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The midline and intralaminar nuclei of the thalamus form a major part

of the “limbic thalamus;” that is, thalamic structures anatomically and

functionally linked with the limbic forebrain. The midline nuclei consist of

the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and

nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist

of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei.

We presently concentrate on RE, PV, CM and CL nuclei of the thalamus.

The nucleus reuniens receives a diverse array of input from limbic-related

sites, and predominantly projects to the hippocampus and to “limbic” cortices.

The RE participates in various cognitive functions including spatial working

memory, executive functions (attention, behavioral flexibility) and a�ect/fear

behavior. The PV receives significant limbic-related a�erents, particularly the

hypothalamus, and mainly distributes to “a�ective” structures of the forebrain

including the bed nucleus of stria terminalis, nucleus accumbens and the

amygdala. Accordingly, PV serves a critical role in “motivated behaviors” such

as arousal, feeding/consummatory behavior and drug addiction. The rostral

ILt receives both limbic and sensorimotor-related input and distributes widely

over limbic andmotor regions of the frontal cortex—and throughout the dorsal

striatum. The intralaminar thalamus is critical for maintaining consciousness

and directly participates in various sensorimotor functions (visuospatial or

reaction time tasks) and cognitive tasks involving striatal-cortical interactions.

As discussed herein, while each of the midline and intralaminar nuclei are

anatomically and functionally distinct, they collectively serve a vital role in

several a�ective, cognitive and executive behaviors – as major components

of a brainstem-diencephalic-thalamocortical circuitry.
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Introduction

As well recognized, the thalamus is the gateway for the

transfer of modality-specific information from principal (or first

order) thalamic nuclei to distinct (sensorimotor) cortical targets.

In the same manner, the thalamus is a conduit for the transfer

of affective and cognitive-related (or limbic) information to

distinct regions of the cortex which process this type of

information—or limbic cortices. Accordingly, the thalamic

nuclei which serve this function are generally recognized as

constituting the “limbic thalamus”. Whereas, schemes may

differ, the “limbic thalamus” is thought to mainly consist of

the anterior nuclei (ATN), the mediodorsal nucleus (MD),

the submedial nucleus, the intralaminar nuclei (ILt) and the

midline nuclei (Vertes et al., 2015a,b). In this review, we

describe: (1) the general organization of the thalamus; (2) the

circuitry and functional properties of the midline and rostral

intralaminar nuclei of the thalamus; and (3) the common and

differential contribution of these thalamic groups to affective

and cognitive behaviors.

Organization of the thalamus

The thalamus has traditionally been divided into three

anatomical/functional groups: the principal (or relay) nuclei,

the association nuclei, and the midline and intralaminar nuclei

(Jones, 1985, 2007; Vertes et al., 2015a,b). The principal “or

relay” nuclei receive sensory or motor information through

ascending pathways and transmit it to distinct regions of the

cortex. The relay nuclei would include: the lateral geniculate

complex (LGN), medial geniculate nucleus (MGN), ventral

posteromedial (VPM) and posterolateral (VPL) nuclei, posterior

nucleus (PO), ventral lateral nucleus (VL), ventral anterior

nucleus (VA) and ventral medial nucleus (VM).

The “association” nuclei are a largely ill-defined group that

differ from the principal nuclei in that they do not receive

direct sensory (e.g., from the retina) or motor information and

essentially do not project to primary sensorimotor cortices. The

association nuclei receive major input from layer 5 pyramidal

cells of the sensorimotor cortex and relay this information

to associational areas of cortex—hence association nuclei of

thalamus. The association thalamic nuclei include MD, the

anterior nuclei, the submedial nucleus (SMT), and the lateral

nuclei (lateral dorsal and lateral posterior).

The midline and intralaminar thalamic nuclei form a

separate group primarily based on: (1) their distinct location

along the midline and within the internal medullary lamina;

and (2) and their relatively widespread distribution throughout

the cortex. The intralaminar (ILt) nuclei consist of the central

medial (CM), paracentral (PC), central lateral (CL), of the

rostral ILt and the parafascicular (PF) and subparafascicular

(SPF) nuclei of the posterior ILt. The midline nuclei include

the paratenial nucleus (PT), paraventricular nucleus (PV),

rhomboid nucleus (RH) and the nucleus reuniens (RE)—and in

some classifications the intermediodorsal (IMD) nucleus.

Midline and rostral intralaminar nuclei

The midline nuclei are characteristically divided into two

main groups along the dorsoventral axis: the dorsal midline

nuclei consisting of the paraventricular (PV) and paratenial

(PT) nuclei and the ventral midline nuclei consisting of the

rhomboid (RH) and reuniens (RE) nuclei. Presently, we focus

on the circuitry and functional properties of RE and PV of the

midline thalamus and the central medial nucleus (CM) of the

rostral intralaminar complex in rodents (Figure 1).

The ventral midline thalamus:
Reuniens and rhomboid nuclei

As stated, the ventral midline thalamus consists of the RE

and RH. While RE and RH projections are similar/overlapping,

few studies have examined the functional properties of RH

independent of RE. As such, we focus on RE. We first describe

the circuitry of RE and then its functional properties.

RE circuitry

RE input

RE receives a vast and diverse array of afferent projections

from the cortex, hippocampus, basal forebrain, amygdala,

hypothalamus and brainstem (Vertes, 2002, 2004; McKenna

and Vertes, 2004; Hoover and Vertes, 2011; Scheel et al.,

2020). Specifically, using retrograde tracers, McKenna and

Vertes (2004) showed that RE receives widespread projections

from subcortical and cortical sites. The main sources of

cortical afferents to RE were from the orbitomedial prefrontal,

insular, ectorhinal, perirhinal and retrosplenial cortices and

the subiculum of the hippocampus (HF). The principal

subcortical inputs were from the claustrum, lateral septum,

bed nucleus of stria terminalis (BST), the medial, lateral, and

magnocellular preoptic nuclei of the basal forebrain; the lateral

habenula, PV and LGN of the thalamus; the zona incerta; the

anterior, ventromedial, lateral, posterior, supramammillary

and dorsal premammillary nuclei of the hypothalamus; and

the ventral tegmental area (VTA), periaqueductal gray (PAG),

precommissural nucleus, parabrachial nuclei, laterodorsal

tegmental nucleus (LDT), and dorsal (DR) and median raphe

(MR) nuclei of the brainstem.

In accord with findings in the rat (McKenna and Vertes,

2004), a recent examination of inputs to RE in the mouse

(Scheel et al., 2020) similarly reported that RE receives a widely
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FIGURE 1

(A–D) Nissl-stained micrographs of transverse sections through the diencephalon of the rat depicting nuclei of the thalamus at four anterior to

mid-levels of the thalamus. Colored-coded sections show the locations of the midline and rostral intralaminar nuclei of the thalamus. The

midline nuclei consist of the paraventricular (PV) and paratenial (PT) of the dorsal midline thalamus and the rhomboid (RH) and reuniens (RE)

nuclei of the ventral midline thalamus. The rostral intralaminar nuclei consists of the central medial (CM), paracentral (PC), and central lateral

(Continued)
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FIGURE 1 (Continued)

(CL) nuclei. AD, anterodorsal nucleus of thalamus; AM, anteromedial nucleus of thalamus; AV, anteroventral nucleus of thalamus; IAM,

interanteromedial nucleus of thalamus; IMD, interomediodorsal nucleus of thalamus; LD, laterodorsal nucleus of thalamus; LH, lateral habenula;

LP, lateral posterior nucleus of thalamus; MD, mediodorsal nucleus of thalamus; MH, medial habenula; pRE, peri-reuniens; PVa, anterior PV of

thalamus; PVh, paraventricular nucleus of hypothalamus; PVp, posterior PV of thalamus; RE, nucleus reuniens, REl, REm, lateral, medial division

of RE; RT, reticular nucleus of thalamus; sm, stria medullaris; SM, submedial nucleus of thalamus; VAL, ventral anterior nucleus of thalamus; VB,

ventrobasal nucleus of thalamus; VM, ventromedial nucleus of thalamus; ZI, zona incerta.

distributed set of afferents from subcortical and cortical sites.

They described particularly dense projections to RE from deep

layers of the HF and the medial prefrontal cortex (mPFC).

Interestingly, no structures were found to project uniquely to RE

in themouse; that is, all structures projecting to RE in themouse,

also did so in the rat. On the other hand, several sites, including

parts of the hypothalamus, BST and the amygdala were shown to

distribute to RE in the rat (McKenna and Vertes, 2004) but not

in the mouse (Scheel et al., 2020).

RE projects widely to limbic cortices, densely to the HF and

mPFC, but also prominently to the orbital, insular, retrosplenial,

and parahippocampal cortices (see below). With the possible

exception of the entorhinal cortex, each of these cortical regions

are sources of afferent (return) projections to RE (Figure 2),

indicating strong reciprocal connections between RE and these

cortical sites (Vertes, 2002, 2004; Hoover and Vertes, 2011). For

instance, anterograde PHA-L injections in the infralimbic (IL)

or prelimbic (PL) cortices of the mPFC were shown to produce

massive terminal labeling throughout dorsoventral extent of the

midline thalamus, most heavily in RE (Figures 2A–C) and the

medial division of MD (MDm) (Vertes, 2002, 2004). Strikingly,

there were (virtually) no IL/PL projections to lateral regions (or

principal nuclei) of the thalamus. Moreover, mPFC projections

to RE appear topographically organized such that IL/PL fibers

distribute heavily to the lateral wings of RE or the peri-

reuniens, (pRE) (Figures 2A–C). which in turn, is the main

source of return projections to the mPFC (Vertes, 2002, 2004;

Jayachandran et al., 2019). With respect to the hippocampus,

injections of retrograde tracers into RE were found to produce

a dense band of labeled cells throughout the length of the

ventral subiculum of the mouse (Scheel et al., 2020) and the rat

(McKenna and Vertes, 2004).

RE output

The major efferent targets of RE are the hippocampus

(HF) and limbic (neo) cortices. RE distributes prominently to

the IL, PL, and anterior cingulate (AC) cortices of the mPFC

(Figure 3A), but also significantly to the medial (MO) and

ventral orbital (VO) cortices (Figure 3B), the dorsal (AId) and

ventral agranular (AIv) insular cortices, the rostral retrosplenial

cortex, the perirhinal cortex, and the medial and lateral

entorhinal (EC) cortices. With the exception of projections to

the rostral pole of nucleus accumbens (ACC), RE gives rise to

limited projections to subcortical structures (Vertes et al., 2006).

As described in several reports, RE distributes massively,

and in a highly organized manner, to the hippocampus.

Specifically, RE fibers to the HF terminate selectively in the

stratum lacunosum-moleculare (slm) of CA1 of the dorsal

and ventral HF and in the molecular layer of the subiculum

(SUB) and parasubiculum (Figures 3C,D). RE axons mainly

form asymmetric (excitatory) contacts predominantly on distal

dendrites of pyramidal cells in the slm of CA1 and SUB. There

are no RE projections to CA2 and CA3 of Ammon’s horn or

to the dentate gyrus of the hippocampus (Herkenham, 1978;

Wouterlood et al., 1990; Van der Werf et al., 2002; Vertes et al.,

2006, 2007; Hoover and Vertes, 2012).

Recent reports using retrograde fluorescent tracers have

described collateral RE projections to its two main targets, the

HF and the mPFC (Hoover and Vertes, 2012; Varela et al., 2014).

Specifically, Hoover and Vertes (2012) found that∼5–10% of RE

cells distributed, via collaterals, to the HF and mPFC – mainly

concentrated laterally in RE, just medial to the lateral wings

of RE. Although RE cells projecting to single sites (i.e., non-

branching) were intermingled throughout RE, those distributing

to the mPFC were mainly located in the lateral wings of RE,
while those projecting to the HF were most numerous in the

rostral pole of RE. Interestingly, RE projections to the ventral

HF were ∼10-fold greater than those to the dorsal HF (Hoover

and Vertes, 2012).

Varela et al. (2014) similarly showed that about 8% of RE
cells, spanning its length, gave rise to collateral projections to

the HF and the ventral mPFC. They further reported that only
∼ 1% of subicular neurons projected via collaterals to RE and
to the mPFC. It was suggested that RE cells with branching

projections to HF and the mPFC may serve a role in memory

consolidation through the synchronization of theta activity of

these structures.

Whereas, the hippocampus projects strongly to the mPFC,

interestingly, there are no direct return projections from the

mPFC to the HF (Sesack et al., 1989; Laroche et al., 2000;

Vertes, 2004). The demonstration that themPFC strongly targets

the RE, and reuniens in turn, distributes massively to the

hippocampus indicates that RE is a main link from the mPFC

to the hippocampus—thus completing a loop between these

structures: HF > mPFC > RE > HF. Supporting this, it was

demonstrated, at the ultrastructural level, that mPFC fibers

distributing to RE form asymmetric (excitatory) contacts on

proximal dendrites of RE cells projecting to the hippocampus

(Vertes et al., 2007).
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FIGURE 2

(A–D) Darkfield micrographs of transverse sections through the thalamus depicting patterns of anterograde labeling produced by PHA-L

injection in the infralimbic (IL) (A,B) and prelimbic (PL) (C) cortices of the medial prefrontal cortex (mPFC) and the ventral orbital cortex (ORB)

(D). As depicted, injections in IL (A,B) and PL (C) gave rise dense terminal labeling of the paraventricular nucleus (PV) and medial division of

mediodorsal nucleus (MDm), dorsally and rhomboid (RH) and the nucleus reuniens (RE), ventrally, with intense labeling of the lateral wings of RE

(REl), rostrally (A) and peri-reuniens (pRE), caudally (B,C). By comparison, injections in the ventral orbital cortex (ORB) (D) produced dense

labeling of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei of the rostral intralaminar complex, heaviest in CL, ipsilaterally

(left side) as well as pronounced labeling of the nucleus reuniens – comparable to that seen with injections in IL and PL (A–C). IAM,

interanteromedial dorsal nucleus of thalamus; IMD, interomediodorsal nucleus of thalamus; MD, mediodorsal nucleus of thalamus; MT,

mammillothalamic tract; sm, stria medullaris. Scale bar for (A–D) = 450µm. Figure modified from Vertes (2002) and Hoover and Vertes (2011).

In addition to RE, another prominent input to the HF is

the lateral entorhinal cortex (ECl). In this regard, Schlecht et al.

(2022) recently examined possible sources of dual projections

to RE and ECl and described dually projecting cells in the

medial septum and ventral subiculum but interestingly not

in the mPFC—indicating that separate populations of mPFC

cells project to the RE and ECl. Figure 4 summarizes the

main interconnections of RE (and peri-reuniens, pRE) with

the mPFC (IL, PL, AC), orbital cortex, and the dorsal and

ventral hippocampus.
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FIGURE 3

(A,B) Low magnification darkfield micrographs of transverse sections through the forebrain depicting the pattern of labeling in the medial

prefrontal cortex (mPFC) (A) and the orbital cortex (ORB) (B) in the rat produced by anterograde tracer injections in the nucleus reuniens (RE)

and peri-reuniens (pRE), respectively, of the ventral midline thalamus. (A) Note the dense collection of labeled fibers in the anterior cingulate

(AC), prelimbic (PL) and infralimbic (IL) cortex of the mPFC, most concentrated in layers 1 and 5/6. (B) Note the dense labeling extending

mediolaterally across ORB, heavily concentrated in the medial (MO) and ventral (VO) divisions of the ORB. (C,D) Low magnification darkfield

micrographs of transverse sections through the dorsal (C) and ventral hippocampus (D) depicting patterns of labeling following anterograde

tracer injections (PHA-L) in the nucleus reuniens. Note the dense collection of labeled fibers in the stratum lacunosum moleculare (slm) of CA1

of the dorsal (C) and ventral hippocampus and in molecular layer of the ventral subiculum (SUBv) (D). Scale bar for (A,D) = 1000µm; for (B) =

750µm; for (C) = 600µm. Abbreviations: cb, cingulum bundle; CLA, claustrum; DLO, dorsolateral orbital cortex; ENTl, lateral entorhinal cortex;

PERI, perirhinal cortex; RSP, retrosplenial cortex; VLO, ventrolateral orbital cortex. Figure modified from Vertes et al. (2006).

Nucleus reuniens: Functional
properties—Overview

RE is reciprocally connected with the HF and several

limbic cortical sites, prominently the mPFC, and is a major

intermediary between the HF and mPFC (Cassel et al., 2013,

2021; Griffin, 2015, 2021; Vertes et al., 2015a; Dolleman-

van der Weel et al., 2019; Ferraris et al., 2021). Accordingly,

RE has been associated with several, diverse affective and

cognitive functions—or notably those involving interactions

between the HF and orbitomedial PFC. These include working

memory (WM)/spatial working memory (SWM), executive

functions (attention, goal directed behavior, decision making)

and affective/fear behavior.

RE functional properties—WM/SWM

It is well recognized that the hippocampus and mPFC serve

critical roles in SWM (Colgin, 2011; Griffin, 2015). Lesions or

inactivation of either structure in rats produces severe deficits

in SWM (Floresco et al., 1997; Lee and Kesner, 2003; Jones

and Wilson, 2005; Yoon et al., 2008; Churchwell et al., 2010;

Churchwell and Kesner, 2011; Hallock et al., 2013a; O’Neill
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FIGURE 4

Schematic representation depicting interconnections/circuitry

between the nucleus reuniens (RE) and the peri-reuniens (pRE),

the medial (mPFC) and orbital (ORB) prefrontal cortices and the

hippocampus (HF). While both RE and pRE are interconnected

with the mPFC, ORB and HF, there is di�erential weighting of

connections such that the RE (or medial RE) is more heavily

reciprocally connected with the dorsal (dHF) and ventral (vHF)

hippocampus (light blue lines/arrows), whereas pRE is more

strongly reciprocally connected with the mPFC and ORB

cortices (dark blue lines/arrows). While the vHF sends

projections to the mPFC/ORB (purple lines/arrows), there are

essentially no return projections from the orbitomedial PFC

cortex to the HF. Further, the dHF does not project directly to

the mPFC/ORB. As such, RE/pRE is a key intermediary in this

circuitry. Dashed lines and arrows represent direction of

connections. AC, anterior cingulate cortex; IL, infralimbic cortex;

PL, prelimbic cortex.

et al., 2013; Urban et al., 2014; Sapiurka et al., 2016; Avigan

et al., 2020). As an interface between HF and mPFC, RE is well

positioned to coordinate their activity in SWM—and other tasks.

As such, alterations of RE have been shown to disrupt HF-mPFC

communication—leading to deficits on WM tasks (Hembrook

and Mair, 2011; Hembrook et al., 2012; Cholvin et al., 2013;

Hallock et al., 2013b, 2016; Duan et al., 2015; Layfield et al., 2015;

Maisson et al., 2018; Viena et al., 2018).

For instance, Mair et al. (Hembrook and Mair, 2011;

Hembrook et al., 2012) showed that lesions of RE (and the

dorsally adjacent, RH) significantly altered performance onWM

tasks that are sensitive to damage to the HF or the mPFC. RE

lesions, however, had no effect on tasks involving alterations

of the striatum and motor cortex such as visuospatial tasks,

or interestingly those which only involved the hippocampus

such as certain radial arm maze (RAM) tasks. Regarding the

latter, Hembrook et al. (2012) concluded that “the RE and

RH affect measures of spatial working memory that depend

on interactions between the hippocampus and mPFC, but not

measures that depend on the hippocampus alone”.

Griffin et al. (Hallock et al., 2013b, 2016) similarly reported

that alterations of RE disrupt WM behaviors dependent on

HF-mPFC interactions and further described RE-mediated

synchronous oscillations between the HF and mPFC supporting

WM behavior. Specifically, Hallock et al. (2013b) initially

examined the effects of inactivation of RE on two versions of

tactile/visual T-maze task, one with and the other without, a

WM component, and showed that RE rats only exhibited deficits

on the WM version of the task. In a subsequent examination

of HF-mPFC unit/oscillatory activity during WM behavior,

Hallock et al. (2016) showed that: (1) a population of mPFC

cells, active during a delayed SWM task, became entrained

to hippocampal theta during successful task performance; (2)

hippocampal theta was strongly coupled to theta and gamma

oscillations of the mPFC under the same conditions; and (3)

the reversible inactivation of RE with muscimol disrupted HF-

mPFC synchronous oscillations as well as performance on the

delayed SWM task.

Viena et al. (2018) assessed the role of RE in SWM

using a variant of the delayed non-match to sample (DNMS)

T-maze task wherein rats were allowed to correct their

behavior following incorrect choices on the T-maze (Figure 5A).

Specifically, rats were given a free choice of the right or left

arm of the T-maze (sample run) and after delays of 30, 60 or

120 s were required to choose the opposite arm of the maze

(choice run) for reward. If rats chose the incorrect arm on the

choice run, they were allowed to immediately (without delay)

correct their behavior by choosing the correct (or baited) arm.

The repeated re-entry into the incorrect (non-baited) arm was

defined as a perseverative error. The reversible inactivation of RE

across two doses of muscimol severely disrupted performance

on this task, impairing choice accuracy at each of the three

delay times (Figure 5B). In addition, muscimol injections into

RE resulted in a pronounced spatial perseveration (Figure 5C),

as rats repeatedly choose the incorrect arm in the absence

of reward—or were unable to shift response strategies (see

also below).

In a comparable manner, Griffin and colleagues (Stout et al.,

2022) recently examined the role of RE in deliberation—or

specifically in pause and reorienting behaviors which have been

referred to as “Vicarious Trial and Errors” (VTEs) (Schmidt

et al., 2013; Redish, 2016). Interestingly, VTEs appear to

increase with unsuccessful deliberations in WM tasks (Redish,

2016). Further, as discussed, theta oscillations between the

HF and mPFC become synchronized during successful choice

behavior on WM tasks (Jones and Wilson, 2005; O’Neill et al.,

2013). Accordingly, Stout et al. (2022) demonstrated that the

inactivation of RE, increased VTEs, suppressed HF-mPFC theta

synchrony and significantly impaired performance on a spatial

WM task, resulting in perseverative errors.

Despite these studies, the precise role(s) of RE in spatial

WM remains unclear; that is, is the involvement of RE in

WM linked to the encoding, retrieval or long term retention
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FIGURE 5

(A) Experimental design of a modified delayed non-match to sample (DNMS) T-maze task used to examine spatial working memory and

behavioral flexibility in the rat. Rats began each trial with a free choice on the sample run, whereby they could choose either arm for reward.

Following this, rats returned to the startbox and remained there for delays of 30, 60, or 90 s before the start of the choice run whereby the

correct choice involved choosing the opposite arm. If rats made an incorrect response on the choice run, they were given no delay correction

runs which allowed them to immediately correct their error and choose the correct arm. If a rat did not correct their behavior after 10

“correction” runs, the trial was terminated and rats were returned to the startbox. This was followed by the next trial. (B) Bar graph illustrating

spatial working memory performance on the DNMS task following infusions of muscimol, procaine, or vehicle into the nucleus reuniens (RE).

Infusions of muscimol, at two doses, into RE impaired choice accuracy at each of the three delay times, measured by mean percent of correct

trials, demonstrating that the inactivation of RE profoundly disrupts spatial working memory. By contrast, procaine injections in RE impaired

choice accuracy only during the longest delay (120 s). (C) Bar graph showing errors made during correction runs following infusions into RE.

Inactivation of RE with muscimol at two doses produced striking spatial perseverative behavior on the DNMS task whereby rats repeatedly

reentered the incorrect arm on correction runs, despite the absence of reward. (D) Bar graph of win-shift failures made across testing sessions

following infusions into RE. Rats well-trained in the DNMS task learned to alternate with choice runs, which included alternating on the sample

run following the choice run on the previous trial. Muscimol infusions into RE disrupted this behavioral strategy, significantly increasing the

number of win-shift errors, by which rats did not alternate across trials. Error bars represent standard error of the mean. Significance is indicated

by asterisks: *p < 0.05; **p < 0.01; ***p < 0.001. Modified from Viena et al. (2018).

of spatial information? Specifically, Maisson et al. (2018)

using a delayed non-match to position (DNMP) T-maze task,

showed that optogenetic inhibition of RE during the sample

phase, but not during the delay or choice phases (retrieval)

of the task, significantly impaired performance on the task,

and concluded that RE mainly contributes to the encoding of

spatial information in SWM tasks. Conversely, Rahman et al.

(2021) recently demonstrated that optogenetically stimulating

RE hippocampal-projecting fibers at delta frequency (3–4Hz)

in mice, which had previously been shown to disrupt memory

processing in rats (Duan et al., 2015), significantly impaired

the retrieval but not the encoding of memory on a spatial

Y-maze task. Lastly, Jayachandran et al. (2019) described

the involvement of RE in the temporal coding of working

memory. They found that the chemogenetic silencing of mPFC

projections to RE impaired memory for the sequential order of

odor stimuli, and based on the pattern of deficits, concluded

that altering mPFC-RE projections produces failures of a

WM retrieval strategy. While these conflicting findings need

to be resolved, it would appear from the foregoing that RE

serves a role in various phases of spatial learning tasks, and

disparities among studies could involve differences in types

of tasks, perturbations of RE, timescales, species—or possibly

other variables.

In summary, working memory critically involves

interactions between the HF and the mPFC, and as recently

demonstrated, RE represents a vital link between the HF and

the mPFC in working memory. Accordingly, the inactivation of

RE disrupts both synchronous oscillations between the HF and

mPFC and performance on working memory tasks as well as

long-term memory processing.

RE functional properties—Executive
functions

Whereas, RE’s involvement in SWM has been extensively

examined (for review, Cassel et al., 2013; Griffin, 2015; Vertes

et al., 2015a; Dolleman-van der Weel et al., 2019), considerably
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FIGURE 6

(A,B) Darkfield micrographs of transverse sections through the basal forebrain showing patterns of labeling in the nucleus accumbens (ACC)

produced by anterograde tracer injections into the anterior (PVa) (A) and posterior (PVp) (B) paraventricular nucleus of thalamus of the rat. (A)

Note the massive terminal labeling in the shell (ACCs) and core (ACCc) of ACC produced by a PVa injection. (B) Note the massive terminal

labeling in the shell of ACC but less dense labeling in the core of AAC produced by the PVp injection. (C,D) Darkfield micrographs of transverse

sections through the dorsal striatum (CP) depicting patterns of labeling produced by anterograde tracer injections in the rostral (CMr) (C) and

caudal (CMc) (D) central medial nucleus (CM) of the thalamus of the rat. Note the pronounced terminal labeling in the dorsomedial quadrant of

CP following the injection in CMr (C), compared with the dense labeling confined to the ventrolateral sector of CP following the injection in

CMc (D). ac, anterior commissure; LS, lateral septum; SI, substantia innominata. Scale bar for (A,B,D) = 500µm; for (C) = 750µm. Modified from

Vertes and Hoover (2008) and Vertes et al. (2012).

fewer reports have assessed its role in behaviors that have been

termed “executive functions.” They would include attentional

processes, behavioral flexibility, decision making, and goal

directed behavior (Dolleman-van der Weel et al., 2009; Cholvin

et al., 2013; Prasad et al., 2013; Linley et al., 2016; Viena et al.,

2018).

In an initial study, Dolleman-van der Weel et al. (2009),

reported that RE lesions did not disrupt acquisition or retention

on a standard water maze task, but nonetheless resulted in

an ineffective search strategy on the probe test which was

described as a rigid (or inflexible) behavioral pattern—or a

prefrontal cortical rather than a hippocampal deficit. In a similar

manner Cassel and colleagues (Cholvin et al., 2013) compared

the effects of the selective inactivation of the HF, the mPFC

or RE on a standard water maze and on a double-H water

maze task that places demands on both the hippocampus

(place identification) and the mPFC (strategy-shifting) for

successful completion. Hippocampal, but not RE, inactivation

impaired performance on the standard water maze, whereas the

inactivation of RE, HF, or the mPFC disrupted performance

on the double-H task, resulting in an inability to successfully

switch strategies on the task. Specifically, the RE (inactivated)

rats were unable to switch from an incorrect response strategy

(repeating a learned sequence of movements) to a correct place

response (choosing the escape quadrant)—indicating a deficit in

behavioral flexibility.

Linley et al. (2016), using odor-tactile attentional set shifting

task (AST), reported that RE lesioned rats were impaired on the

ability to establish “attentional sets” and in reversal learning. The

odor tactile AST task of Verity Brown (see Brown and Tait, 2015)

consists of 7 stages requiring rats to dig for food rewards buried

in various mediums of scented food cups. The seven stages are:

simple discrimination (SD), compound discrimination (CD),

intradimensional shift (ID), extradimensional (ED) shift, and
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reversal learning of the CD, ID, and ED stages. Linley et al.

(2016) found that RE lesioned rats exhibited significant deficits

on the intradimensional shift and first reversal (CDRV) stages of

the AST task. This indicated: (1) an inability to learn successful

rules (or strategies) that would transfer or generalize across

a comparable set of tasks/stimuli; and (2) a failure to inhibit

responses to previously rewarded stimuli to thereby initiate

responding to once unrewarded stimuli—or inflexible behavior.

As was previously discussed, Viena et al. (2018) reported

that muscimol injections in RE produced severe spatial

“perseverative” behavior on a T-maze alternation task – wherein

rats repeatedlymade incorrect directional responses on themaze

(Figure 5C). This perseverative (or compulsive) responding is

a further example of the inability of RE rats to alter their

behavior in the face of changing contingencies or conditions—

an executive dysfunction. Further, muscimol inactivation also

disrupted the ability of rats to use a well-established rule

of spatial alternation across trials—signifying win-shift errors

(Figure 5D). Together this demonstrated a pivotal role for RE

in learned strategies and flexible behavior.

Spatial perseveration has been linked to dysregulation of the

hippocampus. Dalland (1970, 1976) initially showed that lesions

of the dorsal hippocampus produced spatial perseveration on

a spatial alternation task. More recently, Hallock et al. (2013a)

compared the effects of reversible inactivation of the dorsal HF

or the striatum on a spatial (delayed alternation) or non-spatial

(visual discrimination) task, and found that disruption of the

HF, but not the striatum, impaired performance on the delayed

alternation task, notably increasing scores on a “perseveration

index,” which measured re-entries into previously visited arms.

Comparably, Yoon et al. (2008) described the effects of reversible

inactivation of the mPFC or the HF on delayed alternations

in a Figure 8 maze showing that disruption of the mPFC

increased WM errors, whereas altering the HF significantly

increased perseverative errors. Finally, Zhang et al. (2013), using

a DNMS task, reported that NMDA antagonists applied to CA1

significantly impaired the ability of rats: (1) to correct their

behavior following errors, termed “lose-shift errors,” leading

to spatial perseveration and (2) to execute a well-learned

strategy and alternate following successful choices, or win-shift

errors. As discussed, these same deficits (perseveration and win-

shift errors, Figures 5B–D) were observed on the DNMS task

following RE inactivation (Viena et al., 2018).

Whereas, executive functions undoubtedly involve a widely

distributed cortical network (Dalley et al., 2004; Robbins

and Arnsten, 2009; Kesner and Churchwell, 2011; Sharpe

and Killcross, 2018), alterations of the orbital cortex (ORB)

commonly result in inflexible behavior, while (as discussed)

disruptions of the hippocampus appear to underlie spatial

perseverative responding.

The association of the orbital corex (ORB) with behavioral

flexibility is often examined in animal models through reversal

learning or compulsive behavior (for review, Clark et al.,

2004; Schoenbaum et al., 2009; Young and Shapiro, 2011a;

Izquierdo, 2017). For instance, it has been shown that disruption

of the ORB in rats impairs the intradimensional shift and

reversal learning phases of the AST task (McAlonan and Brown,

2003; Chase et al., 2012). Further, several reports in rats have

shown that ORB cells respond differentially to correct and

incorrect (reward based) choices. Using a two-choice odor

discrimination task, Feierstein et al. (2006) demonstrated that

ORB neurons fired in response to outcome (reward vs. non-

reward) and to correct choice locations. Steiner and Redish

(2012) similarly reported that ORB cells in rats discharged

selectively on rewarded trials of a maze, with activity peaking

at the choice point of the maze. Finally, Young and Shapiro

(2011b) showed that ORB activity was correlated with reward

probabilities of paths taken on a plus maze, and further

that theta of the HF and ORB became synchronized with

successful performance on the task. The foregoing demonstrates

a critical involvement of ORB in establishing reward-response

contingencies and importantly for adapting to changes in

contingencies (i.e., reversal learning)—as alterations of ORB

severely disrupt reversal learning.

While the manner in which the ORB acquires the necessary

information for evaluative decisions has yet to be been fully

determined, Wikenheiser and Schoenbaum (2016) proposed

that spatial and contextual features of the environment,

encoded by the hippocampus, are relayed to the ORB—and

there evaluated for reward/valence properties for appropriate

behavioral responses. Further, the ORB would then transmit

information on reward outcomes (or behavioral adaptations)

from the ORB to the HF to update it, thus preparing the HF

for future goal directed actions. This would obviously require

a functional interplay between the HF and ORB, but the ORB

does not receive (direct) input from the dorsal HF, and the

ORB does not project to CA1 and the subiculum of the HF

(Dolleman-van der Weel and Witter, 1996; Reep et al., 1996;

Vertes et al., 2006, 2007; Hoover and Vertes, 2011, 2012; Prasad

and Chudasama, 2013; Murphy and Deutch, 2018). As RE

serves as a primary link between the mPFC and HF, RE is

also reciprocally connected with the ORB (Van der Werf et al.,

2002; Jasmin et al., 2004; McKenna and Vertes, 2004; Vertes

et al., 2006; Hoover and Vertes, 2011) and thus may be a

key intermediary in the exchange of information between the

HF and the ORB (Figure 4). As such, deficits seen with the

disruption of RE on tasks involving attention/attentional set,

reversal learning and behavior flexibility (perseveration) may, in

part, involve the loss of effective RE-mediated communication

between the HF and ORB.

In summary, compared to reports on working memory,

considerably fewer studies have examined the role of RE in

behaviors designated as “executive functions” such as attentional

set, behavioral flexibility, goal directed behavior and decision

making. Recent evidence, however, indicates that alterations of

RE significantly disrupt attentional processes and behavioral
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flexibility—primarily involving RE connections with the mPFC,

ORB and the hippocampus.

RE functional properties—A�ect/fear
behavior

It is well recognized that alterations of the HF, the mPFC

or their interactions underlie several affective disorders

including depression, anxiety, and post-traumatic stress

disorder (PTSD) (Jin and Maren, 2015; Sigurdsson and

Duvarci, 2016). As RE is a major link between the HF

and the mPFC, RE appears to serve a critical role in

affective behavior.

In this regard, several reports have described a direct

involvement of RE in emotional behavior, most thoroughly

examined with respect to fear—using fear conditioning

paradigms. For instance, Xu and Südhof (2013) described a

mPFC-RE-HF circuit responsible for fear memory specificity

and generalization. They initially showed that alterations

of the mPFC produced to an overgeneralization of fear

memory (Xu et al., 2012), and subsequently that this effect

was dependent on mPFC actions on the HF, mediated

by RE. Specifically, they demonstrated that disruption

of mPFC projections to RE, but not to other thalamic

sites, produced an overgeneralization of contextual fear

memory, and that the suppression or enhancement of RE

output to the HF, heightened or reduced overgeneralized

contextual fear memory, respectively (Xu and Südhof,

2013).

Wheeler et al. (2013) examined patterns of c-fos expression

across 84 regions of the brain following the recall of contextual

fear memory in mice, and described specific regions of the

brain which were co-activated by fear recall, leading to

the identification of “hubs” in a fear network—or highly

interconnected structures of the network. Having identified 4

of 21 regions of the brain as “hubs” (CA1 of HF, RE, lateral

septum and laterodorsal nucleus of thalamus), they showed that

chemogenetic silencing of these hubs significantly impaired fear

memory consolidation (Vetere et al., 2017). They concluded

that: “hubs play disproportionately important roles, in a network

engaged by contextual fear memory in mice”.

Sierra et al. (2017) showed that remote contextual

fear memory (blocked by suppressing the cortex during

conditioning) could be reinstated by “reconsolidation” which

was dependent on RE; that is, inactivating RE prevented the

reinstatement of remote fear memory. They proposed that (fear)

contextual information was conveyed from the HF to the PFC,

via RE, to consolidate fear/emotional memories in the PFC.

Consistent with this, Quet et al. (2020) recently demonstrated

that RE/RH lesions in rats significantly disrupted remote

(25 days), but not recent (1 day), contextual fear memory.

Further, RE/RH was not required for the retrieval of remote fear

memory, thus restricting its involvement to the consolidation of

remote fear memories.

In a similar manner, Ramanathan et al. (2018a) showed that

the inactivation of RE severely disrupted the acquisition and

expression of contextual fear memory, and interestingly it also

released (or uncovered) an elemental, non-hippocampal

dependent contextual memory system—producing an

overgeneralization of contextual fear to novel contexts.

They thus concluded that RE encodes precise HF-dependent

contextual fear memories, but in its absence (RE inactivation),

there is reliance on an impoverished, non-hippocampal, fear

memory system that imprecisely encodes context. Supporting

this, Lin et al. (2020) demonstrated that the inactivation of

RE/RH with muscimol significantly impaired the acquisition

of trace fear conditioning in rats, which interestingly could be

reinstated by suppressing RE prior to retrieval. Together these

findings indicate that RE is directly involved in the acquisition

of contexual fear memory as well as the “suppression”

of a generalized (non-HF dependent) fear to aspects of

the environment.

Moscarello (2020) described the interesting findings that

(ventral) mPFC to RE projections suppress freezing behavior in

a signaled active avoidance paradigm—as an adaptive response.

Specifically, rats were trained to successfully avoid shock on

an active avoidance task, which then reportedly reduces innate

fear responses (e.g., freezing) to conditioned stimuli (CS)

presented in a neutral setting. Moscarello (2020) reported that

the inactivation of RE or chemogenetic suppression of mPFC-

RE projections significantly increased freezing to CSs given in

a neutral setting. This suggested that the mPFC-RE pathway

may be responsible for inhibiting innate defensive behaviors

(freezing) that would interfere with active coping responses in

dangerous situations.

Maren et al. (Ramanathan et al., 2018b; Ramanathan and

Maren, 2019) showed that inactivating RE with muscimol,

or mPFC projections to RE using DREADDs, impaired fear

extinction learning; that is, significantly increased freezing

to conditioned tones during extinction training and during

“retrieval” testing, 24 h after extinction learning. Further, RE

cells were shown to fire at enhanced rates and levels of c-fos

expression were greatly increased during extinction training.

They proposed that extinction initiates an inhibitory process

which prevents the retrieval of fear memory, and this is

“mediated by projections from the mPFC to the hippocampus

via the RE”.

Using various state of the art techniques in mice, Silva et al.

(2021) recently reported that RE (or specially RE inputs to the

amygdala) underlies the extinction of remote (30 day) but not

recent (1 day) fear memories. Specifically, they showed: (1) that

DREADD-induced activation or inhibition of RE, reduced or

enhanced, remote fear memory, respectively; (2) that increases

in RE activity were time-locked to the cessation of freezing;
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and (3) that optogenetic stimulation or inhibition of RE (or

RE projections to the basolateral nucleus of the amygdala)

decreased or increased freezing behavior in a remote fear

extinction paradigm. Further, based on their demonstration that

optogenetic activation of infralimbic (IL) cortical projections

to RE also produced remote fear extinction, they proposed a

IL→ RE→ BLA circuit for remote fear memory extinction.

Finally, Salay et al. (2018) described the involvement

of RE (and RH), via projections to the amygdala and the

prefrontal cortex, in innate fear showing that the activation

of RE reduced fear behavior and increased tail-rattling (a

sign of aggression) in mice. Complementing this, Linley et al.

(2020) recently demonstrated that reversible suppression of

RE increased anxiety-like behaviors on the elevated plus maze

(EPM) which was accompanied by significantly increased levels

of c-fos expression in RE (and RH). Taken together the foregoing

findings indicate a critical role for RE in both learned and

innate fear.

In summary, the inactivation of RE has been shown to

disrupt WM/spatial working memory, executive processes and

fear/avoidance behavior. While it is presently unknown whether

themultiple, diverse functions of RE involve separate, or perhaps

common (overlapping) regions of RE, it is clear that, as major

interface between the HF and medial/orbital PFC, nucleus

reuniens is intimately involved in the affective and cognitive

functions served by these cortical structures.

The dorsal midline thalamus:
Paraventricular and paratenial nuclei

As stated, the dorsal midline thalamus consists of the

PV and PT. PV is located medially below the third ventricle

and dorsomedial to MD, and essentially spans the rostro-

caudal extent of the thalamus. PT, however, is a rather small

nucleus which lies lateral to PV at the rostral pole of the

thalamus. Whereas, the projections of PV and PT significantly

overlap (Vertes and Hoover, 2008), exceedingly few studies

have examined the functional properties of PT independent of

PV. As such, we focus on PV, describing its circuitry and its

functional properties.

Paraventricular nucleus of the dorsal
midline thalamus: Circuitry

PV input

Similar to RE, PV receives a diverse array of afferents from

the forebrain and the brainstem.

The main sources of subcortical input to PV are from

structures of the brainstem and hypothalamus, with additional,

but more limited, input from the amygdala, bed nucleus of

stria terminalis (BST), the medial preoptic area (MPO) and

the diagonal band nuclei (Sesack et al., 1989; Chen and Su,

1990; Hurley et al., 1991; Vertes, 1991, 1992, 2002; Otake and

Nakamura, 1995; Otake et al., 1995; Vertes et al., 1995, 1999;

Ruggiero et al., 1998; Novak et al., 2000; Krout et al., 2002;

Goto and Swanson, 2004; Peng and Bentivoglio, 2004; Kirouac

et al., 2005, 2006; Otake, 2005; Hoover and Vertes, 2011; Li and

Kirouac, 2012).

While varying in density, brainstem afferents to PV

derive from the ventral tegemental area (VTA), the

pontomesencephalic RF, nucleus cuneiformis, the dorsal

and median raphe nuclei, the PAG, the parabrachial complex

(PB), the laterodorsal (LDT) and pedunculopontine (PPT)

nuclei, the locus coeruleus (LC) and the solitary nucleus (NTS)

(Chen and Su, 1990; Takada et al., 1990; Bester et al., 1999; Krout

and Loewy, 2000a,b; Krout et al., 2002; Li and Kirouac, 2012). In

a comprehensive examination of afferents to PV, Li and Kirouac

(2012) observed considerably fewer brainstem inputs to PV

than shown in previous reports (Krout et al., 2002), which they

attributed to the relatively small size of their injections, confined

to PV, and likely did not destroy fibers of passage. However,

similar to previous studies, they identified labeled cells in the

PB, PAG and the dorsal raphe nucleus, but surprisingly few in

VTA, LC, and NTS.

Perhaps in contrast to the brainstem, PV receives input

from several cell groups of the hypothalamus. They include the

tuberomammillary, supramammillary, dorsomedial, posterior,

lateral and parasubthalamic nuclei (Vertes, 1992; Vertes et al.,

1995; Goto and Swanson, 2004; Kirouac et al., 2005, 2006; Li and

Kirouac, 2012). The parasubthalamic nucleus, a preautonomic

group implicated in visceral control, strongly distributes to PV,

mainly to posterior PV (PVp) (Goto and Swanson, 2004). As well

recognized, PV is also amajor target of fibers from orexin (ORX)

and cocaine and amphetamine-regulated transcript (CART)-

containing cells of the lateral hypothalamus (Kirouac et al.,

2005, 2006; Parsons et al., 2006; Matzeu and Martin-Fardon,

2018). While PV contains a rich plexus of dopaminergic (DA)

fibers (Garcia-Cabezas et al., 2009), interestingly they reportedly

originate from DA cell groups of the medial hypothalamus

and the brainstem (DR/PAG) and not from major DA nuclei

including VTA (Li et al., 2014). Finally, PV is essentially unique

among midline nuclei in that it receives afferents from the

suprachiasmatic nucleus (SCh) and the intergeniculate leaflet

(Moore et al., 2000; Kawano et al., 2001) and as described below,

PV sends return projections to SCh.

While the PV receives quite significant subcortical input

from the brainstem and diencephalon, the major source of

afferents to PV is from the cortex; prominently from the mPFC,

agranular insular cortex and the ventral subiculum of the HF

(Groenewegen, 1988; Sesack et al., 1989; Chen and Su, 1990;

Hurley et al., 1991; Vertes, 2002, 2004; Jasmin et al., 2004;

Hoover and Vertes, 2011; Li and Kirouac, 2012). Whereas,

fibers throughout the mPFC project to PV, there is a dorsal

to ventral gradient in density such that the anterior cingulate
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cortex (AC) distributes moderately, and PL and IL massively,

to PV (Figures 2A–C). The ventral subiculum distributes quite

selectively to the anterior PV, whereas the mPFC and insular

cortex mainly target the posterior PV (Vertes, 2002, 2004; Li

and Kirouac, 2012). Noting considerably stronger cortical than

subcortical input to PV, Li and Kirouac (2012) suggested that this

may be indicative a greater “top-down” influence on PV than

generally recognized.

PV output

PV distributes widely throughout the forebrain to cortical

and subcortical structures (Berendse and Groenewegen, 1990,

1991; Meredith and Wouterlood, 1990; Su and Bentivoglio,

1990; Turner and Herkenham, 1991; Brog et al., 1993; Jasmin

et al., 2004; Peng and Bentivoglio, 2004; Parsons et al., 2006,

2007; Hoover and Vertes, 2007; Li and Kirouac, 2008; Vertes

and Hoover, 2008; Li et al., 2021b). The principal cortical

targets of PV are the IL and PL cortices of the mPFC, the

dorsal agranular insular cortex and the ventral subiculum of

the hippocampus. The main subcortical PV projection sites

are the claustrum, lateral septum, the core and shell of ACC

(Figures 6A,B), olfactory tubercle, BST, the medial, basolateral

(Figures 7A–C), central (Figures 7D–F) and cortical nuclei of

the amygdala (AMY), and the suprachiasmatic (SCh), arcuate,

and dorsomedial nuclei of the hypothalamus (Li and Kirouac,

2008; Vertes and Hoover, 2008). In addition, the caudal PV

distributes modestly to the dorsal striatum (Vertes and Hoover,

2008; Hunnicutt et al., 2016).

Whereas, early reports described rather limited collateral

PV projections to target structures (Bubser and Deutch, 1998;

Otake and Nakamura, 1998), Kirouac et al. (Dong et al.,

2017) demonstrated that PV distributes, via collaterals, to main

terminal sites: the core and shell of ACC, BST and the basolateral

and central nuclei of the AMY. Specifically, all combinations of

dual retrograde injections yielded relative significant numbers

of double labeled (collateralizing) cells in PV—about 7–17% per

combinations of injection. Particularly striking was prominent

PV projections to the shell of ACC; that is, ∼80% of PV

neurons were retrogradely labeled following dual injections in

the dorsomedial and ventromedial shell of ACC and about

10% of them were double labeled—indicating collateral PV

projections to both shell regions of the ACC. The anterior

PV was shown to strongly target the dorsomedial shell of

ACC and the posterior PV, the ventromedial shell of ACC.

In like manner, tracing the axonal trajectory of individual PV

neurons, Unzai et al. (2017) demonstrated that PV fibers ramify

extensively throughout the ACC, while also branching to other

sites, notably to the AMY and the mPFC. Finally, Viena et al.

(2022) importantly described a small population of PV neurons

with collateral projections to the subiculum of the HF and

the mPFC.

PV: Functional properties

PV: Functional properties—Overview

As PV represents a critical interface brainstem/diencephalic

and forebrain limbic structures (Kirouac, 2015), PV has been

linked to various functions, including arousal, feeding/appetitive

behavior, fear/aversion and drug addiction (for review, Hsu et al.,

2014; Kirouac, 2015; Millan et al., 2017; Huang et al., 2018;

Zhou and Zhu, 2019; Barson et al., 2020; McGinty and Otis,

2020; Iglesias and Flagel, 2021; McNally, 2021; Penzo and Gao,

2021; Bu et al., 2022). These behaviors may have a common

thread suggesting a key role for PV in the appetitive and aversive

motivated behaviors.

An early groundbreaking report by Kelley et al. (2005)

identified PV as an integral part of a hypothalamic-thalamo-

striatal circuit subserving appetitive/reward behavior. According

to their model, PV receives information from the hypothalamus

related to reward, energy demands, circadian rhythms, and

behavioral states and relays it mainly to the ACC to initiate/drive

motivated behaviors, prominently hedonic feeding. With

revisions, this model has served as a framework for considerable

subsequent research on PV functions. We will focus on PV’s role

in feeding, drug addiction and arousal.

PV functional properties—Feeding/motivated
behavior

The role of the PV in feeding behavior is complex and

appears to involve separate afferents to the anterior (PVa) and

posterior PV (PVp), with correspondingly differential effects

on the ACC in the control of feeding. Specifically, it has been

shown that the activation, or alternatively the suppression of PV

can promote feeding, likely via different circuitries (for review,

Petrovich, 2021).

Early evidence favoring the activation of PV in feeding

stemmed, at least in part, from the demonstration that PV is a

major recipient of orexin fibers (Kirouac et al., 2005) and ORX

serves a well-recognized role in feeding behavior (for review,

Barson and Leibowitz, 2017). For instance, Choi et al. (2010)

initially demonstrated that ORX-receptor containing cells of

PV were activated by the anticipation of food rewards, and

subsequently (Choi et al., 2012) that injections of ORX-A into

PV increased dopamine levels in the ACC, while reductions of

ORX-1 receptor signaling in PV suppressed hedonic feeding in

rats. They concluded that PV is critical for mediating the actions

of orexin “on brain dopamine and reward based feeding.” More

recently, Barson et al. (2015) described the interesting findings

that ORX exerted differential effects on the PVa and the PVp;

that is, injections of ORX-A in the PVa elicited ethanol drinking,

whereas injections in the PVp enhanced the intake of sucrose.

Consistent with the foregoing, Meffre et al. (2019) identified

the posterior PV as a critical node in relaying “hunger-

related” signals from hypothalamic ORX cells to the ACC in

Frontiers in Behavioral Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.964644
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Vertes et al. 10.3389/fnbeh.2022.964644

feeding behavior. They demonstrated that: (1) satiety reduced

the activity of PVp (and ACC) neurons to cues signaling

rewards; (2) blockade of ORX-2 receptors in PVp suppressed

responses to food rewards in hungry rats; and (3) injections

of ORX-A or optogenetic PV stimulation restored feeding

in sated rats (Meffre et al., 2019). In effect, information on

metabolic need from ORX neurons was conveyed, via PV, to

the ACC to initiate feeding in the presence of palatable food.

Supporting these findings, Sofia Beas et al. (2020) reported that

optogenetic activation of catecholaminergic-containing fibers of

the ventrolateral medulla projecting specifically to PVp elicited

feeding in sated mice, while optogenetic silencing of these fibers

attenuated feeding.

Associated with, and possibly complementing ORX, agouti-

related protein (AGRP) appears to exert a critical influence on

PV in the regulation of feeding behavior (Gropp et al., 2005;

Wu et al., 2009b; Betley et al., 2013). For instance, Betley et al.

(2013) reported that optogenetic stimulation of AGRP+ fibers

of the arcuate nucleus that project to PV significantly increased

food consumption—and over several sessions. More recently,

Wang et al. (2021) showed that the ablation or optogenetic

inhibition of AGRP+ fibers projecting to PV suppressed food

seeking behavior in food restricted but not in sated mice.

Seemingly in direct contrast to the foregoing findings,

several reports have shown that the “suppression” (or

inactivation) of PV stimulates feeding behavior (Bhatnagar and

Dallman, 1999; Stratford and Wirtshafter, 2013; Zhang and van

den Pol, 2017; Reed et al., 2018; Otis et al., 2019). For example,

Bhatnagar and Dallman (1999) initially demonstrated that

PV lesions produced significant increases in food intake and

weight gain, while Stratford and Wirtshafter (2013) showed that

injections of muscimol into PV, dose-dependently, increased

the intake of food in non-deprived rats.

In a multifaceted study using cre-dependent mice, Zhang

and van den Pol (2017) reported that the suppression of PV,

produced by inhibitory inputs from the zona incerta (ZI) to

PV, gave rise to robust increases in food intake and weight

gain—described as “binge-like” eating. Specifically, activation of

GABAergic ZI cells or GABAergic terminals in PV produced an

immediate and sustained increase in feeding behavior, while the

selective ablation of GABAergic ZI cells, or glutamatergic PV

neurons, produced long term increases in food intake—for up to

16 weeks with the PV lesions. Finally, stimulation of excitatory

inputs to PV or chemogenetic activation of PV glutamatergic

neurons reduced food intake.

Using calcium imaging based fiber photometry, Reed et al.

(2018) examined the effects on food consumption of excitatory

inputs to the shell of ACC from the dorsal midline thalamus,

the basolateral nucleus (BLA) of AMY, and the ventral HF

in mice, and showed that reductions in activity from each of

these sites to the (rostral) ACC generated feeding behavior—

with largest reductions in activity (per site) seen with visits to

food ports. In addition, optogenetic suppression of each input to

the ACC significantly enhanced food intake. It was concluded

that reductions of excitatory activity to the rostral ACC from

these three sources, individually or combined, is responsible for

driving feeding behavior.

Using similar imaging techniques combined with a classical

conditioning paradigm in mice, Otis et al. (2019) described

marked decreases in PV activity to cues signaling rewards

(sucrose), which interestingly led to a strengthening of cue

(CS+)-reward associations. Specifically, reductions in PV

activity to CSs for reward resulted from: (1) a CS-elicited

inhibition of glutamatergic PFC cells projecting to PV; and (2)

the activation of GABAergic cells of the lateral hypothalamus

(LHy) innervating PV. Further, decreases in prefrontal-PV

activity were linked to the presentation of cues (CSs), whereas

increases in (GABAergic) LHy-PV activity were tied to licking

behavior. It was concluded that the PV integrates information

from the PFC (cue-reward associations) with that from the LHy

(response to reward), to initiate feeding, via actions on the ACC.

In summary, the activation or the suppression of PV can

induce feeding behavior—which appears driven by separate

hypothalamic systems: an excitatory peptidergic (ORX and

CART) system for activation-induced feeding, and an inhibitory

ZI and LHy system that suppresses feeding. As PVa and PVp

projections differ (see above), this dichotomy in PV’s role

in feeding could be attributed to the differential involvement

of the PVa and PVp in feeding behavior. This was, in

fact, proposed by Meffre et al. (2019) stating that there is

“growing evidence indicating opposite effects of these two [PV]

subterritories on reward seeking”. Although oversimplified, the

evidence reviewed above suggests that PVp mainly monitors

the metabolic state (hunger) of the animal, whereas the PVa

primarily serves to initiate behavioral responses to cues signaling

food reward.

PV functional properties—Drug seeking and
reinstatement

There is a clear overlap in systems controlling feeding

and drug abuse, including PV, which supports the view that

addictive drugs act through the natural reward circuitry. A

leading advocate of this position, Martin-Fardon and Boutrel

(2012) stated: “the neural circuitry encoded for natural rewards

is usurped by drugs of abuse. Neuroplasticity within this neural

circuitry is believed to be responsible for the maladaptive

(compulsive) behavior characteristic of addiction.”

Attention has only recently focused on the role of PV in

drug abuse. In early reports, Deutch and colleagues (Deutch

et al., 1998; Young and Deutch, 1998) described enhanced levels

of c-fos expression in PV to the delivery of amphetamine or

cocaine, and further that PV lesions blocked cocaine-induced

locomotor sensitization. Hamlin et al. (2009) similarly reported

marked increases in numbers of c-fos+ cells in PV with the

reinstatement of alcohol seeking behavior, and additionally that
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PV lesions prevented this reinstatement. In like manner, Dayas

et al. (James et al., 2010, 2011; Yeoh et al., 2014) demonstrated

that the inactivation of PV with tetrodotoxin (TTX) or CART

suppressed the reinstatement of cocaine seeking behavior in

rats (James et al., 2010), and that the degree of reinstatement

to cocaine was correlated with levels of c-fos expression in PV

(James et al., 2011). Finally, in the slice preparation in mice,

Yeoh et al. (2014) reported that cocaine pretreatment, compared

to controls, enhanced the excitability of PV neurons which was

suppressed by CART peptides.

Consistent with the foregoing, injections of GABA agonists

into PV, but not into adjacent regions of the thalamus,

were shown to block the expression of cocaine-induced place

preference in rats (Browning et al., 2014). Neumann et al. (2016)

demonstrated that selective disruption of PV-ACC projections

significantly decreased cocaine self-administration in rats, and

importantly this was accompanied by increases in silent synapses

in ACC which returned to baseline following a prolonged

period of withdrawal. The authors concluded that the PV-

ACC projection was “essential for acquisition of cocaine self-

administration” (Neumann et al., 2016).

In addition to orexin’s well-established involvement in

feeding behavior (see above), ORX serves an equally important

role in drug-related behaviors—including ORX actions on PV

(Harris et al., 2005; Jupp et al., 2011; Martin-Fardon and Boutrel,

2012; Matzeu et al., 2014; Matzeu andMartin-Fardon, 2022). For

instance, early reports described increases in c-fos expression

of orexin-PV projecting cells following the exposure to nicotine

(Pasumarthi and Fadel, 2008) or to cues signaling alcohol (Dayas

et al., 2008).

In a series of studies, Martin-Fardon and colleagues

examined ORX actions on the PV in cocaine seeking behavior,

comparing effects to natural rewards (Matzeu et al., 2015,

2016; Martin-Fardon et al., 2016). In an initial study, rats

were trained to associate cues (CSs) with cocaine or a natural

reward (sweetened condensed milk) (SCM), and after a period

of extinction, the CSs were reintroduced, and it was reported

that infusions of GABA agonists into the PVp prevented the

reinstatement of cocaine seeking behavior but had no effect on

SCM seeking (Matzeu et al., 2015). In a follow-up examination

of the effects of orexin on cocaine reinstatement in rats, Matzeu

et al. (2016). showed that: (1) injections of ORX-A into the

PVp reinstated primed cocaine seeking behavior; and (2) the

co-administration of ORX-A with ORX-1 receptor antagonists

did not prevent reinstatement, whereas co-injections with ORX-

2 receptor antagonists blocked cocaine seeking behavior—

indicating a (selective) involvement of ORX-2 receptors in

cocaine-mediated actions on PV. More recently, Matzeu and

Martin-Fardon (2020) demonstrated that blocking the effects of

ORX on the PVp prevented the reinstatement of ethanol and

SCM seeking behaviors in alcohol-addicted rats, indicating that

ORX in PV may serve a role in the reinstatement to both drugs

of abuse and natural rewards.

Examining the role of PV in opiate addiction, Keyes et al.

(2020) described two distinct outputs from PV contributing

to morphine-induced conditioned place preference (CPP) in

mice: a PV to central nucleus (CeA) of AMY pathway, and

PV to ACC projection for the acquisition and persistence

of CPP, respectively. Specifically, chemogenetic suppression

of the PV to ACC pathway prevented the reinstatement of

place preference to morphine—an effect that lasted for 24 h.

The authors concluded that morphine-induced modifications

of the PV-ACC circuitry serves to “maintain the contextual

association and drive morphine seeking.” In effect, this system

appears to contribute to relapse to morphine and its suppression

may prevent relapse. In summary, the PV appears to serve a

critical role in the acquisition, maintenance, extinction, and

reinstatement of drugs of abuse—mainly through actions on

the ACC.

PV functional properties—Arousal

In addition to effects on feeding and drug seeking behavior,

ORX also serves a well-established role in arousal/wakefulness.

For instance: (1) ORX cells of the LHy fire at high rates

during active wakefulness, and at significantly reduced rates

during drowsy or sleep states; (2) ORX agents/agonists produce

prolonged periods of wakefulness, while ORX antagonists

significantly increased amounts of NREM and REM sleep;

(3) ORX mutant (KO) mice cannot maintain long periods of

wakefulness and repeatedly vacillate between sleep/wake states;

(4) ORX cells are reciprocally connected to all “arousal-related”

nuclei of the brain; and (5) deficits in ORX signaling produces

narcolepsy in rodents, dogs and humans (for review, Peyron

et al., 2000; Sakurai et al., 2010; Alexandre et al., 2013; Li et al.,

2018).

While ORX exerts actions at multiple sites of the brain

in arousal, recent reports have identified PV as an important

target contributing to arousal/wakefulness. For instance, in an

early report, Peng et al. (1995) observed significantly greater

numbers of c-fos labeled cells in PV in waking than in sleep

in rats. Ren et al. (2018) similarly reported enhanced levels

of c-fos expression in PV during waking in mice, and further

demonstrated in behaving mice that PV cells fire at much greater

rates in waking (7–10Hz) than in NREM sleep (1–4Hz), with

characteristic increases or decreases preceding sleep-wake or

wake-sleep transitions, respectively. They further showed, using

a combination of techniques, that chemogenetic suppression or

lesions of PV produced significant reductions in wakefulness

during the dark (active) phase of mice, while optogenetic PV

stimulation during the light phase produced rapid transitions

fromNREMor REM sleep to wakefulness. The PVwas described

as integral part of an (excitatory) circuit for wakefulness—

with PV driven by ORX input from the hypothalamus and,

in turn, exerting excitatory actions on the ACC in waking.

Finally, noting that the PV has been linked to various behaviors
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including feeding, drug addiction and fear conditioning, Ren

et al. (2018) remarked that each of these behaviors “require

elevated wakefulness”.

In accord with the foregoing, Matyas et al. (2018)

described the involvement of calretinin-containing (CR) cells

of the dorsomedial thalamus (DMT), mainly PV, in arousal.

In a multipart report, they demonstrated that DMT-CR+

cells discharge at elevated rates immediately before the

transition from sleep to wakefulness, and that optogenetic

DMT stimulation produced rapid awakenings from NREM

or REM sleep. Interestingly, they further showed that short

duration (1 s) DMT stimulation during sleep mimicked the

natural-occurring micro-arousals of that state, whereas longer

duration stimulation (10 s) produced extended periods of

wakefulness, accompanied by active locomotion. Finally, they

demonstrated that DMT-CR neurons distribute, via collaterals,

to several forebrains sites, and that these branching DMT

cells simultaneously activate various forebrain regions – an

effect which is “optimal to elicit a generalized brain wide

effect like arousal.” They concluded that DMT-elicited arousal

“is a necessary component of the active execution of any

given behavior” (Matyas et al., 2018). Following up on this

view, Otis et al. (2018) speculated that PV’s involvement in

feeding may be attributed to a heightened state of arousal

rather feeding per se, stating that the PV circuitry “may

contribute to reward processing by inducing a state of arousal

or wakefulness rather than specifically driving reward seeking

or consumption”. In this regard, Yamanaka et al. (2003)

proposed that orexin cells register metabolic needs and under

conditions of deprivation (e.g., fasting) ORX cells drive adaptive

responses to satisfy those needs—or fasting induces arousal

which triggers food seeking behavior. Supporting this, they

showed that ORX activity was suppressed by signals for

satiety and activated by those for hunger, and mutant mice,

with ablated ORX cells, failed to show typical increases in

arousal/wakefulness and locomotor activity to fasting. Coupling

CR activity (or calretinin+ PV neurons) with hunger-induced

arousal, Hua et al. (2018) showed that 24 h of fasting or

injections of ghrelin, a hormone signaling hunger, profoundly

elevated c-fos levels in PV neurons, mainly in CR+ cells.

They further showed that optogenetic stimulation of CR+

PV cells projecting to BST in CR-Cre mice significantly

increased wakefulness. Together this demonstrates a significant

excitatory role for CR+ PV neurons in signaling hunger as well

as arousal.

Gao et al. (2020) recently identified two genetically and

anatomically distinct subtypes of PV cells. They showed that

cells expressing the dopamine D2 receptor (Type I cells) were

mainly concentrated in the posterior PV, whereas cells lacking

this receptor (Type II cells) were most numerous in the anterior

PV. They further importantly showed: (1) that Type I cells

are reciprocally connected with PL and Type II cells with IL

of the mPFC, and (2) that stimulating Type II cells (non-DA)

decreases arousal – suggesting that suppressing them may

promote arousal.

Finally, Martin-Fardon and colleagues (Matzeu et al., 2016)

speculated that ORX effects on PV in the reinstatement of

cocaine-seeking behavior could involve to ORX’s actions on

arousal. They noted that ORX actions on PV induce “cortical

activation that is linked to general arousal, which could explain

the reinstatement of cocaine-seeking.” In effect, appropriate

levels of arousal may be a necessary backdrop for feeding and

drug seeking behavior.

Comparisons of anatomical and
functional properties of the dorsal
(PV) and ventral (RE) midline
thalamus

Whereas, the midline (and ILt) nuclei of the thalamus

were initially thought to project widely throughout the cortex

and exert rather undifferentiated effects on behavior, it has

recently been shown that each of the midline/ILt nuclei exhibit

a unique pattern of projections and participate in distinct

functions. In this regard, the differences between RE and PV

projections and functions are striking. While RE and PV share

common inputs, projections to RE are more widespread and

diverse, especially from the brainstem and hypothalamus. With

respect to output, there are major differences in RE and PV

projections. Specifically, RE almost solely targets limbic cortical

structures, such as the orbitomedial, insular, retrosplenial, and

parahippocampal cortices and theHF, andminimally subcortical

sites, mainly projecting to the rostral ACC. By contrast, PV

predominantly distributes to limbic subcortical sites, including

the septum, BST, olfactory tubercle, ACC, amygdala, and

hypothalamus—with cortical projections essentially limited to

the ventral mPFC (IL and PL) and ventral subiculum.

The functional properties of RE and PV parallel their

respective projections to limbic cortical and subcortical sites;

that is, RE is primarily involved in cognitive functions and

PV in motivated behaviors. As reviewed, RE has been shown

to serve a critical role in various cognitive functions to

include working memory/SWM, executive functions (attention,

behavioral flexibility, reversal learning, decision making) and

contexual fear memory. The role of RE in cognitive functions

appears largely dependent on RE’s position as a key interface

between the HF and the mPFC (and ORB)—in the two-

way exchange of information between these structures. As

described, RE-mediated disruptions of communication between

the hippocampus and the mPFC or ORB produces deficits in

SWM, executive functions, and contextual fear memory.

By contrast, PV has been shown to serve a crucial role

in motivated behaviors. We focused on PV’s involvement in

appetitive functions: feeding, drug addiction and arousal. The
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PV has been shown to be an integral part of hypothalamic-

thalamo-ventral striatal circuit subserving appetitive behaviors.

With respect to feeding, both the activation and suppression of

PV induces feeding, putatively through discrete actions on PVp

and PVa, respectively, controlling different aspects of feeding.

With respect to drug addiction and arousal, ORX input from

the hypothalamus to PV has been shown to exert a potent

influence on PV in these behaviors. Various manipulations that

alter ORX actions on the PV suppress drug seeking behavior and

reinstatement, and dampen arousal responses in PV.

While the dorsal (PV) and ventral (RE) midline thalamus

largely serve separate roles in cognitive and motivational

behaviors, PV and RE also commonly participate in certain

functions, notably, in affect/fear and arousal. For instance,

RE is recruited in unlearned fear and anxiety, in addition to

conditioned learned fear, whereas PV, as reviewed, participates

in various appetitive/aversive behaviors but also has recently

been linked to innate and learned fears, as well as anxiety (Li

and Kirouac, 2008; Li et al., 2010; Kirouac, 2015, 2021; Penzo

et al., 2015; Do Monte et al., 2016; Barson et al., 2020; Penzo

and Gao, 2021). Regarding arousal, both PV and RE receive

afferents from the brainstem involved in arousal and sleep-

wake control. While brainstem inputs to PV complement ORX

projections to PV in arousal, convergent inputs to RE from the

brainstem, hypothalamus and limbic forebrain underscore RE’s

involvement in vigilance, attention and sleep/wake states (Viena

et al., 2021).

Rostral intralaminar nuclei (central
medial, paracentral, central lateral)

The intralaminar nuclei (ILt) of thalamus encompass a

collection of nuclei located in the medial and dorsal part of

the thalamic complex. The intralaminar thalamic nuclei are

located lateral to the mediodorsal nucleus and “embedded”

within the internal medullary lamina. As previously indicated,

the intralaminar nuclei are divided into a rostral and caudal

division, with the rostral group consisting of the central medial

(CM), paracentral (PC), and central lateral (CL) nuclei. We

discuss the circuitry and function of the rostral intralaminar

nuclei, with an emphasis on CM, as its connections more closely

parallel those of the midline thalamic nuclei than do other

ILt nuclei.

Rostral intralaminar nuclei: Circuitry

ILt input

The main sources of afferents to the rostral ILt arise from

structures/regions of the brainstem and cortex. The following

brainstem nuclei project to the rostral ILt: dorsal and median

raphe nuclei (Vertes, 1991; Hermann et al., 1996; Morin and

Meyer-Bernstein, 1999; Vertes et al., 1999, 2010; Krout et al.,

2002; Muzerelle et al., 2016; Urban et al., 2016), locus coeruleus

(Jones and Yang, 1985; Krout et al., 2002), pedunculopontine

(PPT) and laterodorsal tegmental (LDT) nuclei (Hallanger et al.,

1987; Hallanger and Wainer, 1988; Bolton et al., 1993), the

ventral tegmental area (Beckstead et al., 1979; Krout et al., 2002),

parabrachial complex (Bester et al., 1999; Krout and Loewy,

2000a; Bourgeais et al., 2001; Iwai et al., 2015; Deng et al., 2020),

periaqueductal gray (Cameron et al., 1995; Krout and Loewy,

2000b; Kincheski et al., 2012; Sun et al., 2020), superior colliculus

(Yamasaki et al., 1986; Krout et al., 2001), nucleus incertus (Goto

et al., 2001; Olucha-Bordonau et al., 2003), the dorsal horn of

the spinal cord (Li et al., 2021a) and dense projections from

the mesencephalic, pontine, and medullary reticular formation

(Glenn and Steriade, 1982; Vertes et al., 1986; Vertes and

Martin, 1988; Villanueva et al., 1998; Krout et al., 2002). The

rostral ILt nuclei also receive significant, but more limited, input

from diencephalic structures including the reticular nucleus of

thalamus (Velayos et al., 1989; Kolmac and Mitrofanis, 1997),

the zona incerta (Power et al., 1999; Power and Mitrofanis,

2001), the substantia nigra pars reticulata (McElvain et al., 2021),

and the lateral and supramammillary nuclei of the hypothalamus

(Vertes, 1992; Peyron et al., 1998).

Regarding cortical afferents, the PFC is a prominent source

of projections to the rostral intralaminar nuclei, with differences

in afferents to CM, CL, and PC (Reep et al., 1987; Sesack

et al., 1989; Reep and Corwin, 1999; Vertes, 2002, 2004; Jasmin

et al., 2004; Hoover and Vertes, 2011; Prasad et al., 2020). For

instance, the mPFC (IL, PL and AC) distributes moderately

to CM but minimally PC and CL (Figures 2A–C), whereas

the dorsally located AGm prominently targets PC and CL but

avoids CM (Vertes, 2002, 2004). By comparison, the orbital

and insular cortices distribute moderately to the rostral ILt,

with heaviest projections from the medial orbital cortex (MO)

to CM (Figure 2D) (Shi and Cassell, 1998; Jasmin et al., 2004;

Hoover and Vertes, 2011). With respect to sensorimotor cortical

afferents to ILt, Prasad et al. (2020) recently showed for mice

that the motor cortex (M1) distributes to the entire intralaminar

complex, whereas somatosensory (SI) and visual (V1) cortices

essentially only project to CL.

ILt output

The principal targets of the intralaminar nuclei are the

cortex and the striatum. In general, CL and PC mainly

innervate sensorimotor regions of the cortex and the dorsal

striatum, whereas CM distributes over a much wider region

of the forebrain to both limbic and non-limbic sites (Berendse

and Groenewegen, 1990, 1991; Conde et al., 1990, 1995; Su

and Bentivoglio, 1990; Hicks and Huerta, 1991; Turner and

Herkenham, 1991; Brog et al., 1993; Reep and Corwin, 1999;

Erro et al., 2002; Van der Werf et al., 2002; Jasmin et al., 2004;
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Wang and Shyu, 2004; Hoover and Vertes, 2007; Vertes et al.,

2012).

With some overlap, there is medial to lateral gradient in

PC and CL projections to the dorsal PFC such that PC mainly

targets the anterior cingulate (AC) cortex and CL the adjacent

secondary motor cortex (AGm). More specifically, PC primarily

distributes to the dorsal and ventral AC, and secondarily to AGm

and caudally to the retrosplenial (RS) cortex—with minimal

projections to other cortical regions. CL mainly targets AGm,

with additional projections to the primary motor cortex (AGl),

primary and secondary somatosensory cortices, the retrosplenial

cortex, and the occipital cortex (Berendse and Groenewegen,

1991; Conde et al., 1995; Reep and Corwin, 1999; Wang and

Shyu, 2004; Hoover and Vertes, 2007; Ahrlund-Richter et al.,

2019). However, slightly at odds with previous reports, Xue et al.

(2022), using viral tracing techniques inmice, identified stronger

inputs to AC from CL than from PC or CM.

Similar to the output to the cortex, intralaminar fibers

project to separate but overlapping regions of the dorsal

striatum (caudate-putamen, C-P). PC and CL distribute to the

dorsomedial and dorsolateral striatum, respectively, and hence

as a pair, encompass the entire dorsal half of the striatum. The

PC and CL innervate medium spiny neurons (MSNs) of the

dorsal striatum (Castle et al., 2005; Doig et al., 2010; Ellender

et al., 2013) as well as cholinergic and GABAergic interneurons

(Smith et al., 2004; Ding et al., 2010; Arias-Garcia et al.,

2017; Klug et al., 2018). Thalamocortical and thalamostriatal

connections are also highly topographically organized such

that the projections of individual intralaminar nuclei reach

specific regions of the cortex and the striatum which are also

interconnected via corticostriatal projections (Groenewegen

et al., 1999; Groenewegen and Witter, 2004). For instance, CL

selectively targets the medial agranular cortex (AGm) and the

dorsolateral quadrant of C-P, and AGm, in turn, distributes

dorsolaterally to the C-P (Berendse and Groenewegen, 1990,

1991; Wu et al., 2009a). As a result, CL is positioned to directly

affect AGm as well as its target zone in the striatum. These

highly organized cortico-striatal-thalamic networks show a high

degree of convergence. For instance, Deschênes et al. (1996)

traced single intralaminar fibers and showed that ILt cells send

collateral projections to the striatum and cortex, while Huerta-

Ocampo et al. (2014) demonstrated that both cortical and

thalamic axons converge onto medium spiny striatal neurons.

Regarding the latter, Huerta-Ocampo et al. (2014) proposed

that “the ensemble of MSNs that fire during a basal ganglia-

associated behavior is a consequence of activity in corticostriatal

neurons carrying motor and cognitive information and activity

in thalamostriatal afferents carrying information on saliency

and wakefulness”.

Finally, though not as pronounced as the dorsal striatum, the

ventral striatum receives input from the ILt, which preferentially

targets the lateral core of ACC, with most pronounced

projections arising from PC (Berendse and Groenewegen, 1990,

1991; Brog et al., 1993; Erro et al., 2002; Li et al., 2018). It appears

that the intralaminar thalamus can also indirectly influence the

ventral striatum via the mPFC. Specifically, Cruz et al. (2021)

recently mapped prefrontal (PFC) projections to the ACC and

identified significant numbers of ILt cells that project to PL

neurons distributing to ACC.

Similar to the other intralaminar nuclei, the main output of

CM is to the cortex and dorsal and ventral striatum, but.CM also

targets a diverse set of limbic forebrain structures, prominently

the amygdala (Van der Werf et al., 2002; Hoover and Vertes,

2007; Vertes et al., 2012; Amir et al., 2019). Vertes et al.

(2012) examined rostral and caudal CM projections and noted

marked differences in their patterns of distribution. The rostral

CM projects to the following structures: the orbitofrontal PFC,

including AGm, AC, prelimbic, dorsolateral orbital, and dorsal

agranular insular cortices; the entire dorsal striatum (Figure 6C),

the shell and core of ACC and the basolateral nucleus (BLA) of

AMY (Figures 7A,C).

By comparison, the caudal CM mainly targets the lateral

and dorsolateral orbital cortices, the dorsal and ventral

agranular insular cortices, the gustatory/visceral cortex,

primary somatosensory and motor cortices, and the perirhinal

cortex. Further, the caudal CM primarily distributes to

lateral/ventrolateral regions of C-P (Figure 6D) and lacks

projections to ACC. Finally, unlike the rostral CM which mainly

targets BLA, the caudal CM distributes more widely throughout

the AMY to anterior, lateral, central, medial, cortical, and

basal divisions (Figures 7D,F) (Vertes et al., 2012). Figure 8

summarizes the highly topographically organized corticostriatal

circuitry of the rostral ILt with the mPFC (PL, AC), the primary

and secondary motor cortices (AGl, AGm), the orbital cortex

and medial and lateral of the dorsal striatum.

In summary, while CM, CL, and PC of the rostral ILt project

to distinct subregions of the cortex, striatum and amygdala,

together they distribute widely over these regions, to virtually

blanket the cortical mantle, entire C-P, the ventral striatum and

the amygdala.

ILt: Functional properties

ILt functional properties—Overview

Owing to the complex configuration of ILt nuclei (Figure 1),

their intricate relationship to each other (and to neighboring

thalamic nuclei) and their shared circuitry, it has been difficult

to separately investigate the functions of each of the ILt

nuclei. Moreover, most analyses of these nuclei have described

overlapping functions. As such, we discuss the rostral ILt

collectively, noting differences when available. The ILt, through

extensive projections to the striatum and cortex participates

in a range of behaviors including sensorimotor coordination,

pain modulation, arousal and cognition. Presently, we will
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FIGURE 7

(A–C) Low-magnification bright-field micrographs of transverse sections through the forebrain depicting the site of a retrograde tracer

(FluoroGold) injection in the basolateral nucleus (BLA) of the amygdala of the rat (A) and patterns of retrogradely labeled cells in the anterior

paraventricular (PV) and paratenial (PT) nuclei of dorsal midline thalamus (B) and the posterior PV and central medial (CM) nuclei of the rostral

intralaminar thalamus (C) produced by this injection. Note the significant numbers of retrogradely labeled neurons in the posterior PV and CM

(C), but fewer in the anterior PV, PT and nucleus reuniens (RE) (B,C) with this injection. (D–F) Low-magnification bright-field micrographs of

transverse sections through the forebrain depicting the site of a retrograde tracer injection in the central nucleus (CEA) of the amygdala (D) and

patterns of retrogradely labeled cells in the anterior PV, PT and RE nuclei of thalamus (E) and the posterior PV, CM and rhomboid (RH) nuclei of

the thalamus (F) produced by this injection. Note moderate numbers of labeled cells in RE (E), PT (E), CM (F) and the anterior PV (E), but much

denser clusters of cells in the posterior PV (F) and RH (F). IMD, interomediodorsal nucleus of thalamus, mt, mammillothalamic tract; PVa,

anterior paraventricular nucleus of thalamus; PVp posterior paraventricular nucleus of thalamus; st, stria terminalis. Scale bar for (A) = 750µm;

for (B) = 300µm; for (C) =500µm; for (D) =700µm; for (E) = 400µm; for (F) = 450µm. Modified from Vertes and Hoover (2008).
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address the role of ILt in limbic associated functions:

arousal/wakefulness and cognition.

ILt functional properties—Arousal and
consciousness

As described, ILt nuclei receive a vast and diverse array of

input from the brainstem, particularly from the brainstem RF,

and, in turn, are the source of projections to the prefrontal,

sensory, and motor cortices. This initially led to the view,

subsequently supported, that ILt bridges the effects of the

brainstem on the cortex – or is an integral part of the ascending

reticular activating system (ARAS), responsible for states of

arousal/consciousness (Moruzzi andMagoun, 1949; Jones, 2003;

Yeo et al., 2013; Gao et al., 2019). In an early study, Glenn

and Steriade (1982) reported that CL neurons in cats, which

were activated by midbrain RF stimulation and antidromically

driven from the cortex, fired at high tonic rates of activity in

waking (W) and REM sleep and at low rates in slow wave sleep

(SWS). Accordingly, they concluded that CL cells serve “a role in

the tonic activation processes” producing cortical arousal. More

recently, Gent et al. (2018) similarly found that CM cells, like

those of CL, discharged at significantly higher rates in waking

and REM sleep than in SWS—with the highest rates in REM

sleep. In addition, optogenetic stimulation of CM, but not that of

the ventrobasal complex (VB), aroused sleepingmice, producing

a rapid transition to wakefulness (Gent et al., 2018).

Schiff et al. in a series of studies directly linked the central

thalamus (mainly CL) to processes of arousal and consciousness

(for review, Shah and Schiff, 2010). For instance, Shirvalkar

et al. (2006) reported that CL stimulation in rats produced

widespread cortical activation and enhanced performance on an

object recognition task. Liu et al. (2015) subsequently showed

that high frequency stimulation of CL activated the cortex

and aroused sleeping rats, whereas low frequency stimulation

suppressed cortical activity and promoted sleep. In humans,

Schiff et al. (2007) described the remarkable findings that

deep brain stimulation (DBS) of the central thalamus restored

consciousness and cognitive processing of a patient in a

minimally conscious state (MCS). Since this hallmark paper,

several subsequent reports have confirmed that DBS of the

intralaminar complex improves processes of consciousness and

awareness in MCS and vegetative-state patients (Schiff et al.,

2007, 2009; Chudy et al., 2018, 2020). The arousal and behavioral

enhancement of this clinical constellation appears to be linked to

CL, and not to other regions of ILt, as these effects were recently

mimicked by CL stimulation in healthy non-human primates

(Janson et al., 2021).

This restorative effect and cortical enhancement of

ILt/central thalamus has also been highlighted using rodent

models. Lin et al. (2016) demonstrated that CL stimulation in

rats increased c-fos expression across motor, anterior cingulate

and parietal cortices, the dorsal and ventral striatum, and

FIGURE 8

Schematic representation depicting the

interconnections/circuitry between the rostral intralaminar

thalamus, the dorsal striatum, the medial prefrontal, orbital and

frontal motor cortices. The paracentral (PC) and central lateral

(CL) nuclei are reciprocally linked to separate but overlapping

regions of the frontal cortex and dorsal striatum. CL is

reciprocally linked to the secondary motor cortex (AGm) and the

lateral aspect of dorsal striatum (CPl) and AGm and CPl in turn

reciprocally connected. By comparison, PC is reciprocally linked

to the anterior cingulate cortex (AC) and medial aspect of the

dorsal striatum (CPm), and AC and CPm are, in turn, reciprocally

connected. By contrast with CL and PC, the central medial

nucleus (CM) is much more widely interconnected with

striatal-cortical circuitry as CM is reciprocally connected with

entire frontal/prefrontal cortex (PL, AC, AGm, AGl), the medial

and lateral dorsal striatum and add additionally the orbital cortex

(ORB). Accordingly, CM may represent a conduit linking striatal,

limbic and motor systems of the forebrain. PL, prelimbic cortex,

AGl, primary motor cortex.

the hippocampus. Additionally, CL stimulation synchronized

theta/alpha oscillations between the thalamus and striatum

(thus strengthening their connections), upregulated dopamine

D2 and cholinergic receptors in C-P and improved performance

on an instrumental conditioning task.

Finally, the rostral ILt, centered in CM, appears to be

important site for the actions of general anesthetics (GAs).

Baker et al. (2014) described marked reductions in the discharge

frequency of CM neurons in rats in the transition from

waking to non-REM sleep (NREM), and also following the loss

of consciousness to the administration of general anesthetics

(GAs). Additionally, noradrenergic input from the LC to CM

appears to be a major excitatory drive to CM in arousal, as

its suppression intensifies the loss of consciousness to GAs

(Fu et al., 2017). In this regard, Saalman and colleagues

(Redinbaugh et al., 2020) recently demonstrated CL neurons

in monkeys discharged at very high rates of activity in waking

(40–50Hz) and at significantly reduced rates during NREM
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FIGURE 9

Schematic representation of the patterns and density of outputs (left) and inputs (right) of nucleus reuniens (RE) (blue) and the paraventricular

(PV) nucleus (green) of the midline thalamus and the central medial (CM) (red) and central lateral (CL) (orange) nuclei of the rostral intralaminar

thalamus. Note, while there are substantial di�erences in inputs/outputs from the cortex, striatum, and amygdala to the midline and rostral

intralaminar nuclei, all nuclei receive strong (and overlapping) projections from brainstem “arousal-related” cell groups. Color coded density

chart for input and outputs to each site at the bottom right. AC, anterior cingulate cortex; ACCc, nucleus accumbens core division; ACCs,

nucleus accumbens shell division; AGm, medial agranular cortex; AHy, anterior hypothalamus; AI, agranular insular cortex; AId, dorsal insular

cortex; AIp, posterior insular cortex; AIv, ventral insular cortex; AMY, amygdala; ARC, arcuate nucleus of hypothalamus; BF, basal forebrain; BLA,

basolateral amygdala; BST, bed nucleus of the stria terminalis; CA, cornu ammonis; CEA, central nucleus of amygdala; CLA, claustrum; C-P,

dorsal striatum; DG, dentate gyrus; DLO, dorsolateral orbital cortex; DMH, dorsomedial hypothalamus; DR, dorsal raphe nucleus; ENT,

entorhinal cortex; GI, granular insular cortex; GP, globus pallidus; HF, hippocampus; IL, infralimbic cortex; IGL, intergeniculate leaflet of

thalamus; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; LGN, lateral geniculate nucleus of thalamus; LH, lateral habenula; LHy,

(Continued)
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FIGURE 9 (Continued)

lateral hypothalamus; LS, lateral septum; LPO, lateral preoptic area; MEA, medial amygdala; MC, motor cortex; MO, medial orbital cortex; MPO,

medial preoptic area; MM, mammillary nuclei of hypothalamus; MR, median raphe nucleus; MS, medial septum; NDB, nucleus of diagonal band;

PAG, periaqueductal gray; PB, parabrachial nucleus; PC, parietal cortex; PERI, perirhinal cortex; PH, posterior hypothalamus; PIR, piriform cortex,

PL, prelimbic cortex; PPT, pedunculopontine tegmental nucleus; PSTh, parasubthalamic nucleus; PVH, paraventricular hypothalamic nucleus;

RSP, retrosplenial cortex; RF, pontomesencephalic reticular formation; RT, reticular nucleus of thalamus; SC, somatosensory cortex; Sch,

suprachiasmatic nucleus; SNr, substantia nigra pars reticulata; SUB, subiculum; SUM, supramammillary nucleus of hypothalamus; TMN,

tuberomammillary nucleus; VC, visual cortex; VLO, ventrolateral orbital cortex; VMH, ventromedial nucleus of hypothalamus; VO, ventral orbital

cortex; VTA, ventral tegmental area; ZI, zona incerta.

FIGURE 10

Schematic diagram illustrating the shared and unique functional contributions of the paraventricular nucleus (PV) of the dorsal midline thalamus,

the nucleus reuniens (RE) of the ventral midline thalamus and the central medial, central lateral and paracentral nuclei of the rostral intralaminar

thalamus (ILt). Both the midline and intralaminar nuclei participate in distinct roles in arousal, emotion, motivation and cognition. For instance,

both PV and ILt have been linked to motivated behaviors, however PV plays a key role in feeding, appetitive and aversive conditioning and

addiction while the ILt participates in instrumental conditioning and pain perception. By comparison, RE is involved in circuitry influencing innate

and learned fear/anxiety. Similarly, the midline and intralaminar thalamus collectively drives arousal, however the ILt maintains consciousness

while the midline nuclei receive hypothalamic and brainstem input which modulate states of arousal for e�ective responding—PV for circadian

linked behaviors including feeding and RE for attentional/vigilant responding. Lastly, RE and the ILt contribute largely to cognition and both

share a role in flexible goal directed behavior and working memory (WM), but each group inimitably subserve dissociable processes. RE is linked

to attention in addition to the spatial and temporal components of WM/long-term memory while the ILt facilitates the sensorimotor

components of WM.

sleep—as well as during general anesthesia. They further showed

that CL stimulation in anesthetized monkeys rapidly restored

arousal and consciousness. Tasserie et al. (2022) similarly

found that DBS of the central, but not ventrolateral, thalamus

in anesthetized non-human primates produced significant

increases in cortical arousal as measured by EEG and fMRI—

while also inducing “signatures of consciousness.”

Blumenfeld and colleagues (Feng et al., 2017; Kundishora

et al., 2017; Xu et al., 2020) recently examined the role of

CL in seizure activity. Gummadavelli et al. (2015) initially

demonstrated that CL stimulation abolished slow wave activity

during postictal periods in rats, together with the resumption

of normal exploratory/motor behaviors. They subsequently

reported that combined CL and the pontine RF stimulation

in rats during focal seizures restored cortical arousal and

behavioral responsiveness during both the ictal and postictal

stages (Kundishora et al., 2017), and further that single CL

stimulation activated the cortex and improved performance on

an active avoidance task, postictally (Xu et al., 2020). Lastly,

Martin et al. (2021) examined changes in EEG activity in
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epileptic patients following DBS stimulation of the intralaminar

thalamus and noted progressive increases in gamma activity

which corresponded to reduced alpha power, validating ILt

enhancement of cortical arousal.

In summary, the foregoing indicates CL and CM of the

rostral ILt are vital components of an extended circuitry which

serves to maintain arousal and consciousness. Importantly, this

neural network involving ILt, C-P and the cortex, by sustaining

consciousness, may heighten arousal, to thereby, as Lin et al.

(2016) stated “synchronize activity in neural networks that

underlie cognition.”

ILt functional properties—Cognition

While the anterior (ATN) and midline nuclei of thalamus

serve well-recognized roles in cognitive functions, the ILt nuclei

also participate in higher order cognitive processes (for review,

see Mair et al., 2011, 2021; Cover and Mathur, 2021). However,

unlike the anterior and midline nuclei, which are strongly

linked to the hippocampus and the PFC, ILt connections

with corticostriatal circuits suggests an influence of cognition,

mimicking that of the striatal circuitry. In this regard, studies

which have compared the effects of ILt, ATN or midline

thalamus on behavior have described distinct differences in

cognitive processing among these nuclei. For instance, Mitchell

and Dalrymple-Alford (2005, 2006) demonstrated that ATN

lesions disrupted performance on a spatial radial arm maze

(RAM) task, whereas ILt lesions produced impairments on

a non-hippocampal-dependent (egocentric) working memory

task. Consistent with this, Bailey and Mair (2005) demonstrated

that ILt lesions did not alter performance on a delayed

non-matching to sample RAM task, sensitive to ATN and

hippocampal damage (Mair et al., 2003), but produced delay-

independent impairments on an operant lever-pressing task,

known to involve the sensorimotor cortex and striatum (Burk

and Mair, 2001).

As discussed, Hembrook and Mair (2011) compared the

effects of ILt or ventral midline thalamic (RE/RH) lesions

on delayed non-match to sample RAM task, sensitive to

hippocampal and PFC damage, and on a visuospatial reaction

time (VSRT) task, responsive to striatal and dorsal frontal

cortical alterations (Mair et al., 2002; Bailey and Mair, 2004).

They reported a double dissociation: RE/RH lesions disrupted

performance on the RAM but on not the VSRT task, while

ILt lesions altered behavior on the VSRT task but not on the

RAM task. The foregoing supports a direct role for the ILt

in sensorimotor and instrumental WM tasks which recruit

corticostriatal loops, but a lack of involvement in SWM and

reference memory tasks associated with the hippocampus.

Kato et al. (2018) examined the effects of CL inputs to

the dorsal striatum on sensory discrimination learning and

behavioral flexibility in mice. Using immunotoxins to selectively

destroy CL cells projecting to C-P, they showed that the loss

of CL cells produced impairments in a two-choice visual

discrimination reaction time task but did not alter performance

on a spatial working memory task. They further showed that

the chemogenetic inhibition of these CL cells disrupted the

reversal learning and set shifting phases of a conditional visual

discrimination task, and concluded that “CL thalamostriatal

neurons play a key role in response selection and reaction

time modulation during the performance phase of visual

discrimination” (Kato et al., 2018).

ILt neurons synapse on cholinergic (ACh) interneurons of

the C-P (Ding et al., 2010) to release ACh to the striatum

(Consolo et al., 1996; Brown et al., 2010), and ACh cells, in

turn, connect with and activate dopaminergic (DA) neurons

to enhance the release of dopamine in the caudate-putamen

(Ding et al., 2010; Threlfell et al., 2012). As such, the ILt may

influence motor learning through the ACh-mediated efflux of

DA to the striatum. In this regard, Cover et al. (2019) recently

demonstrated that rostral ILt stimulation activated cholinergic

(ACh) striatal neurons to release dopamine to the C-P, and

further, using an optical intracranial self-stimulation paradigm,

that ILt stimulation was rewarding as mice vigorously self-

stimulated for it—an effect that was attenuated by blocking

dopamine 1 receptors.

Finally, Wolff et al. (2022) recently examined the role of

intralaminar-striatal projections using a task which requires

rodents to make a complex motor response, necessitating

temporal precision, in an instrumental conditioning task. Using

a combination of lesion and pharmacogenetic manipulations,

they found that the dorsolateral striatum (DLS), via projections

to the motor cortex, was critical in the acquisition of this motor

response. Interestingly, however, inhibition of the DLS had no

effect on performance for animals already proficient in the task,

but notably suppression of the intralaminar thalamic-striatal

pathway significantly impaired the learned motor sequences—

even in the well trained animals. According to the authors, this

indicated that “DLS projecting thalamic neurons are essential

not only for executing the learned skills but also for learning

them, consistent with an important role for thalamostriatal

synapses in the formation of the underlying memory” (Wolff

et al., 2022). In summary, these studies highlight a key role

for the rostral ILt, through connections with the striatum

and cortex, across a host of sensorimotor, instrumental and

cognitive functions.

Comparisons of anatomical and
functional properties of the midline
thalamus (PV, RE) and the rostral
intralaminar thalamus (CM, CL)

As discussed, the anatomical and functional properties of the

dorsal (PV) and ventral (RE) midline thalamus are strikingly
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different. In like manner, the anatomical and functional

characteristics of ILt significantly differ from those of RE/PV.

However, the functions of these thalamic nuclei complement

one another, signifying an integrated role for the midline/ILt

thalamus in limbic-associated functions. Figure 9 schematically

compares the inputs and outputs of RE, PV, CM and CL,

comparing densities and sites of projection across nuclei.

Whereas, the rostral ILt share some inputs with RE/PV, the

outputs from these two thalamic regions (RE/PV and ILt)

largely diverge.

The midline and ILt nuclei receive a diverse array of input

from the brainstem including aminergic and ACh nuclei, but the

rostral ILt, distinct from PV/RE, receives prominent projections

from the pontomesencephalic RF. In further contrast with

RE/PV, the ILt receives only modest projections from the

hypothalamus. Additionally, there are marked difference in

cortical afferents to the midline and ILt thalamus. The

sensorimotor cortex distributes densely to CL, while mainly

avoiding midline structures. By comparison, the mPFC strongly

targets the midline and intralaminar thalamus, with projections

differing from the dorsal and ventral mPFC. For instance,

the ventral mPFC (PL, IL) projects strongly to RE and PV,

moderately to CM, and essentially avoids CL (Figures 2A–C). By

contrast, the anterior cingulate cortex (AC) distributes heavily to

CM, modestly to RE and CL, and sparsely to PV. Interestingly,

ORB projections to the ILt show a medio-lateral gradient such

that medial (MO/VO) divisions of ORB project more heavily

to medial structures (CM), whereas lateral (VLO) divisions

distribute more densely to lateral sites (CL).

With respect to output, t1he main targets of CL/PC

are sensorimotor cortices and the dorsal striatum. CM also

distributes heavily to these sites, but additionally to parts of the

limbic cortex, to the ACC and to the amygdala, mainly to BLA.

Unlike, however, PV and RE which are reciprocally linked with

the HF/subiculum, there are no CM connections with the HF. In

addition, in contrast to the absence of PV/RE projections to C-

P, CM distributes massively throughout the dorsal striatum and

modestly to ACC. Interestingly, CM lies along the midline, and

as such shares projections with the dorsal and ventral midline

thalamus; that is, limbic subcortical projections with PV and

limbic cortical ones with RE. Accordingly, CM appears to serves

as an anatomical and functional bridge to the dorsal and ventral

midline thalamus.

Figure 10 illustrates various common and independent

functions of the midline and intralaminar thalamic nuclei,

reflecting their unique anatomical characteristics. Regarding

functional properties, the ILt (or CL), has long been recognized

as critical intermediary between the brainstem RF and the

sensorimotor cortices in processes of arousal and consciousness.

Perhaps unlike PV/RE, which transfer excitatory inputs from

the brainstem/hypothalamus to the limbic forebrain tomodulate

states of arousal for effective responding (e.g., attention, feeding,

motivation), the ILt appears critically important for maintaining

consciousness, per se. Specifically, lesions/damage of the ILt,

results in a loss of consciousness, whereas ILt/CL stimulation

in rodents, monkeys or humans has been shown to restore

consciousness from sleep or general anesthesia, or following

thalamic damage.

Whereas, both RE and ILt subserve cognitive processes,

their roles in cognition differ, undoubtedly owing to their

differential projections: RE to limbic cortices and ILt/CL

mainly to sensorimotor cortices and the dorsal striatum.

Specifically, lesions/inactivation of the ILt produce impairments

on cognitive tasks that involve sensorimotor components

such as visuospatial, reaction time, instrumental, or sensory

discrimination tasks, but essentially unlike RE, do not alter

behavior on spatial working memory tasks.

Conclusion

The midline and intralaminar nuclei of the thalamus

have traditionally been characterized as a single or unified

system with common projections and functions. As reviewed

herein, there are not only marked anatomical and functional

differences between the dorsal and ventral midline thalamus

but also between the midline thalamus and the rostral

intralaminar complex of the thalamus. While each of the

midline and intralaminar nuclei perform distinct functions, they

collectively serve a critical role in several affective, cognitive

and executive behaviors—as major components of a limbic

brainstem/diencephalic-thalamic-cortical circuitry (Figure 10).
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