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Editorial on the Research Topic

Neurobehavioral Mechanisms of Reward: Theoretical and Technical Perspectives and their

Implications for Psychopathology

For more than 50 years, research on brain mechanisms of reward has largely focused on the
mesolimbic system and the release of dopamine in the nucleus accumbens when this system is
activated. Numerous preclinical animal studies have electrically stimulated fibers of the medial
forebrain bundle (MFB) at different localizations in combination with behavioral procedures
(operant and/or classical conditioning), resulting in the (indirect) activation of this system (Gallistel
et al., 1981; Milner, 1989; Wise and Rompré, 1989; Yeomans, 1990). This has also been achieved by
drug self-administration or a mixture of drug and electrical self-stimulation (Fowler, 1999; Negus
andMiller, 2014). These research lines have yielded a considerable body of knowledge with practical
implications in the field of addictive behaviors, including drug abuse, food craving, and behavioral
(or substance-free) addictions such as gambling, shopping, video gaming, and social networking,
etc. (Antons et al., 2020). The dysfunction of brain reward systems has been reported in all of these
cases as well as in individuals with neuropathological diseases such as depression or schizophrenia.

Since the 2000s, there has been a substantial increase in the study of the dissociation of
specific components of these reward circuits. Authors have identified specific subsystems involved
in motivation (seeking or wanting behaviors), hedonic-affective reactions (consummatory or
liking behaviors), and learning processes (incentive learning, reward-related decision making, goal
selection, etc.), some of which might be related to the activation of non-dopaminergic networks
(Berridge and Robinson, 1998; Ikemoto and Panksepp, 1999; Salamone and Correa, 2002; Panksepp
and Yovell, 2014; Morales and Margolis, 2017; Darcq and Kieffer, 2018). In fact, some researchers
observed hedonic reactions in animals in the absence of dopamine (Grill and Norgren, 1978;
Kirkpatrick and Fowler, 1989; Cannon and Palmiter, 2003), whereas individuals with high levels of
synaptic dopamine were found to run faster toward goals and need fewer trials to learn an incentive
runway task (Peciña et al., 2003). Hence, dopamine might be specifically related to motivation,
seeking behavior and decision-making, an issue that still remains controversial (Adamantidis et al.,
2011; Salamone et al., 2022).
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In brain electrical self-stimulation (or intracranial self-
stimulation), animals learn to press a lever connected to a cable,
a stimulator, and a chronically implanted electrode that delivers
electric pulses to activate specific brain regions. This behavioral
procedure has proven especially useful to investigate circuits
involved in motivational and decision-making components of
the brain reward system. In this regard, some researchers have
drawn on ideas from the psychophysical approach, investigating
the link between the physical qualities of a stimulus and the
inner psychological states of individuals in order to deepen our
understanding of the relationship between seeking (operant)
behaviors and the brain reward system (Fowler et al., 1986;
Shizgal, 1997). The “Shift-Curve paradigm” has been used
to explore how the amplitudes or frequencies of electrical
stimulation can modify the response rate, generating a graphical
representation of this sigmoidal function (Miliaressis et al., 1986;
Carlezon and Chartoff, 2007). Other studies have investigated
how drugs can produce a shift in the sigmoidal curve along
the axis (Gallistel and Karras, 1984; Negus and Miller, 2014).
This paradigm can lead to a “serial model” in which increases
in amplitude or frequency drive instrumental behavior toward
an asymptotic value (which means “the more, the better”)
(Miliaressis et al., 1986; Carlezon and Chartoff, 2007).

More sensitive models have recently been developed, such
as the “reward-mountain model”, which considers not only
amplitude or frequency variations but also the “opportunity
cost”. In the study by Pallikaras and Shizgal (this issue), the
latter is related to the subjective effort made by an individual
to press a lever for rewarding electrical stimulation when other
“leisure” activities are simultaneously possible. In this way, the
model includes a variable for the distribution of the time spent
by animals between lever press and alternative behaviors (e.g.,
grooming, exploring, or resting). In addition, the effect of drugs
(e.g., psychostimulants, DAT blockers, etc.) is considered an
independent variable that can modulate thresholds and cause
individuals to reevaluate the effort cost (Arvanitogiannis and
Shizgal, 2008; Hernandez et al., 2012; Trujillo-Pisanty et al.,
2013, 2020; Pallikaras et al., 2022). According to Pallikaras and
Shizgal, this procedure represents an evolution from a “series” to
a “convergent” model of causation, in which multiple factors may
have a role in seeking and decision-making behaviors and can
be represented in a tridimensional function called the “reward
mountain”. This model may best fit the complex/paradoxical
results obtained on the optogenetic activation of midbrain
dopamine neurons. Accordingly, some of the bulk of fibers
that form the MFB would be dopaminergic, but others would
be neurochemically heterogeneous ascendant and descendent
fibers that run in parallel and may have been underestimated by
researchers to date.

The experimental study contributed by Velazquez-Martínez
et al. (this issue) also utilizes electrical stimulation to study
motivational mechanisms of the reward system. They explore
functions relating the rate of lever-pressing for electrical
stimulation of the lateral hypothalamus (which relays fibers
from the MFB that sustain vigorous operant behaviors) to the
intensity (amplitude) or frequency of stimulation in the shift-
curve paradigm. They also consider the effort cost by introducing

three fixed values of high, moderate, or low effort. The second
part of their study uses rewarding electrical stimulation as a
discriminative stimulus, with the animals having access to two
levers for a reward program of high or low efficacy, respectively.
Administration of the dopamine antagonist pimozide was found
to interfere with the effort cost but to have no apparent effect
when electrical stimulation was employed as a discriminative
stimulus, in agreement with results obtained by other groups
(Salamone et al., 2018). These findings support the original
hypothesis that non-dopaminergic fibers passing through the
MFB may be involved in processing some other components
of reward.

Translational studies have attempted to determine, by the
intensive examination of laboratory models, the relevance of
functional and/or neurochemical changes in the neurobiological
subsystems involved in reward to the clinical treatment
of motivational and/or hedonic alterations in patients with
neuropathological disorders such as depression or schizophrenia.

Various therapeutic approaches have been adopted toward
patients with depression, including psychomotor stimulant-
basedmonotherapy, “behavioral activation” (a psychotherapeutic
tool that aims to engage patients in reward-seeking activities and
the avoidance of punishments), and deep-brain stimulation of
the MFB (Tindall et al., 2017; Coenen et al., 2021). Failures with
the monotherapy alongside successes achieved with stimulation
in cases of drug-resistant depression suggest the involvement of
both non-dopaminergic and dopaminergic fibers, as proposed
by the “convergence model”, which could be activated by deep
stimulation. However, novel techniques are required to reveal
their neurochemical substrates, allowing the development of
more targeted therapeutic strategies. At any rate, according to
Pallikaras et al. (2022), animal self-stimulation models remain
a valuable tool to improve our understanding of the underlying
neural and psychological mechanisms.

For their part, Abram et al. (this issue) point out that
different psychological factors can modulate the functioning
of reward circuits in individuals with schizophrenia, whose
balance between positive and negative emotions is less
favorable to the former, lowering their hedonic perception
(Strauss et al., 2017, 2020). However, they also appear
to show deficits in reward anticipation, related to both
prospection (capacity to imagine future experiences)
and episodic memory (recall of past experiences), while
motivation may also be affected. Certain personality features
(optimism vs. pessimism) alongside a propensity for negative
thoughts about themselves, others, and the future (part
of the plethora of negative symptoms of schizophrenia),
rumination (a positive symptom), and factors related to the
social setting (e.g., sensitivity to social reward) may play
an important role in the dysfunction of reward systems
observed in people with a diagnosis of schizophrenia
(amotivation, anhedonia, etc.). Further research is needed
to elucidate these aspects and to explore the effects on these
neurobiological systems of different clinical interventions,
including “cognitive reappraisal”, “mindfulness”, and
“savoring”. The results could facilitate the development of
novel therapeutic tools.
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Alterations in reward-related decision making are also
observed in relation to the substance use disorders and behavioral
addictions as shown in the study by Schluter and Hodgins on
gambling disorders (this issue), which include both impulsive
behaviors and the choice of risk. They describe a maintained
impulsivity in individuals whether or not they have a gambling
disorder, whereas the propensity for risk is only observed while
this is responsible for sustaining gambling behavior.

In summary, various basic and translational investigations,
including those gathered in this issue and many others, are
beginning to find common ground on the need to dissociate
specific components of the brain reward system and their
relationship with behavior. Although they mostly derive from
very different perspectives (pharmacological, behavioral, genetic,

epigenetic, computational. . . ), the results of these studies are
beginning to fit together like the pieces of a puzzle, revealing a
complex picture of the functioning of brain reward mechanisms.
It shows that the mesolimbic dopaminergic system continues to
play a key part (as a “primum inter pares”) but other systems
also have a role. This supports the design of better-targeted
treatments of the different neuropathological disorders in which
these systems are altered.
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