strategies (expressive suppression vs. cognitive reappraisal)

predicted event-related potentials (ERPs) and brain source activity across

a�ective prediction stages, as a function of contextual uncertainty. An S1-S2

paradigm with emotional faces and pictures as S1s and S2s was presented

to 36 undergraduates. Contextual uncertainty was manipulated across three

blocks with 100, 75, or 50% S1-S2 a�ective congruency. The e�ects of ER

strategies, as assessed through the Emotion Regulation Questionnaire, on

ERP and brain source activity were tested for each prediction stage through

linear mixed-e�ects models. No ER strategy a�ected prediction generation.

During implementation, in the 75% block, a higher tendency to suppress

emotions predicted higher activity in the left supplementary motor area

at 1,500–2,000ms post-stimulus, and smaller amplitude of the Contingent

Negative Variation at 2,000–2,500ms. During updating, in the 75% block, a

higher tendency to cognitively reappraise emotions predicted larger P2, Late

Positive Potential, and right orbitofrontal cortex activity. These results suggest

that both ER strategies interact with the levels of contextual uncertainty by

di�erently modulating ERPs and source activity, and that di�erent strategies

are deployed in a moderately predictive context, supporting the e�cient

updating of a�ective predictive models only in the context in which model

updating occurs.
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Introduction

The ability to regulate emotions is crucial to maintaining

a healthy emotional life and psychological wellbeing, and to

fostering successful social relationships. Let us imagine, for

example, that your boss is mad and yelling at you because

you didn’t deliver an assignment on time. In such a situation,

effectively controlling one’s emotions (i.e., not yelling back

at your boss) can make a difference in achieving a desirable

outcome (i.e., not getting fired).

Emotion regulation (ER) is the product of the interaction

between the person who is regulating their own emotions,

the situation in which ER is achieved, and the regulation

strategy they are using (Doré et al., 2016). People systematically

differ in their use of ER strategies, with effects on experience

and expression of emotions, interpersonal functioning, and

psychological wellbeing (Gross and John, 2003). ER strategies

also modulate the neurophysiological correlates of affective

processing, measured in terms of both event-related potentials

(ERPs) and brain activity in functional magnetic resonance

imaging (fMRI; Ochsner and Gross, 2005; Hajcak et al., 2010;

MacNamara et al., 2022). ER strategies can be used habitually

(i.e., systematic use, stable among different situations) or

circumstantially (i.e., depending on the context or on specific

instructions). In the first case, they are typically measured with

self-reported questionnaires such as the Emotion Regulation

Questionnaire (ERQ; Gross and John, 2003). In the second

case, they are studied by means of ER paradigms. In these

tasks, participants are usually instructed to use specific ER

strategies when presented with affective stimuli (often pictures

or emotional faces; Diers et al., 2014). It is also worth noting that

altered ER patterns are increasingly recognized as risk factors

for the development of affective psychopathology (Cisler et al.,

2010), eventually making ER crucial for promoting emotional

wellbeing and physical health (Doré et al., 2016).

According to the process model of ER (Gross, 1998; Gross and

John, 2003), ER strategies can be distinguished into antecedent-

focused and response-focused. The former are mainly cognitive

strategies, which develop before a full affective response is

activated; whereas the latter are mainly behavioral strategies,

which develop after affective responses are generated. Both types

of strategies are usually automatically deployed, even though

the possibility of an intentional use is not excluded (Gross and

John, 2003). Two of themost common ER strategies are cognitive

reappraisal and expressive suppression. Cognitive reappraisal is

an antecedent-focused strategy involving the construction of

an alternative representation of potentially emotion-eliciting

situations in a way that changes their impact (Lazarus and

Alfert, 1964; Gross and John, 2003). It has proven effective in

modulating the experience and expression of emotions, eliciting

greater positive emotion and lesser negative emotion, and it

was found to be positively related to interpersonal functioning

and wellbeing (Gross and John, 2003). Cognitive reappraisal has

been found to modulate both the ERP and fMRI brain activity

elicited by the reappraised affective stimuli. ERP evidence is

contrasting and is primarily based on ER paradigms employing

affective pictures. Some studies found that reappraisal was

associated with decreased amplitudes of ERP components, such

as the P2 (Pan et al., 2019), P3 (Boehme et al., 2019), and

Late Positive Potential (LPP; Hajcak et al., 2010; Brudner et al.,

2018; Shafir and Sheppes, 2018; Harrison and Chassy, 2019; Pan

et al., 2019), especially in tasks where participants were asked

to down-regulate the affective impact of the stimulus (Hajcak

and Nieuwenhuis, 2006; Zhu et al., 2019). This reduced neural

processing of the reappraised stimulus is consistently interpreted

as supporting a less-intense emotional response. Other studies

found the opposite, namely increased P2 (Wu et al., 2013) and

LPP (Gan et al., 2015; Myruski et al., 2019; Cao et al., 2020) in

the case of both up- and down-regulation instructions (Bernat

et al., 2011;Wu et al., 2013; Baur et al., 2015; Langeslag and Surti,

2017). In this case, the authors suggest that the increased neural

processing of the reappraised stimulus is due to the heightened

attentional demands imposed by the reappraisal process. Other

studies, some of which employ face stimuli found null effects on

N170 (Herbert et al., 2013; Zhu et al., 2019; MacNamara et al.,

2022), P2 (Cao et al., 2020), and LPP amplitudes (Paul et al.,

2016). Interestingly, the opposite results on LPP amplitudes

have been explained as depending on the level of cognitive

load involved in the situation in which cognitive reappraisal

has to be achieved (MacNamara et al., 2022). Reappraising a

stimulus in a condition requiring more cognitive effort, e.g.,

when the stimulus is highly arousing, may reverse the effect

of reappraisal on the LPP, eliciting larger instead of smaller

amplitudes (Langeslag and Surti, 2017; MacNamara et al., 2022).

fMRI evidence showed that cognitive reappraisal use activate

regions, such as the bilateral middle temporal gyrus and inferior

frontal gyrus (IFG), the middle frontal gyrus, and the right

inferior parietal lobe (Vanderhasselt et al., 2013b). Also, it is

associated with increased activity in the left medial prefrontal

cortex (mPFC) and dorsolateral prefrontal cortex (dlPFC), and

with decreased activity in the amygdala (Ochsner et al., 2002;

Herwig et al., 2007).

Expressive suppression, instead, is a response-focused

strategy involving the inhibition of the ongoing emotion-

expressive behavior (Gross, 1998; Gross and John, 2003).

Expressive suppression also modulates the experience and

expression of emotions: it elicits lesser positive emotion and

greater negative emotion, and it was found to be associated

with worse interpersonal functioning and wellbeing (Gross and

John, 2003). At the neurophysiological level, ERP findings are

also mixed, and primarily rely on ER paradigms employing

affective (especially negative) pictures. The majority of studies

found that expressive suppression was associated with decreased

P2 (Pan et al., 2019) and LPP amplitudes (Moser et al.,

2006; Krompinger et al., 2008; Herbert et al., 2013; Li et al.,

2017; Myruski et al., 2019; Pan et al., 2019; Zhu et al., 2019;
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MacNamara et al., 2022), indexing an attenuated attentional

bias toward potentially threatening stimuli. A few other studies

found increased Stimulus Preceding Negativity (SPN) prior to

the stimulus to be suppressed (Shafir and Sheppes, 2018), and

increased N2 (Gan et al., 2015) and LPP (Bernat et al., 2011;

Paul et al., 2016) to the suppressed stimulus. These results

index increased cognitive conflict when anticipating the use

of expressive suppression and heightened conflict monitoring

and attention allocation to the stimulus to be suppressed,

respectively. Some more studies, finally, found null effects on

N170 (Zhu et al., 2019) and LPP amplitudes (Brudner et al.,

2018; Guex et al., 2019). fMRI evidence suggests that expressive

suppression use is associated with the activation of a broad

frontoparietal network composed of lateral prefrontal cortex

(lPFC), mPFC, orbitofrontal cortex (OFC), supplementary

motor area (SMA), and lateral-medial posterior parietal cortex

(Shimamura et al., 2013; Vanderhasselt et al., 2013b), and with

increased amygdala activity (Vanderhasselt et al., 2013a).

Underlying the process model of ER (Gross, 1998; Gross

and John, 2003) is the conception that emotions unfold over

time along three distinct stages: (1) an emotion begins with

the evaluation of affective cues in the environment; (2) affective

cues trigger a set of experiential, behavioral, and physiological

responses; and (3), once raised, emotional responses can

be modulated in various ways. This conception, although

developed earlier and independently, echoes some assumptions

of more recent predictive models of emotion (Seth and Friston,

2016; Barrett, 2017), which have re-described emotions as

brain-based predictions. According to these models, people use

environmental cues and their previous experience to construct

affective predictions (generation stage). Thus, the generation

stage involves the assessment of environmental cues, which

is the core process of stage 1 of the process model of ER.

Affective predictions are then used to anticipate incoming (and

potentially relevant) stimuli, and to prepare action plans to

deal with the expected situation (implementation stage). In

stage 2 of the process model of ER, during the implementation

stage, experiential, behavioral, and physiological responses are

prearranged. Actual inputs are finally tested against predictions:

in case of a mismatch, the discrepancy is encoded as a prediction

error and used to adjust future predictions (updating stage).

The new evidence collected during the updating stage may

contribute to the redescription of affective cues, eventually

modulating their impact as it happens in stage 3 of the process

model of ER.

One of the most innovative contributions of predictive

models of emotion is that they exclude the presence of

emotion-specific brain areas, uniquely associated with each

emotion category. They rather assume that affective predictions

are constructed by the brain within domain-general, large-

scale brain circuits supporting homeostasis and interoception

(Seth and Friston, 2016; Barrett, 2017; Barrett and Satpute,

2019). Moreover, they highlight that contextual uncertainty

(namely, stimuli predictability, as spontaneously inferred from

the information conveyed by environmental cues) can modulate

affective prediction construction (Seth and Friston, 2016;

Barrett, 2017; Barrett and Satpute, 2019). This has been

demonstrated by studies investigating both neural activity (Del

Popolo Cristaldi et al., 2021c,d) and self-reported experience

(Del Popolo Cristaldi et al., 2021a,b) during the construction of

affective predictions.

Redefining emotions within a predictive framework, it

becomes paramount to investigate how ER strategies can

modulate the construction of affective predictions. For instance,

preparing to suppress when anticipating an expected vs.

unexpected affective stimulus may impact the processes

developing during prediction implementation. Also, being able

to effectively reappraise a stimulus (thus diminishing its impact)

may serve as a more efficient model adjustment during the

updating stage. However, no study to our knowledge has

attempted to integrate these two perspectives by investigating

whether and how the habitual use of specific ER strategies

can modulate the neural correlates of affective predictions as

a function of contextual uncertainty. In this way, a more

comprehensive perspective on the interplay between ER and

affective prediction construction may be reached, ultimately

advancing knowledge in the field and providing potential

clinical implications.

In light of these considerations, in the present study, we ran

new analyses on a high-density EEG (HD-EEG) dataset, already

collected and published (Del Popolo Cristaldi et al., 2021d). In

the new analysis plan, we focused on the effects of habitual use of

different ER strategies, as measured by the ERQ (Gross and John,

2003), on neural activity. In particular, we investigated whether

cognitive reappraisal vs. expressive suppression predicted ERP

and brain source activity across affective prediction stages, as

a function of contextual uncertainty. In two previous studies,

we already investigated if contextual uncertainty modulated the

neural correlates of affective predictions (Del Popolo Cristaldi

et al., 2021c), and whether this modulation could be mediated

by individual differences in Intolerance of Uncertainty (Del

Popolo Cristaldi et al., 2021d). In those studies, we employed

an emotional S1-S2 paradigm (see (Mercado et al., 2008) for

a review) allowing to separately investigate the three stages

of affective prediction construction. S1 processing may indeed

reflect the generation stage, the inter-stimulus interval (ISI)

between S1 and S2 is the implementation stage, and S2

processing is the updating stage (Del Popolo Cristaldi et al.,

2021c). We manipulated contextual uncertainty using three

blocks with fully predictive (100%), moderately predictive

(75%), or non-predictive (50%) S1-S2 affective contingency.

We employed standardized emotional faces and pictures with

positive (POS), negative (NEG), or neutral (NEU) valence as S1s

and S2s, respectively. For each stage, in our previous studies,

we focused on the following ERP components and related brain

sources. As for prediction generation, we chose the N170, which

Frontiers in Behavioral Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.947063
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Del Popolo Cristaldi et al. 10.3389/fnbeh.2022.947063

reflects structural encoding and a coarse affective processing

of facial expressions (Bentin et al., 1996; Blau et al., 2007).

The N170 showed larger amplitudes to emotional (especially

negative) facial expressions and the involvement of the right

superior temporal sulcus (r-STS) as its brain source (Del Popolo

Cristaldi et al., 2021c,d). For the implementation stage, we

focused on the CNV developing during the ISI, which reflects

the orientation of attention toward relevant stimuli and motor

preparation for a potential action (Walter et al., 1964; Van

Boxtel and Brunia, 1994; Chennu et al., 2013; Mento, 2013),

and which is sensitive to predictive contextual factors (Chennu

et al., 2013; Mento, 2013; Gómez et al., 2019). The CNV showed

a larger amplitude in the non-predictive (50%) condition,

and it was found to be subtended by activity within a left-

lateralized network composed of anterior cingulate cortex (l-

ACC), SMA (l-SMA), and dorsal posterior cingulate cortex (l-

dPCC) (Del Popolo Cristaldi et al., 2021c). Lastly, as regards

prediction updating, we targeted the P2, involving activity in

the bilateral temporoparietal junction (l-TPJ, r-TPJ), and the

LPP, involving activations within the right OFC (r-OFC) and

temporal pole (r-TP). The P2 reflects early automatic attention

allocation and internal models updating (Kimura and Takeda,

2015; Gómez et al., 2019), and it showed larger amplitudes

to neutral pictures in all the predictive contexts (Del Popolo

Cristaldi et al., 2021c,d). The LPP reflects late motivated and

sustained attention allocation (Schupp et al., 2000; Olofsson

et al., 2008; Hajcak et al., 2010), and it showed larger amplitudes

to emotional pictures in all the predictive contexts (Del Popolo

Cristaldi et al., 2021c,d). Remarkably, the above literature review

on cognitive reappraisal and expressive suppression highlighted

how almost all of these components are also modulated by

ER strategies.

Based on our previous studies and extant ERP literature

on ER, we hypothesized that (H1) no ER strategy would

modulate N170 and r-STS activity during prediction generation,

as N170 amplitude has been consistently shown to be

insensitive to ER modulation (Herbert et al., 2013; Zhu et al.,

2019; MacNamara et al., 2022). We also hypothesized that

(H2) expressive suppression would predict heightened CNV

amplitude (Shafir and Sheppes, 2018) and l-SMA activity

(Vanderhasselt et al., 2013b) during prediction implementation,

reflecting the intention to suppress (and the associated proactive

inhibitory control to) the affective impact of the forthcoming

S2. Lastly, considering that in our paradigm we employed

highly arousing S2s, we expected that (H3) cognitive reappraisal

would predict larger P2 (Wu et al., 2013) and LPP (Bernat

et al., 2011; Wu et al., 2013; Baur et al., 2015; Gan et al.,

2015; Langeslag and Surti, 2017; Myruski et al., 2019; Cao

et al., 2020), and heightened source activations especially in

the PFC (Ochsner et al., 2002; Herwig et al., 2007) during

prediction updating, indexing the cognitive load of dampening

the affective impact of high-arousing S2s in support of predictive

models updating.

Materials and methods

Participants

Italian-speaking undergraduates at the University of Padua

were initially screened for participation through an online

survey. The survey evaluated the inclusion criteria for the

study: absence of neurological and/or psychiatric disorders;

normal or corrected-to-normal vision; no medication taken;

right-handedness, as assessed by the Edinburgh Handedness

Inventory (Oldfield, 1971); and no high blood-injection-injury

fear, as assessed by the Fear Survey Schedule (Wolpe and Lang,

1964). Since some experimental stimuli depicted gory scenes, the

last criterion was included in respect of ethical reasons to discard

highly fearful participants (i.e., participants who scored 4 -on a

0-4 score- on items concerning blood, injuries).

Thirty-six right-handed participants (16 males, age: M =

23.25, SD = 1.85, range = 20–29) met the inclusion criteria. All

participants signed an informed consent and took part in the

study as volunteers. The sample size was based on previous ERP

research studying ER within S1-S2 paradigms (Brudner et al.,

2018). A post-hoc power analysis (α = 0.05, η2 =0.02) showed

that the final sample size (N =36) allowed to reach an average

power of 0.541. All experimental procedures were approved by

the Ethical Committee for the Psychological Research of the

University of Padua (protocol no. 2859) and were conducted in

accordance with the Declaration of Helsinki.

Stimulus material

Individual differences in the habitual use of ER strategies

were assessed with the ERQ (Gross and John, 2003),

administered in its Italian validated adaptation (Balzarotti

et al., 2010). The ERQ is a 10-item self-report questionnaire. It

consists of two subscales, corresponding to cognitive reappraisal

(six items) and expressive suppression (four items) strategies.

Each item is rated on a 7-point-Likert scale (from “strongly

disagree” to “strongly agree”), and the mean ratings for each

strategy constitute the reappraisal and suppression scores

(range 1–7 each). Means (M) and standard deviations (SD) of

the cognitive reappraisal and expressive suppression scores in

our sample were M = 4.97, SD = 1.37 and M = 3.52, SD =

1.41, respectively.

The task consisted of a computerized S1-S2 passive viewing

paradigm (already described in Del Popolo Cristaldi et al.,

2021c). In experimental trials, 24 different colored faces (four

male and four female Caucasian models, each posing fearful,

happy and neutral expressions) from the NimStim Set of

Facial Expressions (Tottenham et al., 2009) were employed as

S1s. S2s were 120 colored pictures (40 high-arousing negative,

40 high-arousing positive, and 40 low-arousing neutral) from

the International Affective Picture System (IAPS; Lang et al.,
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2008). In four practice trials, two additional faces (1 male and

1 female, posing angry and surprised expressions) and four

additional pictures (2 low-arousing positive and 2 low-arousing

negative) were employed as S1s and S2s, respectively. NimStim

and IAPS picture numbers, sorted by valence, are listed in

Supplementary Table 1. Positive and negative pictures did not

differ for mean arousal standardized ratings [M = 6.43 and 6.44,

SD= 0.46 and 0.62, respectively; t(93) = 0.12, p= 0.9].

Procedure

Before arrival in the laboratory, all participants answered

an online version of the ERQ (Gross and John, 2003; Balzarotti

et al., 2010). Upon arrival, participants were seated in a dimly lit

room, at a 90 cm viewing distance from a computer screen (24-

inch, 1,280 × 1,024 px resolution). They received information

about EEG montage and the experimental task. Then, an elastic

128-channel HD-EEG net was applied.

After a 5-min adaptation period, the S1-S2 paradigm started

(see Figure 1 for a schematic representation). S1s and S2s were

presented through E-prime software (Schneider et al., 2010). All

stimuli were presented in their original size, in the center of

the screen against a black background. The presentation order

was pseudo-random, with a maximum of three subsequent S1-

S2 same-valence pairings as a constraint. At the beginning of

the S1-S2 task, participants read the instructions presented on

the screen at their own pace. They were told that they would

see a face followed by a picture and that they only had to look

at the screen, trying to move as little as possible. A practice

session followed, including two congruent (i.e., same-valence

S1-S2 pairs) and two incongruent (i.e., different-valence S1-

S2 pairs) trials. The task included a total of 360 trials. Each

trial began with an S1, presented for 500ms. A fixed ISI of

2,000ms followed, in which the screen remained black. Then

an S2 was presented for 1,500ms. The inter-trial interval (ITI)

randomly varied between 800 and 1,200ms. During the ITI, a

white fixation cross against a black background was displayed.

We manipulated S1-S2 affective congruency through three

blocks of 120 trials each. In the 100% block, S1 was fully

predictive of S2 valence (i.e., S1 and S2 were always congruent).

In the 75% block, S1 was moderately predictive of S2 valence

(i.e., S1 and S2 were congruent in 75% of the trials). In the

50% block, S1 was unpredictive of S2 valence (i.e., S1 was

randomly followed by a positive, negative, or neutral S2). Blocks

were presented seamlessly with self-paced brief random breaks

and a between-subjects counterbalanced order. Participants

were left uninstructed about the different between-blocks S1-S2

probabilistic ratio.

At the end of the task, the experimenter orally asked each

participant if they had caught any relationship between the face

and the picture during the S1-S2 paradigm. This interview aimed

to ensure that all participants had remained unaware of the exact

S1-S2 probabilistic ratios of the three blocks. No participant

reported to have caught the exact blocks’ ratios. At the end of

the experimental session, each participant was informed about

the research objectives and thanked for their participation.

Example sequence of events and their duration for a trial,

according to the block (100, 75, 50%), S1 valence (POS, NEG,

NEU), and S2 valence (POS, NEG NEU). In the 100% block, the

face (S1) was followed by a picture (S2) of the same valence in

100% of the trials; in the 75% block, the S1 was followed by an S2

of the same valence in 75% of the trials, and of different valence

in 25% of the trials; in the 50% block, the S1 was followed by

an S2 of the same valence in 50% of the trials, and of different

valence in the other 50% of the trials. Participants were asked to

passively view the stimuli while their EEG signal was recorded.

The text is not drawn to scale.

EEG recordings and pre-processing

The EEG data analyzed in this study were derived from

our previous study (Del Popolo Cristaldi et al., 2021d) and

they are publicly available (https://doi.org//10.6084/m9.figshare.

13560569). During the task, EEG was continuously recorded

with a Geodesic HD-EEG System (EGI
R©

GES-300), through

a pre-cabled 128-channel HydroCel Geodesic Sensor Net

(HCGSN-128). All electrodes were referenced online to the

vertex. Scalp voltages were amplified through a 24-bit DC

amplifier. The sampling rate was 500Hz. The impedance was

kept below 60 kΩ for each sensor.

EEG recordings were preprocessed using the MATLAB

toolbox EEGLAB 14.1.2b (Delorme and Makeig, 2004). Pre-

processing steps, as described by Del Popolo Cristaldi et al.

(2021c), included downsampling at 250Hz, and filtering

with a digital band-pass filter (0.01–40Hz,−6dB - Hamming

windowed sinc finite impulse response filter, filter order =

82,500). Then, continuous EEG was segmented into 4,500ms

epochs, from 500ms before to 4,000ms after S1 onset. The signal

was baseline corrected to two different baselines: from 500ms

before to the onset of S1 for S1-ERPs; from 200ms before to

the onset of S2 for S2-ERPs. Epochs were digitally inspected

through the TBT EEGLAB plug-in and applied to electrodes

from E40 to E100 (frontal electrode sites were excluded because

no eye blinks/movements correction was yet applied). The TBT

algorithm performed an automatic rejection of epochs and

interpolation of channels on an epoch-by-epoch basis: channels

that exceeded a differential average amplitude of ±150 µV on

more than 30% of all epochs were marked as bad, excluded, and

subsequently interpolated with the spherical spline interpolation

method (Perrin et al., 1989; Ferree, 2006). Epochs having more

than 10 bad channels were also excluded. Artifact-reduced data

were then subjected to Independent Component Analysis (ICA;

Stone, 2002) using the Infomax algorithm (Bell and Sejnowski,

1995). All independent components were visually inspected to
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FIGURE 1

Schematic representation of the experimental paradigm.

discard those related to eye blinks, eye movements, heartbeat,

and muscular signals, according to their morphology and scalp

distribution. The remaining components were projected back to

the electrode space. Epochs were further visually inspected and

residual artifact-contaminated trials were rejected. Experimental

conditions did not differ for the final number of epochs (see

Supplementary Table 2). Data were finally re-referenced to the

average of all electrodes. Individual average and grand average

ERPs were computed for all experimental conditions, applying

a weighted average in order to control for any potential

unbalanced number of epochs per condition (Kotowski et al.,

2019).

ERPs and brain source activity

ERPs and brain source activity used as predicted measures

in this study were derived from our previous research (Del

Popolo Cristaldi et al., 2021c,d). For each stage of affective

prediction construction, ERPs were computed as the mean

voltage amplitude in the following time windows and electrode

clusters. For prediction generation, we measured the N170 (140–

180ms to S1 onset) from an occipital cluster (E70, E74, E75, E81,

E82, E83). For prediction implementation, we targeted both early

(1,500–2,000ms to S1 onset) and late CNV (2,000–2,500ms to

S1 onset), as measured from a left-central cluster (E40, E41, E42,

E46, E47). For prediction updating, we targeted the P2 (200–

300ms to S2 onset), as measured from a parietal cluster (E67,

E71, E72, E75, E76, E77), and both early (400–600ms to S2

onset) and late LPP (600–800ms to S2 onset), as measured from

a parietal cluster (E60, E61, E62, E67, E72, E77, E78, E85).

For each ERP component, source map vertices were

clustered in the following regions of interest (ROI), according

to our previous research (Del Popolo Cristaldi et al., 2021c,d):

r-STS as the estimated brain source of the N170; l-ACC, l-SMA,

and l-dPCC as the sources of the CNV; l-TPJ and r-TPJ as the

sources of the P2; and r-OFC and r-TP as the sources of the

LPP. Absolute values of each ROI were time-averaged from the

pertaining ERP time window, extracted for each participant, and

transformed using a natural logarithm.

Data analysis

The study has a 3 (block: 100, 75, 50%)× 3 (S1 or S2 valence:

POS, NEG, NEU) within-subjects design.

To investigate whether ERQ reappraisal and suppression

scores predicted the ERP and brain source activity during

the S1-S2 task, we fitted the following linear mixed-effects

models (LMMs; R package: lme4; Bates et al., 2015). For

each DV (averaged ERPs and ROIs activity), we fitted

separate LMMs with block, valence, ERQ reappraisal scores

(mean centered), ERQ suppression scores (mean centered),

and their interactions as fixed factors and individual

random intercept.

Model effects were evaluated using F-test and p-values,

calculated via Satterthwaite’s degrees of freedom method (α =

0.05, R package: lmerTest; Kuznetsova et al., 2017). For each

model, we report marginal and conditional R2 as estimated by

Nakagawa et al. (2017). The slopes of the ERQ trends for each

level of the factors (block, valence) were estimated. Post-hoc

pairwise comparisons between the slopes of the ERQ scores

trend for each level of the fixed factors were tested using

estimated marginal means (EMMs) contrasts, Tukey-adjusted

for multiple comparisons (R package: emmeans; Lenth, 2020).

For the sake of clarity, and to avoid redundant results from
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our previous findings (Del Popolo Cristaldi et al., 2021c,d), only

effects involving ERQ scores, slopes statistically different from 0,

and significant post-hoc contrasts are reported and commented

in the Results, while all remaining effects are reported in the

Supplementary material.

Results

Prediction generation stage

Models on N170 and r-STS activity are summarized in

Table 1. As hypothesized (H1), no significantmain or interaction

effects of the ERQ reappraisal and suppression subscales

were observed.

Prediction implementation stage

Models on CNV, l-ACC, l-SMA, and l-dPCC activity are

summarized in Table 2, Figure 2, and Supplementary Table 3.

In the early time window (1,500–2,000ms to S1 onset),

significant relationships between ERQ scores and the early l-

SMA and l-dPCC activity were observed. In particular, as for

the early l-SMA activity, we found an interaction between

block and the ERQ suppression subscale [F(2,256) = 3.26,

p = 0.04; see Figure 2A]. The slope analysis suggested that

higher suppression scores were associated with a reduced l-SMA

activity in the 100 and 50% blocks (contrary to H2), and with

a higher l-SMA activity in the 75% block (consistently with

H2). However, no slope was statistically different from 0 (see

Supplementary Table 3). Post-hoc contrasts showed evidence of

a difference in the slopes between the 75 and 50% blocks

[75 vs. 50%: t(256) = 2.39, SE = 0.16, p = 0.046]. Moreover,

as for the early l-dPCC activity, we found an interaction

among block, the ERQ reappraisal, and the ERQ suppression

subscales [F(2,256) = 3.65, p = 0.027]. However, neither slope

analysis nor post-hoc contrasts showed significant effects (see

Supplementary Table 3).

In the late time window (2,000–2,500ms to S1 onset),

significant relationships between ERQ scores and the late CNV

amplitude were found. In particular, a significant interaction

between block and the suppression subscale emerged [F(2,256)
= 3.67, p = 0.027; see Figure 2B]. The slope analysis suggested

that higher suppression scores were associated with a smaller late

CNV amplitude in the 75 and 50% blocks (contrary to H2) vs. a

larger late CNV amplitude in the 100% block (consistently with

H2). However, no slope was statistically different from 0 (see

Supplementary Table 3). Post-hoc contrasts showed evidence of

a difference in the slopes between the 100 and 75% blocks [100

vs. 75%: t(256) =−2.71, SE= 0.12, p= 0.02].

Prediction updating stage

Models on P2, l-TPJ, r-TPJ, LPP, r-OFC, and r-TP activity are

summarized in Table 3, Figure 3, and Supplementary Table 4.

In the first time window (200–300ms to S2 onset),

significant relationships between ERQ scores and both P2

amplitude and l-TPJ activity were observed. As for P2 amplitude,

we found an interaction between block and the ERQ reappraisal

subscale [F(2,256) = 4.56, p = 0.011; see Figure 3A]. As

hypothesized (H3), the slope analysis suggested that higher

reappraisal scores were associated with increased P2 amplitude

in all the blocks (but with a steeper slope in the 75% block).

However, no slope was statistically different from 0 (see

Supplementary Table 4). Post-hoc contrasts showed evidence of

a difference in the slopes between the 75 and 50% blocks [75 vs.

50%: t(256) = 2.88, SE = 0.12, p = 0.012]. As for l-TPJ activity,

instead, we found an interaction between valence and the ERQ

reappraisal subscale [F(2,256) = 4.21, p = 0.016; see Figure 3B].

The slope analysis suggested that higher reappraisal scores were

associated with a reduced l-TPJ activity to S2s, especially those

with neutral valence. However, no slope was statistically different

from 0 (see Supplementary Table 4). Post-hoc contrasts showed

evidence of a difference in the slopes between neutral and both

negative and positive S2s [NEU vs. POS: t(256) = −2.52, SE

= 0.21, p = 0.033; NEU vs. NEG: t(256) = −2.5, SE = 0.21, p

= 0.035].

In the second time window (400–600ms to S2 onset),

significant relationships between ERQ scores and early LPP

amplitude emerged. In particular, we found an interaction

between block and the ERQ reappraisal subscale [F(2,256) =

8.03, p < 0.001; see Figure 3C]. As hypothesized (H3), the slope

analysis revealed that higher reappraisal scores predicted larger

LPP amplitudes in all the blocks, but with a slope statistically

different from 0 only in the 75% block [b = 0.85, bSE = 0.41,

95% CI= (0.01, 1.69)]. From post-hoc contrasts, it emerged that

the slope in the 75% block was significantly different than in both

100 and 50% blocks [100 vs. 75%: t(256) =−2.86, SE= 0.13, p=

0.013; 75 vs. 50%: t(256) = 3.86, SE= 0.13, p < 0.001].

In the third time window (600–800ms to S2 onset),

significant relationships between ERQ scores and both late LPP

amplitude and r-OFC activity were observed. As for the late

LPP amplitude, a significant interaction between block and

the ERQ reappraisal subscale [F(2,256) = 4.27, p = 0.015; see

Figure 3D] was found. The slope analysis showed that higher

reappraisal scores predicted a larger late LPP amplitude in the

100 and 75% block (consistently with H3), and slightly smaller

LPP in the 50% block (contrary to H3). However, no slope

was statistically different from 0 (see Supplementary Table 4).

Post-hoc comparisons showed a significant difference in the

slopes between the 75 and 50% blocks [75 vs. 50%: t(256)
= 2.76, SE = 0.14, p = 0.017]. As for the r-OFC, instead,

significant interactions were found between block and both the
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TABLE 1 ANOVA table of models in the prediction generation stage.

DV Effect SS dfnum dfden F p Partial η2

N170 Block 1.75 2 256 0.91 0.402 0.007

Valence 23.19 2 256 12.12 < 0.001 0.086

ERQ reappraisal 1.99 1 32 2.08 0.158 0.061

ERQ suppression 0.47 1 32 0.49 0.489 0.015

Block× valence 5.37 4 256 1.40 0.233 0.021

Block× ERQ reappraisal 1.87 2 256 0.98 0.378 0.008

Valence× ERQ reappraisal 1.41 2 256 0.74 0.479 0.006

Block× ERQ suppression 2.09 2 256 1.09 0.338 0.008

Valence× ERQ suppression 0.55 2 256 0.29 0.750 0.002

ERQ reappraisal× ERQ suppression 0.00 1 32 0.00 0.950 0.000

Block× Valence× ERQ reappraisal 2.11 4 256 0.55 0.698 0.009

Block× Valence× ERQ suppression 1.85 4 256 0.48 0.748 0.008

Block× ERQ reappraisal× ERQ suppression 1.23 2 256 0.64 0.528 0.005

Valence× ERQ reappraisal× ERQ suppression 8.63 2 256 2.85 0.059 0.006

Block× valence× ERQ reappraisal× ERQ suppression 6.00 4 256 0.99 0.412 0.024

R2 marginal/conditional 0.08/0.88

r-STS Block 0.98 2 256 0.69 0.503 0.005

Valence 1.75 2 256 1.23 0.295 0.009

ERQ reappraisal 0.10 1 32 0.14 0.714 0.004

ERQ suppression 0.07 1 32 0.10 0.752 0.003

Block× valence 0.56 4 256 0.20 0.940 0.003

Block× ERQ reappraisal 0.74 2 256 0.52 0.593 0.004

Valence× ERQ reappraisal 0.26 2 256 0.19 0.830 0.001

Block× ERQ suppression 1.84 2 256 1.29 0.276 0.010

Valence× ERQ suppression 3.31 2 256 2.33 0.100 0.018

ERQ reappraisal× ERQ suppression 1.12 1 32 1.58 0.218 0.047

Block× valence× ERQ reappraisal 1.65 4 256 0.58 0.677 0.009

Block× valence× ERQ suppression 2.10 4 256 0.74 0.567 0.011

Block× ERQ reappraisal× ERQ suppression 0.32 2 256 0.23 0.799 0.002

Valence× ERQ reappraisal× ERQ suppression 3.35 2 256 2.35 0.097 0.018

Block× valence× ERQ reappraisal× ERQ suppression 2.09 4 256 0.73 0.569 0.011

R2 marginal/conditional 0.06/0.69

For each dependent variable (DV) and effect of interest, we report the sum of squares (SS), numerator (dfnum), and denominator (dfden) degrees of freedom, F-test and relative p-values,

and partial η2 .

ERQ reappraisal [F(2,256) = 3.04, p = 0.049; see Figure 3E]

and suppression subscales [F(2,256) = 3.07, p = 0.048; see

Figure 3F]. The slope analysis revealed positive relationships

between reappraisal scores and r-OFC activity in the 100 and

75% blocks (consistently with H3) and negative relationships

in the 50% block (contrary to H3), whereas suppression scores

showed a positive relationship in the 100% block and negative

relationships in the 75 and 50% blocks. However, no slope

was statistically different from 0 (see Supplementary Table 4).

Post-hoc contrasts showed significant block differences in the

relationship between r-OFC activity and both reappraisal scores

in the 75 and 50% blocks [75 vs. 50%: t(256) = 2.4, SE = 0.22, p

= 0.045], and suppression scores in the 100 and 50% blocks [100

vs. 50%: t(256) = 2.47, SE= 0.22, p= 0.037].

Discussion

To our knowledge, this study is the first to provide

evidence that habitual ER strategies interact with contextual

uncertainty in modulating the neural correlates of affective

predictions at both the scalp and source levels. As the two main

findings, our results suggest that expressive suppression and

cognitive reappraisal are differently deployed depending on the

specific prediction stage (generation-implementation-updating)

and that both strategies interact with the levels of contextual

uncertainty by differently modulating ERPs and source activity

within each stage.

Concerning the first finding, we found that neural activity

in the generation stage was not modulated by any ER strategy.
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TABLE 2 ANOVA of models in the prediction implementation stage.

DV Effect SS dfnum dfden F p Partial η
2

Early CNV Block 6.39 2 256 2.52 0.082 0.019

Valence 3.21 2 256 1.27 0.284 0.010

ERQ reappraisal 2.24 1 32 1.77 0.193 0.052

ERQ suppression 0.02 1 32 0.02 0.900 0.000

Block× valence 1.97 4 256 0.39 0.817 0.006

Block× ERQ reappraisal 3.43 2 256 1.35 0.260 0.010

Valence× ERQ reappraisal 3.83 2 256 1.51 0.223 0.012

Block× ERQ suppression 2.39 2 256 0.94 0.391 0.007

Valence× ERQ suppression 4.73 2 256 1.87 0.157 0.014

ERQ reappraisal× ERQ suppression 1.95 1 32 1.54 0.223 0.046

Block× valence× ERQ reappraisal 1.34 4 256 0.26 0.900 0.004

Block× valence× ERQ suppression 8.61 4 256 1.70 0.151 0.026

Block× ERQ reappraisal× ERQ suppression 1.19 2 256 0.47 0.626 0.004

Valence× ERQ reappraisal× ERQ suppression 3.67 2 256 1.45 0.237 0.011

Block× valence× ERQ reappraisal× ERQ suppression 3.87 4 256 0.76 0.550 0.012

R2 marginal/conditional 0.11/0.20

Early l-ACC Block 13.31 2 256 1.96 0.142 0.015

Valence 2.84 2 256 0.42 0.659 0.003

ERQ reappraisal 3.83 1 32 1.13 0.295 0.034

ERQ suppression 0.04 1 32 0.01 0.912 0.000

Block× valence 14.63 4 256 1.08 0.367 0.017

Block× ERQ reappraisal 0.72 2 256 0.11 0.900 0.001

Valence× ERQ reappraisal 1.15 2 256 0.17 0.844 0.001

Block× ERQ suppression 2.85 2 256 0.42 0.657 0.003

Valence× ERQ suppression 0.14 2 256 0.02 0.980 0.000

ERQ reappraisal× ERQ suppression 1.78 1 32 0.52 0.474 0.016

Block× valence× ERQ reappraisal 4.59 4 256 0.34 0.852 0.005

Block× valence× ERQ suppression 11.64 4 256 0.86 0.489 0.013

Block× ERQ reappraisal× ERQ suppression 16.06 2 256 2.37 0.096 0.018

Valence× ERQ reappraisal× ERQ suppression 2.83 2 256 0.42 0.659 0.003

Block× valence× ERQ reappraisal× ERQ suppression 17.13 4 256 1.26 0.285 0.019

R2 marginal/conditional 0.07/0.32

Early l-SMA Block 6.72 2 256 1.25 0.288 0.010

Valence 2.38 2 256 0.44 0.642 0.003

ERQ reappraisal 6.98 1 32 2.60 0.117 0.075

ERQ suppression 0.13 1 32 0.05 0.825 0.002

Block× valence 10.36 4 256 0.96 0.428 0.015

Block× ERQ reappraisal 5.92 2 256 1.10 0.334 0.009

Valence× ERQ reappraisal 2.92 2 256 0.54 0.582 0.004

Block× ERQ suppression 17.50 2 256 3.26 0.040 0.025

Valence× ERQ suppression 4.96 2 256 0.92 0.399 0.007

ERQ reappraisal× ERQ suppression 0.01 1 32 0.00 0.959 0.000

Block× valence× ERQ reappraisal 0.80 4 256 0.07 0.990 0.001

Block× valence× ERQ suppression 11.00 4 256 1.02 0.396 0.016

Block× ERQ reappraisal× ERQ suppression 10.57 2 256 1.97 0.142 0.015

Valence× ERQ reappraisal× ERQ suppression 5.15 2 256 0.96 0.385 0.007

Block× valence× ERQ reappraisal× ERQ suppression 6.44 4 256 0.60 0.664 0.009

R2 marginal/conditional 0.09/0.25

(Continued)
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TABLE 2 Continued

DV Effect SS dfnum dfden F p Partial η
2

Early l-dPCC Block 0.98 2 256 0.24 0.789 0.002

Valence 1.06 2 256 0.26 0.775 0.002

ERQ reappraisal 2.36 1 32 1.14 0.294 0.034

ERQ suppression 0.83 1 32 0.40 0.532 0.012

Block× valence 1.63 4 256 0.20 0.940 0.003

Block× ERQ reappraisal 7.06 2 256 1.71 0.183 0.013

Valence× ERQ reappraisal 6.70 2 256 1.62 0.200 0.012

Block× ERQ suppression 6.68 2 256 1.61 0.201 0.012

Valence× ERQ suppression 0.98 2 256 0.24 0.789 0.002

ERQ reappraisal× ERQ suppression 6.29 1 32 3.04 0.091 0.087

Block× valence× ERQ reappraisal 4.76 4 256 0.58 0.680 0.009

Block× valence× ERQ suppression 3.99 4 256 0.48 0.748 0.007

Block× ERQ reappraisal× ERQ suppression 15.08 2 256 3.65 0.027 0.028

Valence× ERQ reappraisal× ERQ suppression 1.71 2 256 0.41 0.661 0.003

Block× valence× ERQ reappraisal× ERQ suppression 2.87 4 256 0.35 0.846 0.005

R2 marginal/conditional 0.09/0.31

Late CNV Block 12.27 2 256 4.06 0.018 0.031

Valence 6.03 2 256 1.99 0.138 0.015

ERQ reappraisal 2.38 1 32 1.58 0.218 0.047

ERQ suppression 0.28 1 32 0.19 0.668 0.006

Block× valence 5.57 4 256 0.92 0.452 0.014

Block× ERQ reappraisal 3.43 2 256 1.13 0.324 0.009

Valence× ERQ reappraisal 4.69 2 256 1.55 0.213 0.012

Block× ERQ suppression 11.10 2 256 3.67 0.027 0.028

Valence× ERQ suppression 3.26 2 256 1.08 0.342 0.008

ERQ reappraisal× ERQ suppression 2.16 1 32 1.43 0.240 0.043

Block× valence× ERQ reappraisal 3.66 4 256 0.61 0.659 0.009

Block× valence× ERQ suppression 14.06 4 256 2.33 0.057 0.035

Block× ERQ reappraisal× ERQ suppression 2.49 2 256 0.83 0.439 0.006

Valence× ERQ reappraisal× ERQ suppression 8.63 2 256 2.85 0.059 0.022

Block× valence× ERQ reappraisal× ERQ suppression 6.00 4 256 0.99 0.412 0.015

R2 marginal/conditional 0.14/0.26

Late l-ACC Block 30.29 2 256 3.23 0.041 0.025

Valence 1.74 2 256 0.19 0.831 0.001

ERQ reappraisal 6.05 1 32 1.29 0.264 0.039

ERQ suppression 0.18 1 32 0.04 0.847 0.001

Block× valence 15.62 4 256 0.83 0.505 0.013

Block× ERQ reappraisal 12.49 2 256 1.33 0.265 0.010

Valence× ERQ reappraisal 2.95 2 256 0.32 0.730 0.002

Block× ERQ suppression 0.73 2 256 0.08 0.925 0.001

Valence× ERQ suppression 0.41 2 256 0.04 0.957 0.000

ERQ reappraisal× ERQ suppression 1.64 1 32 0.35 0.558 0.011

Block× valence× ERQ reappraisal 8.39 4 256 0.45 0.774 0.007

Block× valence× ERQ suppression 21.89 4 256 1.17 0.325 0.018

Block× ERQ reappraisal× ERQ suppression 11.14 2 256 1.19 0.306 0.009

Valence× ERQ reappraisal× ERQ suppression 6.37 2 256 0.68 0.508 0.005

Block× valence× ERQ reappraisal× ERQ suppression 15.41 4 256 0.82 0.512 0.013

R2 marginal/conditional 0.07/0.34

R2 marginal/conditional 0.09/0.25

(Continued)
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TABLE 2 Continued

DV Effect SS dfnum dfden F p Partial η
2

Late l-SMA Block 7.13 2 256 1.01 0.364 0.008

Valence 4.51 2 256 0.64 0.527 0.005

ERQ reappraisal 11.66 1 32 3.32 0.078 0.094

ERQ suppression 0.47 1 32 0.14 0.716 0.004

Block× valence 10.62 4 256 0.76 0.555 0.012

Block× ERQ reappraisal 10.22 2 256 1.45 0.235 0.011

Valence× ERQ reappraisal 3.93 2 256 0.56 0.572 0.004

Block× ERQ suppression 13.33 2 256 1.90 0.152 0.015

Valence× ERQ suppression 3.56 2 256 0.51 0.603 0.004

ERQ reappraisal× ERQ suppression 0.88 1 32 0.25 0.620 0.008

Block× valence× ERQ reappraisal 3.75 4 256 0.27 0.899 0.004

Block× valence× ERQ suppression 16.56 4 256 1.18 0.320 0.018

Block× ERQ reappraisal× ERQ suppression 13.45 2 256 1.92 0.149 0.015

Valence× ERQ reappraisal× ERQ suppression 5.90 2 256 0.84 0.433 0.007

Block× valence× ERQ reappraisal× ERQ suppression 7.09 4 256 0.50 0.732 0.008

R2 marginal/conditional 0.09/0.28

Late l-dPCC Block 5.07 2 256 0.95 0.388 0.007

Valence 1.27 2 256 0.24 0.788 0.002

ERQ reappraisal 3.97 1 32 1.49 0.231 0.044

ERQ suppression 0.90 1 32 0.34 0.565 0.010

Block× valence 2.67 4 256 0.25 0.910 0.004

Block× ERQ reappraisal 14.40 2 256 2.70 0.069 0.021

Valence× ERQ reappraisal 6.28 2 256 1.18 0.310 0.009

Block× ERQ suppression 2.64 2 256 0.49 0.611 0.004

Valence× ERQ suppression 1.67 2 256 0.31 0.732 0.002

ERQ reappraisal× ERQ suppression 8.25 1 32 3.09 0.088 0.088

Block× valence× ERQ reappraisal 2.73 4 256 0.26 0.906 0.004

Block× valence× ERQ suppression 4.82 4 256 0.45 0.772 0.007

Block× ERQ reappraisal× ERQ suppression 11.21 2 256 2.10 0.125 0.016

Valence× ERQ reappraisal× ERQ suppression 4.27 2 256 0.80 0.450 0.006

Block× valence× ERQ reappraisal× ERQ suppression 3.84 4 256 0.36 0.838 0.006

R2 marginal/conditional 0.09/0.31

For each dependent variable (DV) and effect of interest, we report the sum of squares (SS), numerator (dfnum), and denominator (dfden) degrees of freedom, F-test and relative p-values,

and partial η2 .

However, suppression and reappraisal uniquely mediated ERPs

and source activations in the implementation and updating

stages, respectively. This is consistent with our hypotheses (H1,

H2, and H3) and the majority of extant studies (Ochsner et al.,

2002; Herwig et al., 2007; Bernat et al., 2011; Herbert et al.,

2013; Shimamura et al., 2013; Vanderhasselt et al., 2013a,b;

Wu et al., 2013; Baur et al., 2015; Gan et al., 2015; Paul

et al., 2016; Langeslag and Surti, 2017; Shafir and Sheppes,

2018; Myruski et al., 2019; Zhu et al., 2019; Cao et al., 2020;

MacNamara et al., 2022), as well as with what can be expected

integrating the predictions of the process model of ER (Gross,

1998; Gross and John, 2003) and predictive models of emotion

(Seth and Friston, 2016; Barrett, 2017). During the generation

stage, indeed, it is crucial to achieve an efficient evaluation of

the available environmental cues. Those cues are then used in

combination with previous experience to constrain and refine

the pool of information used to generate affective predictive

models (Knill and Pouget, 2004; Bar, 2007; Seth and Friston,

2016; Shipp, 2016; Barrett, 2017). Thus, when presented with a

cue conveying information about forthcoming (and potentially

relevant) stimuli, it may be more efficient to extract as much

information as possible (and as early as possible) from the cue

itself, before trying to regulate its affective impact. Accordingly,

in our paradigm, no ER strategy appeared to mediate the quick

extraction of affective and predictive information from the faces

(S1s), as reflected by the N170 amplitude and r-STS activity.
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FIGURE 2

Regression plots of ERQ suppression scores on (A) early l-SMA activity and (B) late CNV amplitude as a function of blocks. Shaded areas denote

the 95% CI. Points represent individual observations. Grand average ERP waveforms during ISI as a function of blocks (C). Shaded areas denote

SE. For visualization purposes, waveforms were low-pass re-filtered at 10Hz. Adapted from Del Popolo Cristaldi et al. (2021d). Brain activity

(z-score) of the l-ACC, l-SMA, and l-dPCC (D).

During the implementation stage, instead, it becomes

primary to program and prepare the best action plans and

to anticipate the physiological changes to deal with the

predicted stimulus/situation (van Boxtel and Böcker, 2004; Seth

and Friston, 2016; Barrett, 2017). Here, we found the only

involvement of the suppression ER strategy, which predicted

an early (1,500–2,000ms to S1 onset) increase of the left

SMA activity, and a later (2,000–2,500ms) decrease of the

CNV amplitude in the moderately predictive context (75%

block). These effects may reflect the intention to suppress the

affective impact of the forthcoming S2. The increased SMA

activity is consistent with evidence showing its left-lateralized

involvement in ER (Morawetz et al., 2017). It could be related

to the proactive deployment of anticipatory inhibitory control

processes (Vanderhasselt et al., 2013b), which are proven to play

a critical role in the expressive suppression of emotions (Garavan

et al., 2006; Lee et al., 2008; Kunz et al., 2011). The reduced

allocation of anticipatory resources reflected by a smaller

CNV could complement the processes underpinned by the

SMA activation, reducing the sustained scanning of concurrent

environmental information and eventually serving an attempt to

avoid distractions or interference on the suppression process.

During prediction updating, finally, actual inputs (i.e., S2s)

must be compared with predictions in order to adjust the

predictive models according to the actual evidence (Friston,

2010; Seth and Friston, 2016; Barrett, 2017). Thus, it seems

crucial to reappraise the S2 to diminish its affective impact, and

to maximize the processing and encoding of the information, it

carries about the match/mismatch with ongoing predictions. By

dampening the affective impact of the S2, an efficient updating
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TABLE 3 ANOVA models in the prediction updating stage.

DV Effect SS dfnum dfden F p Partial η
2

P2 Block 1.32 2 256 0.41 0.664 0.003

Valence 74.68 2 256 23.22 < 0.001 0.154

ERQ reappraisal 0.50 1 32 0.31 0.581 0.010

ERQ suppression 0.28 1 32 0.17 0.681 0.005

Block× valence 3.47 4 256 0.54 0.707 0.008

Block× ERQ reappraisal 14.68 2 256 4.56 0.011 0.034

Valence× ERQ reappraisal 2.20 2 256 0.69 0.505 0.005

Block× ERQ suppression 2.53 2 256 0.79 0.457 0.006

Valence× ERQ suppression 5.12 2 256 1.59 0.205 0.012

ERQ reappraisal× ERQ suppression 6.45 1 32 4.01 0.054 0.111

Block× valence× ERQ reappraisal 3.67 4 256 0.57 0.685 0.009

Block× valence× ERQ suppression 7.17 4 256 1.11 0.350 0.017

Block× ERQ reappraisal× ERQ suppression 0.02 2 256 0.01 0.993 0.000

Valence× ERQ reappraisal× ERQ suppression 4.05 2 256 1.26 0.286 0.010

Block× valence× ERQ reappraisal× ERQ suppression 3.58 4 256 0.56 0.694 0.009

R2 marginal/conditional 0.12/0.91

r-TPJ Block 11.50 2 256 1.30 0.275 0.010

Valence 67.88 2 256 7.66 < 0.001 0.056

ERQ reappraisal 0.28 1 32 0.06 0.804 0.002

ERQ suppression 3.72 1 32 0.84 0.366 0.026

Block× valence 23.52 4 256 1.33 0.260 0.020

Block× ERQ reappraisal 0.38 2 256 0.04 0.958 0.000

Valence× ERQ reappraisal 7.61 2 256 0.86 0.425 0.007

Block× ERQ suppression 3.60 2 256 0.41 0.667 0.003

Valence× ERQ suppression 3.50 2 256 0.40 0.674 0.003

ERQ reappraisal× ERQ suppression 3.36 1 32 0.76 0.390 0.023

Block× valence× ERQ reappraisal 8.19 4 256 0.46 0.763 0.007

Block× valence× ERQ suppression 8.21 4 256 0.46 0.763 0.007

Block× ERQ reappraisal× ERQ suppression 0.94 2 256 0.11 0.899 0.001

Valence× ERQ reappraisal× ERQ suppression 4.99 2 256 0.56 0.570 0.004

Block× valence× ERQ reappraisal× ERQ suppression 6.36 4 256 0.36 0.838 0.006

R2 marginal/conditional 0.07/0.64

l-TPJ Block 35.21 2 256 4.01 0.019 0.030

Valence 39.48 2 256 4.49 0.012 0.034

ERQ reappraisal 1.93 1 32 0.44 0.512 0.014

ERQ suppression 3.74 1 32 0.85 0.363 0.026

Block× valence 23.59 4 256 1.34 0.255 0.021

Block× ERQ reappraisal 3.32 2 256 0.38 0.686 0.003

Valence× ERQ reappraisal 36.95 2 256 4.21 0.016 0.032

Block× ERQ suppression 16.49 2 256 1.88 0.155 0.014

Valence× ERQ suppression 4.93 2 256 0.56 0.571 0.004

ERQ reappraisal× ERQ suppression 0.53 1 32 0.12 0.731 0.004

Block× valence× ERQ reappraisal 4.68 4 256 0.27 0.899 0.004

Block× valence× ERQ suppression 10.27 4 256 0.58 0.674 0.009

Block× ERQ reappraisal× ERQ suppression 2.18 2 256 0.25 0.78 0.002

Valence× ERQ reappraisal× ERQ suppression 2.94 2 256 0.33 0.716 0.003

Block× valence× ERQ reappraisal× ERQ suppression 6.89 4 256 0.39 0.814 0.006

R2 marginal/conditional 0.07/0.66

(Continued)
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TABLE 3 Continued

DV Effect SS dfnum dfden F p Partial η
2

Early LPP Block 3.33 2 256 0.94 0.391 0.007

Valence 361.91 2 256 102.37 < 0.001 0.444

ERQ reappraisal 3.32 1 32 1.88 0.180 0.055

ERQ suppression 0.34 1 32 0.19 0.664 0.006

Block× valence 1.92 4 256 0.27 0.897 0.004

Block× ERQ reappraisal 28.40 2 256 8.03 < 0.001 0.059

Valence× ERQ reappraisal 8.77 2 256 2.48 0.086 0.019

Block× ERQ suppression 2.38 2 256 0.67 0.511 0.005

Valence× ERQ suppression 6.07 2 256 1.72 0.182 0.013

ERQ reappraisal× ERQ suppression 8.21 1 32 4.65 0.039 0.127

Block× valence× ERQ reappraisal 6.13 4 256 0.87 0.484 0.013

Block× valence× ERQ suppression 4.09 4 256 0.58 0.679 0.009

Block× ERQ reappraisal× ERQ suppression 8.93 2 256 2.53 0.082 0.019

Valence× ERQ reappraisal× ERQ suppression 5.17 2 256 1.46 0.234 0.011

Block× valence× ERQ reappraisal× ERQ suppression 6.10 4 256 0.86 0.487 0.013

R2 marginal/conditional 0.22/0.89

Early r-OFC Block 8.37 2 256 0.90 0.409 0.007

Valence 486.06 2 256 52.11 < 0.001 0.289

ERQ reappraisal 13.87 1 32 2.98 0.094 0.085

ERQ suppression 0.04 1 32 0.01 0.927 0.000

Block× valence 14.80 4 256 0.79 0.530 0.012

Block× ERQ reappraisal 25.38 2 256 2.72 0.068 0.021

Valence× ERQ reappraisal 19.86 2 256 2.13 0.121 0.016

Block× ERQ suppression 12.39 2 256 1.33 0.267 0.010

Valence× ERQ suppression 4.86 2 256 0.52 0.595 0.004

ERQ reappraisal× ERQ suppression 0.06 1 32 0.01 0.909 0.000

Block× valence× ERQ reappraisal 17.84 4 256 0.96 0.432 0.015

Block× valence× ERQ suppression 19.55 4 256 1.05 0.383 0.016

Block× ERQ reappraisal× ERQ suppression 2.45 2 256 0.26 0.769 0.002

Valence× ERQ reappraisal× ERQ suppression 0.86 2 256 0.09 0.912 0.001

Block× valence× ERQ reappraisal× ERQ suppression 12.77 4 256 0.68 0.603 0.011

R2 marginal/conditional 0.20/0.62

Early r-TP Block 24.10 2 256 1.86 0.158 0.014

Valence 347.75 2 256 26.78 < 0.001 0.173

ERQ reappraisal 1.88 1 32 0.29 0.594 0.009

ERQ suppression 0.44 1 32 0.07 0.797 0.002

Block× Valence 17.31 4 256 0.67 0.616 0.010

Block× ERQ reappraisal 9.83 2 256 0.76 0.470 0.006

Valence× ERQ reappraisal 5.81 2 256 0.45 0.640 0.003

Block× ERQ suppression 14.07 2 256 1.08 0.340 0.008

Valence× ERQ suppression 23.71 2 256 1.83 0.163 0.014

ERQ reappraisal× ERQ suppression 5.13 1 32 0.79 0.381 0.024

Block× Valence× ERQ reappraisal 19.38 4 256 0.75 0.561 0.012

Block× Valence× ERQ suppression 16.68 4 256 0.64 0.633 0.010

Block× ERQ reappraisal× ERQ suppression 2.97 2 256 0.23 0.796 0.002

Valence× ERQ reappraisal× ERQ suppression 0.51 2 256 0.04 0.962 0.000

Block× Valence× ERQ reappraisal× ERQ suppression 21.63 4 256 0.83 0.505 0.013

R2 marginal/conditional 0.11/0.60

(Continued)
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TABLE 3 Continued

DV Effect SS dfnum dfden F p Partial η
2

Late LPP Block 0.22 2 256 0.06 0.941 0.000

Valence 349.53 2 256 95.29 < 0.001 0.427

ERQ reappraisal 0.24 1 32 0.13 0.720 0.004

ERQ suppression 1.12 1 32 0.61 0.440 0.019

Block× Valence 6.79 4 256 0.93 0.449 0.014

Block× ERQ reappraisal 15.66 2 256 4.27 0.015 0.032

Valence× ERQ reappraisal 5.75 2 256 1.57 0.210 0.012

Block× ERQ suppression 1.32 2 256 0.36 0.699 0.003

Valence× ERQ suppression 7.01 2 256 1.91 0.150 0.015

ERQ reappraisal× ERQ suppression 9.05 1 32 4.93 0.034 0.134

Block× valence× ERQ reappraisal 8.98 4 256 1.22 0.301 0.019

Block× valence× ERQ suppression 3.77 4 256 0.51 0.726 0.008

Block× ERQ reappraisal× ERQ suppression 10.57 2 256 2.88 0.058 0.022

Valence× ERQ reappraisal× ERQ suppression 4.41 2 256 1.20 0.303 0.009

Block× valence× ERQ reappraisal× ERQ suppression 6.75 4 256 0.92 0.453 0.014

R2 marginal/conditional 0.21/0.85

Late r-OFC Block 4.96 2 256 0.50 0.608 0.004

Valence 468.57 2 256 47.09 < 0.001 0.269

ERQ reappraisal 6.08 1 32 1.22 0.277 0.037

ERQ suppression 0.31 1 32 0.06 0.805 0.002

Block× valence 11.06 4 256 0.56 0.695 0.009

Block× ERQ reappraisal 30.29 2 256 3.04 0.049 0.023

Valence× ERQ reappraisal 3.14 2 256 0.32 0.729 0.002

Block× ERQ suppression 30.56 2 256 3.07 0.048 0.023

Valence× ERQ suppression 2.33 2 256 0.23 0.791 0.002

ERQ reappraisal× ERQ suppression 0.03 1 32 0.01 0.943 0.000

Block× valence× ERQ reappraisal 11.32 4 256 0.57 0.686 0.009

Block× valence× ERQ suppression 17.90 4 256 0.90 0.465 0.014

Block× ERQ reappraisal× ERQ suppression 2.24 2 256 0.23 0.799 0.002

Valence× ERQ reappraisal× ERQ suppression 5.93 2 256 0.60 0.552 0.005

Block× valence× ERQ reappraisal× ERQ suppression 22.75 4 256 1.14 0.337 0.018

R2 marginal/conditional 0.20/0.50

Late r-TP Block 13.50 2 256 1.15 0.317 0.009

Valence 387.36 2 256 33.11 < 0.001 0.206

ERQ reappraisal 0.51 1 32 0.09 0.769 0.003

ERQ suppression 1.36 1 32 0.23 0.633 0.007

Block× valence 11.85 4 256 0.51 0.731 0.008

Block× ERQ reappraisal 9.24 2 256 0.79 0.455 0.006

Valence× ERQ reappraisal 0.40 2 256 0.03 0.966 0.000

Block× ERQ suppression 6.22 2 256 0.53 0.588 0.004

Valence× ERQ suppression 24.34 2 256 2.08 0.127 0.016

ERQ reappraisal× ERQ suppression 4.08 1 32 0.70 0.410 0.021

Block× valence× ERQ reappraisal 19.54 4 256 0.83 0.504 0.013

Block× valence× ERQ suppression 11.55 4 256 0.49 0.740 0.008

Block× ERQ reappraisal× ERQ suppression 1.86 2 256 0.16 0.853 0.001

Valence× ERQ reappraisal× ERQ suppression 1.83 2 256 0.16 0.856 0.001

Block× valence× ERQ reappraisal× ERQ suppression 17.08 4 256 0.73 0.572 0.011

R2 marginal/conditional 0.15/0.50

For each dependent variable (DV) and effect of interest, we report the sum of squares (SS), numerator (dfnum), and denominator (dfden) degrees of freedom, F-test and relative p-values,

and partial η2 .
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FIGURE 3

Regression plots of ERQ reappraisal scores on (A) P2 amplitude, (C) early LPP amplitude, (D) late LPP amplitude, and (E) late r-OFC activity as a

function of blocks. Regression plot of ERQ reappraisal scores on (B) l-TPJ activity as a function of S2 valence. Regression plot of ERQ

suppression scores on (F) late r-OFC activity as a function of blocks. Shaded areas denote the 95% CI. Points represent individual observations.

Grand average ERP waveforms to S2s (G). Shaded areas denote SE. Adapted from Del Popolo Cristaldi et al. (2021d). Brain activity (z-score) of

the l-TPJ (H), r-OFC, and r-TP (I).

of the affective predictive model may be ultimately facilitated.

Coherently, in our paradigm, we found a major involvement

of the reappraisal ER strategy in the modulation of S2-locked

neural activity. In particular, results showed that cognitive

reappraisal predicted larger P2 and early LPP amplitudes in

all the predictive contexts, and increased late LPP and r-

OFC activity in the fully (100%) and moderately predictive

(75%) contexts. These results are consistent with the literature
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suggesting that reappraisal elicits larger LPP amplitudes when

the stimuli to be reappraised are highly arousing, like those we

employed in our paradigm (Hajcak et al., 2010; Langeslag and

Surti, 2017). Within a predictive framework, these results could

index the involvement of cognitive reappraisal in supporting the

updating of predictive models (as reflected by the P2) in light of

the information derived from a deep S2 processing (as reflected

by the LPP and r-OFC activity). Moreover, the involvement of

the right OFC is consistent with extant evidence suggesting that

reappraisal is uniquely associated with OFC activation (Dörfel

et al., 2014), especially when a down-regulation is achieved

(Ochsner et al., 2004; Kim and Hamann, 2007). Interestingly,

in a later time window (600–800ms from S2), these processes

seem to persist only in those predictive contexts in which the

S2 frequently matches predictions (100 and 75%). It is indeed

cognitively and metabolically inefficient to carry on a sustained

S2 processing when it disconfirms predictions so often (as in the

50% block), thus becoming totally uninformative with respect to

adjusting future predictions.

As a second main finding, we found that both suppression

and reappraisal strategies interacted with the levels of contextual

uncertainty by differently modulating ERPs and source activity

within each stage. These results offer at least two important

contributions. First, the majority of the significant effects

involved an interaction between ERQ scores and blocks. In

particular, regression plots and post-hoc contrasts clearly showed

that in the implementation stage and in the latest time window

of the updating stage the relationships between ER strategies

and neural activity presented distinct patterns depending on the

predictive context. This highlights the importance of taking into

account the role of contextual uncertainty when investigating

the relationships between ER and affective processing. Second,

from the overall pattern of results, the 75% block emerged

as the one showing the most significant comparisons. This

suggests that ER strategies predominantly modulate neural

activity in those conditions where they most support an

efficient updating of affective predictive models. The 75%

block is the only one in which model updating occurs, since

it implies expectancy violation in incongruent trials. In the

100 and 50% blocks, instead, no model updating occurs

since they both involve no expectancy violation (in the 100%

block because there are no incongruent trials, while in the

50% block because it is impossible to generate any reliable

predictive model). Thus, the moderately predictive condition

seems best suited to study affective prediction construction

and its interactions with ER strategies. Moreover, it also

closely resembles the contingencies we are most exposed to in

everyday life.

It is worth commenting briefly on two unexpected results

regarding the updating stage. First, we found that cognitive

reappraisal negatively predicted the left TPJ activity to neutral

S2s. This is surprising, considering that in our previous works

(Del Popolo Cristaldi et al., 2021c,d), the modulation of the

TPJ was consistent with the direction of the modulation of

the P2 (i.e., larger P2 amplitudes corresponded to higher TPJ

activity), and that in the present work, no interactions between

reappraisal scores and S2 valence emerged on the P2. Since the

TPJ is involved in contextual updating (Geng and Vossel, 2013)

and the left TPJ is generally involved in ER (Morawetz et al.,

2017), we might speculate that a reduced l-TPJ activation to

neutral S2s may reflect the fact that neutral stimuli require a

reduced reappraisal effort (they are less salient than emotional

stimuli). Second, in the late time window (600–800ms from

S2), r-OFC activity was found to be significantly predicted not

only by reappraisal, but also by suppression scores. Interestingly,

the direction of the relationship between expressive suppression

and r-OFC activity was the same as for cognitive reappraisal in

100 and 50% blocks. Both suppression and reappraisal scores

predicted higher r-OFC activity in the 100% block and lower

r-OFC activity in the 50% block. However, an opposite pattern

emerged in the 75% block, with reappraisal predicting higher

and suppression predicting lower r-OFC activity. Thus, it seems

that in a later time window the suppression strategy is mobilized

in addition to reappraisal, summing its effect in those contexts

in which no model updating is required (100 and 50% block)

and promoting an opposite effect in the context requiring model

updating (75% block). However, it is important to note that

these unexpected results may be due to spurious effects. Thus,

any interpretation remains tentative and speculative, and future

studies are needed to better clarify these effects.

As important limitations to be acknowledged, we have to

mention first a limited sample size, that may have negatively

impacted the generalizability of results. Moreover, slope analysis

revealed that the majority of the slopes were not significantly

different from 0. Therefore, these results do not appear to be

highly robust, and their interpretation should be considered

with caution. Lastly, in this study, we investigated the effect of

habitual ER strategies, while no measure or manipulation of the

context-based, circumscribed ER strategies has been carried out.

However, these two facets of emotion regulation (i.e., habitual vs.

context-based use of ER strategies) may interact or overlap, and

further studies are needed in order to disentangle any potential

mutual influence.

Despite these limitations, our study nonetheless provides

interesting insights for present and future research. To

summarize, we provided evidence that expressive suppression

and cognitive reappraisal are differently deployed depending

on the specific stage in which affective prediction unfolds.

Furthermore, we demonstrated that both strategies interact with

contextual uncertainty by differentially modulating the neural

correlates of affective predictions within the implementation

and updating stages. As a first contribution, our results offer a

nice framework to study ER strategies and their influence on

affective processing, by combining insights from the process
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model of ER (Gross, 1998; Gross and John, 2003) with others

from predictive models of emotion (Seth and Friston, 2016;

Barrett, 2017). Second, given the role of altered ER (Cisler

et al., 2010) and interoceptive prediction patterns (Brewer

et al., 2021) as risk factors for the development of affective

psychopathology, our results may provide some potential

clinical implications. The assessment of the influence of ER

strategies on affective processing through paradigms similar to

ours could, for instance, be included among clinical practices

to early detect people at risk of psychopathology. Or, clinical

interventions that train the circumstantial use of the most

efficient ER strategies could be implemented, and compensate

for the habitual use of ineffective strategies that are typical of

individuals with manifest psychopathology.

Data availability statement

Publicly available datasets from the Figshare repository were

analyzed in this study. This data can be found here: https://doi.

org//10.6084/m9.figshare.13560569.

Ethics statement

The study was reviewed and approved by Ethical Committee

for the Psychological Research of the University of Padua

(protocol no. 2859), and it was conducted in accordance with

the Declaration of Helsinki. All the participants provided their

written informed consent to participate in this study.

Author contributions

FDPC: conceptualization, methodology, formal analysis,

investigation, data curation, writing—original draft,

writing—review and editing, and visualization. GM and GB:

conceptualization and methodology. MS: conceptualization,

methodology, writing—review and editing, supervision, and

project administration. All authors contributed to the article

and approved the submitted version.

Funding

The study was supported by a grant from MIUR

(Dipartimenti di Eccellenza DM 11/05/2017 n. 262) to the

Department of General Psychology.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnbeh.

2022.947063/full#supplementary-material

References

Balzarotti, S., John, O. P., and Gross, J. J. (2010). An Italian adaptation
of the emotion regulation questionnaire. Eur. J. Psychol. Assess. 26, 61–67.
doi: 10.1027/1015-5759/a000009

Bar, M. (2007). The proactive brain: using analogies and associations to generate
predictions. Trends Cogn. Sci. 11, 280–289. doi: 10.1016/j.tics.2007.05.005

Barrett, L. F. (2017). The theory of constructed emotion: an active inference
account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12, 1–23.
doi: 10.1093/scan/nsx060

Barrett, L. F., and Satpute, A. B. (2019). Historical pitfalls and new
directions in the neuroscience of emotion. Neurosci. Lett. 693, 9–18.
doi: 10.1016/j.neulet.2017.07.045

Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C. (2015). Fitting
linear mixed-effects models using lme4. J. Statistical Softw. 67, i01.
doi: 10.18637/jss.v067.i01

Baur, R., Conzelmann, A., Wieser, M. J., and Pauli, P. (2015). Spontaneous
emotion regulation: differential effects on evoked brain potentials and facial
muscle activity. Int. J. Psychophysiol. 96, 38–48. doi: 10.1016/j.ijpsycho.2015.
02.022

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach
to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.
doi: 10.1162/neco.1995.7.6.1129

Bentin, S., Allison, T., Puce, A., Perez, E., and McCarthy, G. (1996).
Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8,
551–565. doi: 10.1162/jocn.1996.8.6.551

Bernat, E. M., Cadwallader, M., Seo, D., Vizueta, N., and Patrick, C. J.
(2011). Effects of instructed emotion regulation on valence, arousal, and
attentional measures of affective processing. Dev. Neuropsychol. 36, 493–518.
doi: 10.1080/87565641.2010.549881

Blau, V. C., Maurer, U., Tottenham, N., and McCandliss, B. D. (2007). The
face-specific N170 component is modulated by emotional facial expression. Behav.
Brain Funct. 3, 7. doi: 10.1186/1744-9081-3-7

Boehme, S., Biehl, S. C., and Mühlberger, A. (2019). Effects of differential
strategies of emotion regulation. Brain Sci. 9, 225. doi: 10.3390/brainsci9090225

Brewer, R., Murphy, J., and Bird, G. (2021). Atypical interoception as a common
risk factor for psychopathology: a review. Neurosci. Biobehav. Rev. 130, 470–508.
doi: 10.1016/j.neubiorev.2021.07.036

Frontiers in Behavioral Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.947063
https://doi.org//10.6084/m9.figshare.13560569
https://doi.org//10.6084/m9.figshare.13560569
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.947063/full#supplementary-material
https://doi.org/10.1027/1015-5759/a000009
https://doi.org/10.1016/j.tics.2007.05.005
https://doi.org/10.1093/scan/nsx060
https://doi.org/10.1016/j.neulet.2017.07.045
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.ijpsycho.2015.02.022
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/jocn.1996.8.6.551
https://doi.org/10.1080/87565641.2010.549881
https://doi.org/10.1186/1744-9081-3-7
https://doi.org/10.3390/brainsci9090225
https://doi.org/10.1016/j.neubiorev.2021.07.036
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Del Popolo Cristaldi et al. 10.3389/fnbeh.2022.947063

Brudner, E. G., Denkova, E., Paczynski, M., and Jha, A. P. (2018).
The role of expectations and habitual emotion regulation in emotional
processing: an ERP investigation. Emotion 18, 171–180. doi: 10.1037/emo000
0313

Cao, D., Li, Y., and Niznikiewicz, M. A. (2020). Neural characteristics of
cognitive reappraisal success and failure: an ERP study. Brain Behav. 10, e01584.
doi: 10.1002/brb3.1584

Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibáñez,
A., et al. (2013). Expectation and attention in hierarchical auditory prediction. J.
Neurosci. 33, 11194–11205. doi: 10.1523/JNEUROSCI.0114-13.2013

Cisler, J. M., Olatunji, B. O., Feldner, M. T., and Forsyth, J. P. (2010). Emotion
regulation and the anxiety disorders: an integrative review. J. Psychopathol. Behav.
Assess. 32, 68–82. doi: 10.1007/s10862-009-9161-1

Del Popolo Cristaldi, F., Buodo, G., Gambarota, F., Oosterwijk, S., and Mento,
G. (2021a). The role of implicit learning and cue ambiguity on the subjective
experience of affective predictions: a follow-up behavioral investigation. PsyArXiv.
doi: 10.31234/osf.io/y7bxn

Del Popolo Cristaldi, F., Gambarota, F., and Oosterwijk, S. (2021b). The role
of previous visual experience in subjective reactions to new affective pictures and
sounds. PsyArXiv. doi: 10.31234/osf.io/z4mgh

Del Popolo Cristaldi, F., Mento, G., Buodo, G., and Sarlo, M. (2021c). What’s
next? Neural correlates of emotional predictions: a high-density EEG investigation.
Brain Cogn. 150, 105708. doi: 10.1016/j.bandc.2021.105708

Del Popolo Cristaldi, F., Mento, G., Sarlo, M., and Buodo, G. (2021d).
Dealing with uncertainty: a high-density EEG investigation on how intolerance
of uncertainty affects emotional predictions. PLoS ONE 16, e0254045.
doi: 10.1371/journal.pone.0254045

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Diers, K.,Weber, F., Brocke, B., Strobel, A., and Schönfeld, S. (2014). Instructions
matter: a comparison of baseline conditions for cognitive emotion regulation
paradigms. Front. Psychol. 5, 347. doi: 10.3389/fpsyg.2014.00347

Doré, B. P., Silvers, J. A., and Ochsner, K. N. (2016). Toward a personalized
science of emotion regulation. Soc. Personal. Psychol. Compass 10, 171–187.
doi: 10.1111/spc3.12240

Dörfel, D., Lamke, J.-P., Hummel, F., Wagner, U., Erk, S., and Walter, H. (2014).
Common and differential neural networks of emotion regulation by Detachment,
Reinterpretation, Distraction, and Expressive Suppression: a comparative
fMRI investigation. NeuroImage 101, 298–309. doi: 10.1016/j.neuroimage.2014.
06.051

Ferree, T. C. (2006). Spherical splines and average referencing in scalp
electroencephalography. Brain Topogr. 19, 43–52. doi: 10.1007/s10548-006-0011-0

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138. doi: 10.1038/nrn2787

Gan, S., Yang, J., Chen, X., and Yang, Y. (2015). The electrocortical modulation
effects of different emotion regulation strategies. Cogn. Neurodyn. 9, 399–410.
doi: 10.1007/s11571-015-9339-z

Garavan, H., Hester, R., Murphy, K., Fassbender, C., and Kelly, C. (2006).
Individual differences in the functional neuroanatomy of inhibitory control. Brain
Res. 1105, 130–142. doi: 10.1016/j.brainres.2006.03.029

Geng, J. J., and Vossel, S. (2013). Re-evaluating the role of TPJ in
attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620.
doi: 10.1016/j.neubiorev.2013.08.010

Gómez, C. M., Arjona, A., Donnarumma, F., Maisto, D., Rodríguez-Martínez, E.
I., and Pezzulo, G. (2019). Tracking the time course of Bayesian inference with
event-related potentials: a study using the central Cue Posner Paradigm. Front.
Psychol. 10, 1424. doi: 10.3389/fpsyg.2019.01424

Gross, J. J. (1998). Antecedent- and response-focused emotion regulation:
divergent consequences for experience, expression, and physiology. J. Personal. Soc.
Psychol. 74, 224–237. doi: 10.1037/0022-3514.74.1.224

Gross, J. J., and John, O. P. (2003). Individual differences in two emotion
regulation processes: implications for affect, relationships, and well-being. J.
Personal. Soc. Psychol. 85, 348–362. doi: 10.1037/0022-3514.85.2.348

Guex, R., Hofstetter, C., Domínguez-Borràs, J., Méndez-Bértolo, C., Sterpenich,
V., Spinelli, L., et al. (2019). Neurophysiological evidence for early modulation
of amygdala activity by emotional reappraisal. Biol. Psychol. 145, 211–223.
doi: 10.1016/j.biopsycho.2019.05.006

Hajcak, G., MacNamara, A., and Olvet, D. M. (2010). Event-related potentials,
emotion, and emotion regulation: an integrative review. Dev. Neuropsychol. 35,
129–155. doi: 10.1080/87565640903526504

Hajcak, G., and Nieuwenhuis, S. (2006). Reappraisal modulates the
electrocortical response to unpleasant pictures. Cogn. Affect. Behav. Neurosci.
6, 291–297. doi: 10.3758/CABN.6.4.291

Harrison, N. R., and Chassy, P. (2019). Habitual use of cognitive reappraisal is
associated with decreased amplitude of the late positive potential (LPP) elicited by
threatening pictures. J. Psychophysiol. 33, 22–31. doi: 10.1027/0269-8803/a000202

Herbert, C., Deutsch, R., Platte, P., and Pauli, P. (2013). No fear, no panic:
probing negation as a means for emotion regulation. Soc. Cogn. Affect. Neurosci.
8, 654–661. doi: 10.1093/scan/nss043

Herwig, U., Baumgartner, T., Kaffenberger, T., Brühl, A., Kottlow, M.,
Schreiter-Gasser, U., et al. (2007). Modulation of anticipatory emotion
and perception processing by cognitive control. NeuroImage 37, 652–662.
doi: 10.1016/j.neuroimage.2007.05.023

Kim, S. H., and Hamann, S. (2007). Neural correlates of positive and negative
emotion regulation. J. Cogn. Neurosci. 19, 776–798. doi: 10.1162/jocn.2007.19.5.776

Kimura, M., and Takeda, Y. (2015). Automatic prediction regarding the
next state of a visual object: electrophysiological indicators of prediction
match and mismatch. Brain Res. 1626, 31–44. doi: 10.1016/j.brainres.2015
.01.013

Knill, D. C., and Pouget, A. (2004). The Bayesian brain: the role of
uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719.
doi: 10.1016/j.tins.2004.10.007

Kotowski, K., Stapor, K., and Leski, J. (2019). Improved robust weighted
averaging for event-related potentials in EEG. Biocybernet. Biomed. Eng. 39,
1036–1046. doi: 10.1016/j.bbe.2019.09.002

Krompinger, J. W., Moser, J. S., and Simons, R. F. (2008). Modulations of the
electrophysiological response to pleasant stimuli by cognitive reappraisal. Emotion
8, 132–137. doi: 10.1037/1528-3542.8.1.132

Kunz, M., Chen, J.-I., Lautenbacher, S., Vachon-Presseau, E., and Rainville, P.
(2011). Cerebral regulation of facial expressions of pain. J. Neurosci. 31, 8730–8738.
doi: 10.1523/JNEUROSCI.0217-11.2011

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest
package: tests in linear mixed effects models. J. Statistical Softw. 82, 1–26.
doi: 10.18637/jss.v082.i13

Lang, P. J., Bradley, M. M., and Cuthbert, B. N. (2008). International Affective
Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual.
Technical Report A-8. Gainesville, FL: University of Florida.

Langeslag, S. J. E., and Surti, K. (2017). The effect of arousal on regulation of
negative emotions using cognitive reappraisal: an ERP study. Int. J. Psychophysiol.
118, 18–26. doi: 10.1016/j.ijpsycho.2017.05.012

Lazarus, R. S., and Alfert, E. (1964). Short-circuiting of threat by
experimentally altering cognitive appraisal. J. Abnormal Soc. Psychol. 69, 195–205.
doi: 10.1037/h0044635

Lee, T.-W., Dolan, R. J., and Critchley, H. D. (2008). Controlling emotional
expression: behavioral and neural correlates of nonimitative emotional responses.
Cereb. Cortex 18, 104–113. doi: 10.1093/cercor/bhm035

Lenth, R. V. (2020). Estimated Marginal Means, aka Least-Squares Means.
Available online at: https://cran.r-project.org/web/packages/emmeans/index.html

Li, P., Wang, W., Fan, C., Zhu, C., Li, S., Zhang, Z., et al. (2017). Distraction and
expressive suppression strategies in regulation of high- and low-intensity negative
emotions. Sci. Rep. 7, 13062. doi: 10.1038/s41598-017-12983-3

MacNamara, A., Joyner, K., and Klawohn, J. (2022). Event-related potential
studies of emotion regulation: a review of recent progress and future directions.
Int. J. Psychophysiol. 176, 73–88. doi: 10.1016/j.ijpsycho.2022.03.008

Mento, G. (2013). The passive CNV: carving out the contribution
of task-related processes to expectancy. Front. Hum. Neurosci. 7, 827.
doi: 10.3389/fnhum.2013.00827

Mercado, F., Hinojosa, J. A., Peñacoba, C., and Carretié, L. (2008). “The
emotional S1-S2 paradigm for exploring brain mechanisms underlying affective
modulation of expectancy,” in Brain Mapping Research Developments (Hauppauge,
NY: Nova Science Publishers), 197–209.

Morawetz, C., Bode, S., Derntl, B., and Heekeren, H. R. (2017). The effect of
strategies, goals and stimulus material on the neural mechanisms of emotion
regulation: a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 72, 111–128.
doi: 10.1016/j.neubiorev.2016.11.014

Moser, J. S., Hajcak, G., Bukay, E., and Simons, R. F. (2006). Intentional
modulation of emotional responding to unpleasant pictures: an ERP
study. Psychophysiology 43, 292–296. doi: 10.1111/j.1469-8986.2006.
00402.x

Myruski, S., Bonanno, G. A., Cho, H., Fan, B., and Dennis-Tiwary, T.
A. (2019). The late positive potential as a neurocognitive index of emotion

Frontiers in Behavioral Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.947063
https://doi.org/10.1037/emo0000313
https://doi.org/10.1002/brb3.1584
https://doi.org/10.1523/JNEUROSCI.0114-13.2013
https://doi.org/10.1007/s10862-009-9161-1
https://doi.org/10.31234/osf.io/y7bxn
https://doi.org/10.31234/osf.io/z4mgh
https://doi.org/10.1016/j.bandc.2021.105708
https://doi.org/10.1371/journal.pone.0254045
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.3389/fpsyg.2014.00347
https://doi.org/10.1111/spc3.12240
https://doi.org/10.1016/j.neuroimage.2014.06.051
https://doi.org/10.1007/s10548-006-0011-0
https://doi.org/10.1038/nrn2787
https://doi.org/10.1007/s11571-015-9339-z
https://doi.org/10.1016/j.brainres.2006.03.029
https://doi.org/10.1016/j.neubiorev.2013.08.010
https://doi.org/10.3389/fpsyg.2019.01424
https://doi.org/10.1037/0022-3514.74.1.224
https://doi.org/10.1037/0022-3514.85.2.348
https://doi.org/10.1016/j.biopsycho.2019.05.006
https://doi.org/10.1080/87565640903526504
https://doi.org/10.3758/CABN.6.4.291
https://doi.org/10.1027/0269-8803/a000202
https://doi.org/10.1093/scan/nss043
https://doi.org/10.1016/j.neuroimage.2007.05.023
https://doi.org/10.1162/jocn.2007.19.5.776
https://doi.org/10.1016/j.brainres.2015.01.013
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.bbe.2019.09.002
https://doi.org/10.1037/1528-3542.8.1.132
https://doi.org/10.1523/JNEUROSCI.0217-11.2011
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1016/j.ijpsycho.2017.05.012
https://doi.org/10.1037/h0044635
https://doi.org/10.1093/cercor/bhm035
https://cran.r-project.org/web/packages/emmeans/index.html
https://doi.org/10.1038/s41598-017-12983-3
https://doi.org/10.1016/j.ijpsycho.2022.03.008
https://doi.org/10.3389/fnhum.2013.00827
https://doi.org/10.1016/j.neubiorev.2016.11.014
https://doi.org/10.1111/j.1469-8986.2006.00402.x
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Del Popolo Cristaldi et al. 10.3389/fnbeh.2022.947063

regulatory flexibility. Biol. Psychol. 148, 107768. doi: 10.1016/j.biopsycho.2019.
107768

Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of
determination R2 and intra-class correlation coefficient from generalized linear
mixed-effects models revisited and expanded. J. Royal Soc. Interface 14, 20170213.
doi: 10.1098/rsif.2017.0213

Ochsner, K. N., Bunge, S. A., Gross, J. J., and Gabrieli, J. D. E. (2002). Rethinking
feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci.
14, 1215–1229. doi: 10.1162/089892902760807212

Ochsner, K. N., and Gross, J. J. (2005). The cognitive control of emotion. Trends
Cogn. Sci. 9, 242–249. doi: 10.1016/j.tics.2005.03.010

Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli,
J. D. E., et al. (2004). For better or for worse: neural systems supporting the
cognitive down- and up-regulation of negative emotion. NeuroImage 23, 483–499.
doi: 10.1016/j.neuroimage.2004.06.030

Oldfield, R. C. (1971). “The assessment and analysis of handedness: The
edinburgh inventory,” in Neuropsychologia, Vol. 9 (Pergamon Press), 97–113.

Olofsson, J. K., Nordin, S., Sequeira, H., and Polich, J. (2008). Affective picture
processing: an integrative review of ERP findings. Biol. Psychol. 77, 247–265.
doi: 10.1016/j.biopsycho.2007.11.006

Pan, D., Wang, Y., and Li, X. (2019). Strategy bias in the emotion
regulation of high trait anxiety individuals: an investigation of underlying
neural signatures using ERPs. Neuropsychology 33, 111–122. doi: 10.1037/neu0
000471

Paul, S., Kathmann, N., and Riesel, A. (2016). The costs of distraction: the effect
of distraction during repeated picture processing on the LPP. Biol. Psychol. 117,
225–234. doi: 10.1016/j.biopsycho.2016.04.002

Perrin, F., Pernier, J., Bertrand, O., and Echallier, J. F. (1989). Spherical
splines for scalp potential and current density mapping. Electroencephalogr. Clin.
Neurophysiol. 72, 184–187. doi: 10.1016/0013-4694(89)90180-6

Schneider,W., Eschman, A., and Zuccolotto, A. (2010). E-prime. Sharpsburg, PA:
Psychology Software Tools.

Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito,
T., and Lang, P. J. (2000). Affective picture processing: the late positive
potential is modulated by motivational relevance. Psychophysiology 37, 257–261.
doi: 10.1111/1469-8986.3720257

Seth, A. K., and Friston, K. J. (2016). Active interoceptive inference and
the emotional brain. Philos. Trans. Royal Soc. B Biol. Sci. 371, 20160007.
doi: 10.1098/rstb.2016.0007

Shafir, R., and Sheppes, G. (2018). When knowledge is (not) power- the
influence of anticipatory information on subsequent emotion regulation: neural
and behavioral evidence. J. Exp. Psychol. 147, 1225–1240. doi: 10.1037/xge0000452

Shimamura, A. P., Marian, D. E., and Haskins, A. L. (2013). Neural correlates
of emotional regulation while viewing films. Brain Imaging Behav. 7, 77–84.
doi: 10.1007/s11682-012-9195-y

Shipp, S. (2016). Neural elements for predictive coding. Front. Psychol. 7, 1792.
doi: 10.3389/fpsyg.2016.01792

Stone, J. V. (2002). Independent component analysis: an introduction. Trends
Cogn. Sci. 6, 59–64. doi: 10.1016/S1364-6613(00)01813-1

Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare,
T. A., et al. (2009). The NimStim set of facial expressions: judgments
from untrained research participants. Psychiatry Res. 168, 242–249.
doi: 10.1016/j.psychres.2008.05.006

van Boxtel, G. J. M., and Böcker, K. B. E. (2004). Cortical measures of
anticipation. J. Psychophysiol. 18, 61–76. doi: 10.1027/0269-8803.18.23.61

Van Boxtel, G. J. M., and Brunia, C. H. M. (1994). Motor and non-motor
components of the Contingent Negative Variation. Int. J. Psychophysiol. 17,
269–279. doi: 10.1016/0167-8760(94)90069-8

Vanderhasselt, M.-A., Baeken, C., Van Schuerbeek, P., Luypaert, R., and De
Raedt, R. (2013a). Inter-individual differences in the habitual use of cognitive
reappraisal and expressive suppression are associated with variations in prefrontal
cognitive control for emotional information: an event related fMRI study. Biol.
Psychol. 92, 433–439. doi: 10.1016/j.biopsycho.2012.03.005

Vanderhasselt, M.-A., Kühn, S., and De Raedt, R. (2013b). ‘Put on
your poker face’: neural systems supporting the anticipation for expressive
suppression and cognitive reappraisal. Soc. Cogn. Affect. Neurosci. 8, 903–910.
doi: 10.1093/scan/nss090

Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., and Winter, A. L.
(1964). Contingent negative variation: an electric sign of sensori-motor association
and expectancy in the human brain. Nature 203, 380–384. doi: 10.1038/203380a0

Wolpe, J., and Lang, P. J. (1964). A fear survey schedule for use in behavioral
modification. Behav. Res. Therapy 2, 27–30. doi: 10.1016/0005-7967(64)90051-8

Wu, H., Tang, P., Huang, X., Hu, X., and Luo, Y. (2013). Differentiating
electrophysiological response to decrease and increase negative emotion
regulation. Chinese Sci. Bullet. 58, 1543–1550. doi: 10.1007/s11434-013-5746-x

Zhu, C., Li, P., Zhang, Z., Liu, D., and Luo, W. (2019). Characteristics
of the regulation of the surprise emotion. Sci. Rep. 9, 7576.
doi: 10.1038/s41598-019-42951-y

Frontiers in Behavioral Neuroscience 20 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.947063
https://doi.org/10.1016/j.biopsycho.2019.107768
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.1162/089892902760807212
https://doi.org/10.1016/j.tics.2005.03.010
https://doi.org/10.1016/j.neuroimage.2004.06.030
https://doi.org/10.1016/j.biopsycho.2007.11.006
https://doi.org/10.1037/neu0000471
https://doi.org/10.1016/j.biopsycho.2016.04.002
https://doi.org/10.1016/0013-4694(89)90180-6
https://doi.org/10.1111/1469-8986.3720257
https://doi.org/10.1098/rstb.2016.0007
https://doi.org/10.1037/xge0000452
https://doi.org/10.1007/s11682-012-9195-y
https://doi.org/10.3389/fpsyg.2016.01792
https://doi.org/10.1016/S1364-6613(00)01813-1
https://doi.org/10.1016/j.psychres.2008.05.006
https://doi.org/10.1027/0269-8803.18.23.61
https://doi.org/10.1016/0167-8760(94)90069-8
https://doi.org/10.1016/j.biopsycho.2012.03.005
https://doi.org/10.1093/scan/nss090
https://doi.org/10.1038/203380a0
https://doi.org/10.1016/0005-7967(64)90051-8
https://doi.org/10.1007/s11434-013-5746-x
https://doi.org/10.1038/s41598-019-42951-y
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org

	Emotion regulation strategies differentially modulate neural activity across affective prediction stages: An HD-EEG investigation
	Introduction
	Materials and methods
	Participants
	Stimulus material
	Procedure
	EEG recordings and pre-processing
	ERPs and brain source activity
	Data analysis

	Results
	Prediction generation stage
	Prediction implementation stage
	Prediction updating stage

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


