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Cerebellar and basal ganglia
motor network predicts trait
depression and hyperactivity
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United States, 2Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX,
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In the human brain, the cerebellum (CB) and basal ganglia (BG) are implicated

in cognition-, emotion-, and motor-related cortical processes and are

highly interconnected, both to cortical regions via separate, trans-thalamic

pathways and to each other via subcortical disynaptic pathways. We previously

demonstrated a distinction between cognitive and motor CB-BG networks

(CCBN, MCBN, respectively) as it relates to cortical network integration in

healthy young adults, suggesting the subcortical networks separately support

cortical networks. The CB and BG are also implicated in the pathophysiology of

schizophrenia, Parkinson’s, and compulsive behavior; thus, integration within

subcortical CB-BG networksmay be related to transdiagnostic symptomology.

Here, we asked whether CCBN or MCBN integration predicted Achenbach

Self-Report scores for anxiety, depression, intrusive thoughts, hyperactivity

and inactivity, and cognitive performance in a community sample of young

adults. We computed global e�ciency for each CB-BG network and 7

canonical resting-state networks for all right-handed participants in the

HumanConnectomeProject 1200 releasewith a complete set of preprocessed

resting-state functional MRI data (N = 783). We used multivariate regression

to control for substance abuse and age, and permutation testing with

exchangeability blocks to control for family relationships. MCBN integration

negatively predicted depression and hyperactivity, and positively predicted

cortical network integration. CCBN integration predicted cortical network

integration (except for the emotional network) and marginally predicted

a positive relationship with hyperactivity, indicating a potential dichotomy

between cognitive andmotor CB-BG networks and hyperactivity. These results

highlight the importance of CB-BG interactions as they relate tomotivation and

symptoms of depression.
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Introduction

The cerebellum (CB) and basal ganglia (BG) are each cytoarchitectonically unique

and thought to be foundational to cortical processing, each supporting cognition

with specific computations associated with predictive learning (Flanagan and Wing,

1997; Morton and Bastian, 2006; Wolpert et al., 2011) and reinforcement learning
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(Schultz et al., 1998, 2000; Cohen and Frank, 2009; Ito and

Doya, 2011), respectively. Previous work by our lab found a

highly-connected resting-state CB-BG network in healthy young

adults (Hausman et al., 2019) and a follow-up study using

graph theory metrics confirmed distinct motor and cognitive

functional networks that were differentially related to cortical

functional networks (Jackson and Bernard, 2022). Notably, the

CB and BG have each been separately implicated in multiple

psychiatric and neurological disorders (e.g., depression, bipolar

disorder, psychosis; reviewed in Ring, 2002; Hoppenbrouwers

et al., 2008; Macpherson and Hikida, 2019). For example,

differently shaped BG regions are found in drug-naïve bipolar

disorder sufferers (Hwang et al., 2006) and structural alterations

and degeneration of the cerebellum is related to a general

liability for mental illness including psychosis and depression

(Liszewski et al., 2004; Romer et al., 2018). Additionally, altered

CB-cortical functional connectivity (FC) is found in geriatric

depression (Alalade et al., 2011) and altered BG-cortical FC

in obsessive-compulsive disorder (OCD; Harrison et al., 2009).

Research has also linked receptor expression to symptomology.

CB GABA (Fatemi et al., 2013) and striatal dopamine (Jauhar

et al., 2017) differentiated those with schizophrenia and bipolar

disorder from healthy controls. Striatal serotonin also predicted

depression symptom severity (Cannon et al., 2007). Here, we

are interested in determining whether there is a relationship

between cognitive CB-BG (CCBN) or motor CB-BG (MCBN)

network FC measures and scores on a series of cognitive tasks

and self-reported psychiatric measures in a community sample

of healthy young adults.

Though the CB has historically been associated with motor

function, the last few decades have highlighted CB contributions

to cortical networks and a wide variety behavioral domains

including cognition, emotional regulation, and attentional

control (reviewed in Stoodley, 2012; Stoodley et al., 2012;

Bostan and Strick, 2018; King et al., 2019). Likewise, the BG,

a group of mid-brain nuclei including the globus pallidus,

substantia nigra, dorsal and ventral striatum (putamen and

caudate), subthalamic nucleus, and subdivisions therein, were

also historically associated with motor behaviors and function.

The theory has since evolved to encapsulate motivation and

reinforcement learning across domains (Schmidt et al., 2008;

Sgambato-Faure et al., 2016; Bostan and Strick, 2018).

The uniformity of the cerebellar cytoarchitecture has been

taken to suggest that the CB performs a similar type of

calculation across domains, potentially acting as a modulator for

larger networks (Schmahmann, 1991; Ito, 1993, 2008; Ramnani,

2006; Koziol et al., 2014), though in more recent years this

idea has been questioned (Diedrichsen et al., 2019). The closed-

loop trans-thalamic circuits providing connections to multiple

distinct brain regions allow for contributions in many domains.

Given the many and varied functional contributions of the CB,

it is perhaps not surprising that CB dysfunction is implicated in,

and associated with symptoms of many different psychiatric and

neurological disorders (Shakiba, 2014). Lesions in the posterior

CB, a subregion anatomically and functionally associated with

non-motor function in both humans and non-human primates

(Dum and Strick, 2003; Kelly and Strick, 2003; Strick et al.,

2009; Bernard et al., 2012; Guell et al., 2018; Ren et al.,

2019), are linked to cerebellar cognitive affective syndrome,

named for its wide-varying deficits in executive function and

working memory, visuospatial and verbal memory, affect, and

language generation (Schmahmann and Sherman, 1998; Hoche

et al., 2018). Further, differences in CB anatomy, CB functional

activation, or functional connectivity are associated with many

disorders including post-traumatic stress disorder (Baldaçara

et al., 2012; Holmes et al., 2018; Rabellino et al., 2018), anxiety

(Liu et al., 2015; Doruyter et al., 2016; Li et al., 2016), obsessive-

compulsive disorder (OCD; Pujol et al., 2004; Xu et al., 2019),

depression (Alalade et al., 2011; Ma et al., 2013; Lai and Wu,

2016; Zhu et al., 2020), schizophrenia and psychosis-related

disorders (Meltzer and Stahl, 1976; Collin et al., 2011; Liu et al.,

2011; Kim et al., 2014; Giraldo-Chica et al., 2018; Gong et al.,

2019; Clark et al., 2020), autism spectrum disorders (Verly et al.,

2014; Khan et al., 2015; Olivito et al., 2017; Hegarty et al., 2018),

and addiction (Bora et al., 2012; Kühn et al., 2012; Moulton et al.,

2014).

Likewise, changes in the BG and its networks result in motor

abnormalities, cognitive dysfunction, and neurological

symptoms (see reviews Ring, 2002; Marchand, 2010),

highlighting the wide ranging impacts of this brain area.

Parkinson’s and Huntington’s diseases are neurodegenerative

disorders that affect dopaminergic and GABAergic neurons

in the BG, respectively, and are associated with functional

connectivity changes within the BG (Unschuld et al., 2012;

Rolinski et al., 2015; Gargouri et al., 2016; Fritze et al., 2021). The

BG are also associated with psychiatric symptoms. In those with

sub-threshold depression, decreased globus pallidus volumes

were related to scores on a depression inventory (Li et al., 2017)

and those with generalized anxiety disorder, had less dopamine

transport availability, leading to less dopamine in the striatum

(Lee et al., 2015). Additionally, patients with schizophrenia and

schizoaffective disorders displayed increased putamen volume

relative to healthy controls (HC; Fritze et al., 2021), while striatal

volume (Mittal et al., 2010) and motor deficits were associated

with the conversion to psychosis in clinically-at-risk individuals

(Mittal et al., 2010; Masucci et al., 2018). Lastly, the region

has been associated with mental illnesses like addiction and

substance abuse disorders, indicating changes in salience that

affect approach behavior and motivation (see review Belin et al.,

2009).

Increasingly, pathology and cognitive deficiencies linked

to discrete CB, BG, or cortical regions have instead been

suggested to be related to dysregulated network connectivity

within and between the CB, BG, and the cortex. The CB and

BG communicate with the cortex via discrete, trans-thalamic

loops (reviewed in Kelly and Strick, 2003, 2004; DiMartino et al.,
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2008; Bostan and Strick, 2018), and with each other indirectly

through these cortical projections. However, the BG and CB also

communicate directly through subcortical pathways. Originally

described in non-human primates, disynaptic anatomical

pathways connect the dentate nucleus of the CB to the striatum

of the BG (Hoshi et al., 2005) via the thalamus, and connect

the subthalamic nucleus of the BG to multiple regions of

the CB via the pontine nucleus (Bostan et al., 2010). These

anatomical connections give credence to the concept of both

cortical modulation by the CB and BG and of subcortical

functional interconnectivity.

The thalamus, a region through which the CB and BG

communicate with the cerebral cortex, was found to have

structural differences, such as reduced volume in patients

with schizophrenia (Huang et al., 2017), anxiety (Wang et al.,

2018; Modi et al., 2019; Carey et al., 2021), depression (Li

et al., 2017), Parkinson’s Disease (Carey et al., 2021) and

reduced microstructural complexity in first-episode psychosis

(Huang et al., 2017; Cho et al., 2019). Thalamic functional

connectivity differences have also been found in patients with

schizophrenia and schizoaffective disorders (Huang et al., 2017;

Ferri et al., 2018; Cho et al., 2019; Gong et al., 2019; Zhao et al.,

2019; Fritze et al., 2021), and in obsessive-compulsive disorder

(Haynes et al., 2018). Aberrant thalamic-putamen functional

connectivity was found in those with unipolar depression

(Marchand et al., 2012) and aberrant functional and anatomical

connectivity between the BG and cortex has been noted in

those with schizophrenia (Zhao et al., 2019). Because the CB

and BG, as well as regions along the pathway enabling cortical

communication, have been implicated in a wide range of

psychiatric and neurological disorders, a network-level approach

may be helpful in identifying differences in brain activation

and connectivity patterns for our understanding of subcortical

network contributions to behavior as well as symptomatology.

As there is variability in behavior across individuals, including

experiences of symptoms associated with diagnoses like anxiety

and depression (at subclinical levels and in the absence of a

formal diagnosis), using large community samples can provide

important new insights into the associations between CB-BG

connectivity, as well as variability in behavior and experiences

with symptoms often associated with psychopathology.

Here, we were interested in exploring whether CCBN

and MCBN GE is related to psychiatric symptomatology

and cognitive task scores in a community sample selected

from the Human Connectome Project (HCP) 1200 release.

We hypothesized that CCBN GE would predict scores on

self-reported anxiety, depression, and intrusive thoughts

and cognitive tasks (processing speed, list sort, card sort,

and flankers). We also hypothesized that the MCBN

GE would predict scores on cognitive tasks and motor-

associated psychiatric symptomology (hyperactivity, inactivity).

Additionally, due to associations between working memory

tasks and motor systems (Balsters et al., 2013; Von der

Gablentz et al., 2015; Bernard et al., 2020; Clark et al., 2020),

we hypothesized MCBN GE would predict scores on working

memory tasks. Additionally, we previously found CB-BG GE is

associated with the GE of canonical resting-state networks in

a sample with no history of mental illness, illicit drug use, or

alcohol and marijuana abuse (Jackson and Bernard, 2022). Here,

we looked to replicate and extend these findings by broadening

the selection criteria to include all subjects in the HCP 1200

release and by using a regression model to allow for the control

of other potential explanatory variables such as alcohol and

drug abuse. Lastly, given the underlying hypothesis that the

CB-BG networks work in conjunction with cortical networks

to affect behavior (Bostan and Strick, 2018), we also explored

whether entering both CB-BG network and cortical network

GE into a regression simultaneously predicts cognitive and

symptom metrics.

Method

Participants—HCP 1200

All right-handed participants with a complete set of

preprocessed resting-state functional MRI (rsfMRI) data with

no noted issues in quality assurance from the S1200 Release of

the Human Connectome Project (WU-UMNHCP Consortium)

were selected for inclusion in this study (N = 783). A complete

set of images was defined as one T1w structural image and

four 15-min resting-state fMRI sessions (total of 1 h), each with

associated within-subject 6-axis motion correction regressors.

Outliers (defined as having a standard deviation of >3) for each

analysis were removed and thus each analysis contains a slightly

different number of participants. The degrees of freedom for

each test are listed in Supplementary Tables 2, 3.

HCP data acquisition and preprocessing

rsfMRI data for each participant consisted of four 15-min

runs collected over 2 sessions [1,200 volumes, 720ms TR,

2mm isotropic voxels; see Van Essen et al. (2012) for full

details on fMRI acquisition]. All anatomical and functional

data were collected on a 3T HCP Siemens Skyra “Connectom”

scanner. Behavioral data, preprocessed T1w structural images,

rsfMRI functional images, and motion regressor data were

downloaded from the HCP S1200 Release AmazonWeb Services

repository. Details of the preprocessing pipeline for functional

images are fully described in Glasser et al. (2013). Structural

scans had undergone gradient distortion correction, bias field

correction, and registration to the 0.8mm resolution MNI

brain using Multimodal Surface Matching (Glasser et al., 2013,

2016). Additionally, structural images underwent tissue type

segmentation and functional images underwent smoothing
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(5mm FWHM) and artifact detection (global signal z-value

threshold: 5, subject motion threshold: 0.9mm) using the

CONN toolbox (v. 20b; Whitfield-Gabrieli and Nieto-Castanon,

2012), a Matlab-based application designed for functional

connectivity analysis. CONN was used with MATALB R2020a

on centOS 7. Data were then denoised using confound regressors

for 5 temporal components each from the segmented CSF and

white matter, 24 motion realignment parameters, signal and/or

motion outliers, and the 1st order derivative from the effect of

rest. Finally, data underwent linear detrending and bandpass

filtering (0.008–0.09Hz). No difference in resting-state ROI-to-

ROI functional connectivity was found between day 1 and 2 of

data collection (ps > 0.5).

Regions of interest

Using fslmaths, 3.5mm spherical, binarized regions of

interest (ROIs) representing two rsfMRI networks of CB

and BG nodes (cognitive and motor CB-BG network), and

7 rsfMRI cortical networks [3 cognitive-associated: frontal-

parietal network (FPN), cingulo-operculum network (CON),

and default mode network (DMN); 1 motor-associated: motor

network (MN); 1 emotion-associated: emotional network (EN);

and two sensory-associated: visual network (VN), and auditory

network (AN)] were created using fslmaths (FSL v.6.0.3:

FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl; Jenkinson

et al., 2012).

CB-BG network ROIs were created using CB and BG

coordinates previously reported on (Hausman et al., 2019).

Lobule V and Lobule VI of the CB and dorsal caudal and dorsal

rostral putamen of the BG were used to define the MCBN;

while Crus I and Crus II of the CB and the inferior and

superior ventral striatum, dorsal caudate, and ventral rostral

putamen of the BG were used to define the CCBN. This

division is in line with previous work parcellating each region

based on resting-state and task-based functional connectivity

and behavior (Balsters and Ranganath, 2008; Di Martino et al.,

2008; Stoodley and Schmahmann, 2009; Salmi et al., 2010;

Stoodley et al., 2012; Hausman et al., 2019; King et al., 2019).

Importantly, Lobule VI, included in the MCBN, is known

to also be related to cognitive processes related to spatial

working memory and motor behavior (Schmahmann, 2019).

Here, we were interested in the complex interplay between

motor and cognitive processes and consider Lobule VI to be key

in deciphering motor cognition from abstract cognition related

to executive functioning. We similarly constructed cortical

networks spanning cognitive, motor, emotional, and sensory

domains. The cognitive networks were defined using ROIs

from two task-positive rsfMRI networks, the cingulo-opercular

(CON) and the fronto-parietal (FPN), and the default mode

network (DMN), using coordinates originally reported by Fair

et al. (2009). Motor network (MN) ROIs were created using

coordinates based on Mayka et al. (2006). Emotional Network

(EN) ROIs were created using coordinates originally reported

by Stein et al. (2007) and adapted using information from Deen

et al. (2011). The visual and auditory sensory networks, VN and

AN, were defined using coordinates reported by Cassady et al.

(2019). Importantly, given the association the CB and BG have

with cortical and limbic networks, especially the MN, we did

not use any CB or BG ROIs in any of the cortical networks.

This required change of the VN only, for which we removed

an ROI for CB Lobule VI. Removing this ROI allowed us to

directly correlate measures from within the CB-BG networks

to measures from within cortical networks. Additionally, to

account for the use of both left and right ROIs in some

cortical networks and for the unilateral nature of subcortical

networks (Pelzer et al., 2017), all lateralized (defined as more

than 3mm from the midline in the x direction) ROIs without a

reported contralateral match were mirrored in the x direction.

Supplementary Table 1 provides details for the 122 resulting

ROIs (for a visual depiction of their locations, please see Jackson

and Bernard, 2022).

Symptom and cognitive measures

For analyses including diagnostic symptom scales, we

used the total scores for the Achenbach Self Report (ASR)

for Intrusive thoughts, DSM Depressive, DSM Anxiety, DSM

Inactivity, and DSM Hyperactivity measures. For analyses of

cognitive function, we utilized scores from the NIH Toolbox for

executive function (card sort, flankers), working memory (list

sorting), and processing speed (pattern completion). Please see

the HCP 1200 release manual for further detailed descriptions of

these measures (https://www.humanconnectome.org/storage/

app/media/documentation/s1200/HCP_S1200_Release_

Reference_Manual.pdf). Each measure was centered and

demeaned prior to entry into analyses.

First-level FMRI analysis, global e�ciency

All participant-level computations were performed in the

CONN toolbox (v. 20b; Whitfield-Gabrieli and Nieto-Castanon,

2012). For each participant, a timeseries for each of the 122 ROIs

was extracted and cross-correlated using bivariate analyses,

resulting in a correlationmatrix (122× 122) for each participant.

To compute graph theory components, edges were defined as

thresholded correlation coefficients and nodes were defined as

the ROIs in each network as described above (Stein et al., 2007;

Fair et al., 2009; Geerligs et al., 2015; Hausman et al., 2019).

We previously investigated differences in network measures

when different thresholds were used and found no substantial

differences; as such, we used β > 0.1 to define edges, a

correlation coefficient threshold commonly used in the literature
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(i.e., Fair et al., 2009) and consistent with prior work (Jackson

and Bernard, 2022). To define interconnectedness, network-

level GE, a graph theory metric of how efficiently information in

a network travels, was computed separately for each of the nine

networks (Latora and Marchiori, 2001; Achard and Bullmore,

2007; Whitfield-Gabrieli and Nieto-Castanon, 2012; Sheffield

et al., 2016).

Exchangeability blocks and PALM

Some participants in this sample were members of the

same family and thus have shared genetic and environmental

variance. To account for this, we used Permutation Analysis

of Linear Models (PALM v. 119a; https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/PALM) to permute the data using exchangeability

blocks designed to separately capture the unique variance within

monozygotic twins, dizygotic twins, and non-twin siblings while

simultaneously accounting for family structure (i.e., size and

type of sibships within one family). To do this, we generated

exchangeability blocks using the February 2017 version of

the hcp2blocks script provided by the developers of PALM

(retrieved from https://github.com/andersonwinkler/HCP). All

analyses herein utilized this method.

Analysis design

All analyses were conducted using PALM and thus

accounted for within-family variance and variance associated

with family structure (see above). Variance associated

with age, drug, and alcohol use was controlled for by

entering the following demeaned columns from the HCP

restricted data file into the analyses as covariates: Age_in_Yrs,

SSAGA_Alc_12_Frq (Alcohol), SSAGA_Times_Used_Cocaine,

SSAGA_Times_Used_Hallucinogens, SSAGA_Times_Used_

Opiates, SSAGA_Times_Used_Sedatives,SSAGA_Times_Used

_Stimulants, and SSAGA_Mj_Times_Used (Marijuana). All

independent and dependent variables and covariates were

centered and demeaned prior to entry into analyses.

Cognitive or motor CB-BG network GE was entered as the

independent variable for all analyses and the opposite network

was used as an additional control variable to remove any

shared variance between the two sub-networks. The dependent

variable for each test was the GE for each canonical resting-

state network, self-reported symptomology scores, or cognitive

performance. Outliers, defined as 3 SD from the mean, were

removed from each independent, dependent, and covariate

measure and resulted in slightly different sample sizes between

analyses (see Supplementary Tables 2, 3). Exchangeability blocks

were recalculated accordingly.We were also interested in teasing

apart subcortical and cortical contributions to the symptom

and cognitive scores. Due to limitations in how PALM reports

coefficients, we were unable to meaningfully enter all networks

into a larger regression model. We instead explored regression

models that included both a CB-BG network and a cortical

network as independent variables predicting cognitive and

symptom metrics, detailed in Table 3. All covariates detailed

above were controlled for using the same methods in these

analyses. All analyses were subjected to multiple comparison

correction using FDR, accounting for p-values within each type

of test (i.e., all GE-GE analyses; all behavioral analyses) as

implemented by R’s p.adjust function.

Results

Table 1 contains the t-statistic and significance level of

each regression predicting cognitive and symptom scores.

Lower MCBG GE predicted higher scores on the ASR DSM

depression and hyperactivity measures (ps < 0.05). No other

significant relationships were found after multiple comparisons

corrections (ps > 0.06); however, there is a marginal positive

association between CCBG GE and hyperactivity scores

(p= 0.06), suggesting a dissociation between the CCBG and

MCBG networks and hyperactivity. See Supplementary Table 2

for degrees of freedom for each analysis.

Table 2 contains the t-statistic and significance level of

each regression predicting cortical network GE. CCBG GE

predicted the GE of each cortical network (ps < 0.05),

except for the EN (p = 0.29); the strongest associations

were with the DMN and AN (ps < 0.001). MCBG GE

predicted the GE of each cortical network (ps < 0.05); the

strongest associations were with the EN, MN, and AN (ps <

0.001). See Supplementary Table 3 for degrees of freedom for

each analysis.

Table 3 details the t-statistic and significance level of each

exploratory regression model that included both a CB-BG

network and a cortical network as independent variables

predicting cognitive and symptommetrics. Themodel including

CCBN and DMN GE positively predicted list sort scores

(p= 0.04), as did CCBN and sensory network GE (AN: p =

0.03; VN: p < 0.001). Hyperactivity was positively predicted

by the CCBN and DMN model (p = 0.02) and negatively

predicted by theMCBN andANmodel (p= 0.04), mirroring our

main analyses.

Discussion

Here, we used data from the Human Connectome Project

1200 release to investigate whether CB-BG network GE relates

to scores on self-reported psychiatric symptomology and

cognitive task performance after controlling for variance due

to familial relationships and family structure, age, alcohol,

marijuana, and illicit drug use, and variance shared with the

non-predictor CB-BG network. We found that MCBN GE
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TABLE 1 T-statistics detailing the relationship between CB-BG network GE and cognitive and symptommetrics.

Anxiety Depression Intrusive

thoughts

Inactivity Hyperactivity Processing speed List sort Flankers Card sort

CCBG GE 0.16 1.38 0.83 −0.36 2.18 −0.1 1.07 0.26 −0.055

MCBG GE −1.73 −2.28* −1.52 −0.60 −2.18* −1.62 −0.80 −1.79 −0.39

Each analysis contained a different number of participants due to outliers. Degrees of freedom for each test is listed in Supplementary Table 2; Each p-value is FDR corrected: *p < 0.05.

TABLE 2 T-statistics detailing the relationship between CB-BG network GE and that of each cortical network.

FPN CON DMN EN MN VN AN

CCBG GE 2.51* 2.87* 4.35** 1.05 2.94* 3.30* 3.94**

MCBG GE 2.69* 2.77* 2.94* 4.58** 3.62** 2.74* 4.61**

Each analysis contained a different number of participants due to outliers. Degrees of freedom for each test is listed in Supplementary Table 3; Each p-value is FDR corrected: **p < 0.001,
*p < 0.05.

TABLE 3 T-statistic of each exploratory regression model that included both a CB-BG network and a cortical network as independent variables

predicting cognitive and symptommetrics.

t(782) Anxiety Depression Intrusive

thoughts

Inactivity Hyperactivity Processing speed List sort Flankers Card sort

CCBG-FPN 1.04 1.92 0.87 0.5 1.85 0.48 −0.75 0.95 −0.16

MCBG-FPN −1.5 −2.08 −1.81 −0.76 −2.65 −1.73 1.99 −1.76 −0.34

CCBG-CON 0.32 0.86 0.38 0 2.38 −0.67 2.06 0.99 −0.85

MCBG-CON −1.75 −2.37 −1.93 −0.89 −2.59 −1.99 −0.83 −1.8 −0.51

CCBG-DMN 0.8 1.56 2.38 1.52 3.27* −0.19 2.82* 1.4 −0.57

MCBG-DMN −1.57 −2.13 −1.37 −0.45 −2.23 −1.89 −0.48 −1.6 −0.45

CCBG-MN −0.65 0.44 0.43 0 2.4 −0.58 2.19 0.75 0.39

MCBG-MN −1.95 −2.43 −1.9 −0.89 −2.53 −1.98 −0.74 −1.82 −0.25

CCBG-EN 0.66 0.67 0 0.45 2.17 −0.57 2.05 1.13 0.15

MCBG-EN −1.6 −2.32 −1.98 −0.75 −2.43 −1.99 −0.66 −1.66 −0.29

CCBG-AN −0.76 0.42 0.95 −0.7 1.42 −0.18 3.11* 0.77 0.14

MCBG-AN −1.9 −2.41 −1.82 −0.98 −2.74* −1.89 −0.77 −1.86 −0.38

CCBG-VN −0.74 0.46 0.46 −0.15 2.43 −0.83 4.05** 0.83 −0.35

MCBG-VN −2.05 −2.34 −1.81 −0.91 −2.13 −2.11 0.37 −1.61 −0.38

Each p-value is FDR corrected: **p < 0.001, *p < 0.05.

negatively predicted self-reported hyperactivity (Table 1), as

we hypothesized. That is, low efficiency within the MCBN

predicted higher scores on self-reported hyperactivity,

consistent with previous work indicating hyperactivity-

associated impaired resting-state network connectivity

(McLeod et al., 2014; Gao et al., 2019). Hyperactivity is

associated with a reduction in motor control, specifically

motor inhibition (e.g., Lijffijt et al., 2005). This suggests that

an inefficient MCBN may be related to or indicative of a

potential decrease in motor inhibition. We did not find an

association with self-reported inactivity however, suggesting

the efficiency of CB-BG communication is not related to

self-reported motivation.

We also found MCBN GE negatively predicted scores on a

self-reported depression inventory, indicating lower MCBN GE

is related to higher self-reported depression. While this was not

hypothesized, this is in line with recent work in animal models

that found CB neurons projecting to the BG via the dentate

nucleus mediates depression symptoms (Baek et al., 2022).

Interestingly, no significant findings were present (p > 0.09)

when cortical network GE was included in the model, indicating

the relationship with depression is best explained by MCBN GE.

This work further supports the recent argument for including

motor system within the Research Domain Criteria framework

for depression (Walther et al., 2019). Those with depression

display aberrant psychomotor agitation and retardation, as
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noted in the Diagnostic and Statistical Manual 5 (American

Psychiatric Association, 1996). Aberrant functional connectivity

between the CB and cortex (Ma et al., 2013) and between

the BG and cortex (Furman et al., 2011) has also been noted

in depression. Here, this novel finding suggests a subcortical

network of CB and BG motor regions also predicted symptoms

of depression. Finally, although we did not find that symptoms

of depression were associated with cognitive CB-BG network

measures, Yoshida et al. (2017) found that human resting-state

functional connectivity between the supplementary motor area

and the DMN, a network highly related to CCBNGE, was related

to depression. This highlights important questions about the

complex interplay between the cognitive and motor systems in

clinical symptomology as they relate to functional organization.

Exploratory models including CCBN GE and both AN and

VN GE were both significant predictors of list sort scores,

highlighting the potential importance of these sensory networks

in some domains of cognitive processing. No other psychiatric

symptom or cognitive score was significantly associated with

CB-BG GE after correcting for multiple comparisons. However,

an interesting marginal (pFDR = 0.06) result involving CCBN

GE and hyperactivity is of note due to the potential implication

of the findings and the significance level prior to correction

(p = 0.03). We found that, while low MCBN GE predicted

high scores on self-reported hyperactivity, high CCBN GE

scores predicted high hyperactivity (Table 1). Importantly, our

exploratory analyses provide additional evidence for considering

this marginal finding. Mirroring themain GE analyses, we found

that the model including CCBN and DMN positively predicted

hyperactivity while the model including MCBN and AN

negatively predicted hyperactivity. These findings taken together

suggest dissociable relationships between subcortical motor and

cognitive systems and hyperactivity wherein lower measures

of network connectivity in motor control regions (evidenced

by low MCBN GE) and higher measures in cognitive control

regions (evidenced by high CCBN GE) differentially predict

self-reported hyperactivity (albeit with the caveat of a marginal

result). While not explicitly significant, we consider this inverse

relationship between the cognitive and motor regions of the CB

and BG to be worth noting for the potential identification of

future clinical biomarkers. Indeed, previous research provides

support for our interpretation. Kucyi et al. (2015) found CB

regions associated with the DMN (Crus I and Crus II) exhibited

higher functional connectivity with cortical DMN regions in

those with attention-deficit hyperactivity disorder (ADHD),

signifying the potential dysfunction of cognitive CB regions

in ADHD. Similarly, Sörös et al. (2019) found an increase in

functional connectivity of BG regions and the AN in those with

ADHD, also in line with our exploratory analyses. Therefore,

while our results fail to meet the threshold set for significance

testing, we cautiously posit that the CB and BG may influence

hyperactivity by regulating the inhibition of the DMN and

that this mechanism may be disrupted in those suffering from

disorders that present with hyperactivity. Indeed, taking all

findings into account, symptoms of depression that present

with agitation and hyperactivity may be facilitated by the

cognitive CB-BG subcortical circuits. However, future research

is warranted, to determine the replicability of these findings

given the marginal effect, and to further identify the underlying

dynamics of these regions and reported hyperactivity symptoms.

We also replicated and extended our prior work detailing

correlations between CB-BG and cortical networks (Jackson

and Bernard, 2022) by expanding the sample size 3-fold

and introducing additional controls to probe the network

relationships. We found CCBN GE strongly predicted DMN

and AN GE, moderately predicted MN GE, and did not predict

EN GE, largely consistent with our previous findings and

suggestive of CCBN involvement in self-referential thought

and auditory/verbal working memory (Fox et al., 2015). We

additionally found CCBNGE predicted FPN, CON, and VNGE.

In our initial work, we predicted a relationship between CCBN

GE and both FPN and CON GE due to the cognitive nature

of each of the networks, yet we only found marginal results.

Here, our findings indicated that these networks may indeed be

related, contrary to our original results. Lastly, recent findings

suggest the CB may be involved with low-level sensorimotor

systems (Brissenden et al., 2016; van Es et al., 2019). Though

our previous study only found a link between MCBN GE

and VN GE, we posit that the regions within the CCBN may

also be involved and needed additional power to be detected.

Additionally, no relationship was found between the CCBN

and EN, replicating our previous report (Jackson and Bernard,

2022) in which we predicted and did not find an association

due to the association between the EN and attentional processes

(Arnsten and Rubia, 2012). This may be interpreted as the

CB-BG communicating primarily with different regions of the

CB and BG or perhaps simply that EN integration is not

related to CCBN integration, regardless of connectivity. Future

work investigating the relationship between EN nodes and

limbic-associated nodes within the CB and BG may clarify

this distinction.

Likewise, we largely replicated our previous findings that

MCBN GE strongly predicts MN and AN GE; while only

moderately predictive of FPN, CON, and VN GE. Additionally,

we found that MCBN GE also strongly predicts EN and

moderately predicts DMN GE. This was not predicted, but

is not necessarily surprising, as the GE of each of these

networks were marginally related to MCBN GE in our previous

report (Jackson and Bernard, 2022) and significantly related

when cost or degree (as opposed to GE) were used to

describe networks, indicating these networks are, like the

regions above, also related but require additional power or

controls to detect. This replication advances our knowledge of

cortical-subcortical network relationships and show the effects

are relatively stable within both a selected, healthy sample

and within a community sample consisting of non-selected
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participants displaying a range of drug behavior and mental

health symptomology.

Limitations

Here, we took advantage of a large, community sample to

explore the relationships between CB-BG networks and scores

on cognitive and psychiatric symptom measures. Of note, this

sample and the sample in our previous report (Jackson and

Bernard, 2022) are from the same larger dataset and share

participants. This overlap between samples was seen as a

strength, as it allowed us to compare changes due to our control

methods (we previously used partial correlations to look at

subcortical-cortical network relationships) and the inclusion of

participants with self-reported drug use.

Another potentially significant limitation of these analyses is

the exploratory and non-directional nature of our predictions.

We however argue these analyses were a necessary first step

in determining whether the CB-BG network was related to

cognitive and psychiatric symptomology and will be useful

to future researchers in the search for clinically relevant

biomarkers. Relatedly, while we were well powered to detect

effects, future workmay seek to limit the scope andmake specific

predictions to limit any type II errors introduced because of

multiple comparison corrections.

Additionally, here we were interested in whether the GE of

CB-BG networks predicted cognitive and psychiatric symptom

measures. GE was used as a proxy for intra-network integration,

which can be conceptualized as the “interconnectedness” of

the network. Thus, our findings here indicate that CB and

BG communication patterns are predictive of symptoms of

depression and hyperactivity scores but do not provide a causal

link and must be interpreted cautiously. Of note, we relied

on self-reported data for psychiatric symptomology, potentially

decreasing the detectable signal. Future studies might address

this by using data from structured diagnostic interviews to

inform symptomology. We were also unable to investigate

development differences in these networks as they relate to

transdiagnostic psychiatric symptoms due to the limited age

range of the sample (18-35). Future works look at how

these networks develop and attempt to develop predisposition

measures based on network interconnectivity.

Regarding network selection, our MCBN included CB

Lobule VI, a posterior region known to be associated with

motor cognition and spatial working memory (Schmahmann,

2019). While we chose this region to form a motor network

that included nodes related to motor cognition (as opposed

to strictly motor behavior), we recognize this could limit

the interpretability of the MCBN’s association with cognitive

processes. Future studies might benefit from selecting other

CB-BGnodes or by using a data-driven component analysis to

determine network inclusion. Relatedly, we did not include a

CB-BG network associated with limbic processes in our analyses.

This was for two reasons. First, we chose the CCBN and

MCBN nodes primarily due to their known interconnectivity,

as reported in our previous work (Hausman et al., 2019; Jackson

and Bernard, 2022). Second, we were concerned about detecting

a reliable signal in the fastigial nuclei, CB regions we would have

included, and how this additional noise may affect our analyses

due to the inclusion of each CB-BG as a control.

The selected analysis tool, PALM, was chosen for the

ability to permute data using exchangeability blocks, it did

had several limitations. We were unable to see coefficients for

the regression models and are therefore unable to attribute

significant contributions to the model to any one predictor or

covariate. We were also unable to create subject-level residuals

to create scatterplots depicting the significant relationships.

Lastly, while not explicitly a limitation, we utilized functional

imaging to create the correlation matrices we used to compute

the GE of our networks and thus did not investigate the white

matter structure of these networks using diffusionMRI. Previous

reports found decreased posterior CB fractional anisotropy (FA)

in patients related to depression inventory scores (Peng et al.,

2013) and increased striatal FA in ADHD (Silk et al., 2009).

Future studies should attempt to relate FA within regions of

the CB-BG networks with depression and hyperactivity. We

speculate differentiable contributions between cognitive and

motor regions of the CB and BG in line with our main and

marginal findings detailed above.

Conclusion

Here, we demonstrated a relationship between motor

CB-BG network and scores on self-reported depression

and hyperactivity questionnaires. We also found cognitive

CB-BG regions marginally predicted hyperactivity, indicating

a potential dissociation between the motor and cognitive

regions as they relate to hyperactivity. Additionally, we

replicated and extended our previous research depicting the

relationships between CB-BG network GE and cortical network

GE, underlining the stability of these network relationships even

within non-selected community samples after controlling for

drug and alcohol use. These analyses support the hypotheses that

the CB and BG each play a significant role in both cognitive

and motor behavior, including psychiatric symptomology of

depression and hyperactivity.
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