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Dysphagia is one of the most common manifestations of stroke, which

can affect as many as 50–81% of acute stroke patients. Despite the

development of diverse treatment approaches, the precise mechanisms

underlying therapeutic efficacy remain controversial. Earlier studies have

revealed that the onset of dysphagia is associated with neurological damage.

Neuroplasticity-based transcranial magnetic stimulation (TMS), a recently

introduced technique, is widely used in the treatment of post-stroke

dysphagia (PSD) by increasing changes in neurological pathways through

synaptogenesis, reorganization, network strengthening, and inhibition. The

main objective of this review is to discuss the effectiveness, mechanisms,

potential limitations, and prospects of TMS for clinical application in PSD

rehabilitation, with a view to provide a reference for future research and

clinical practice.

KEYWORDS
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Introduction

Dysphagia, defined as “difficulty swallowing,” is one of the most important clinical
manifestations of stroke and a common consequence of neurological damage caused by a
range of diseases (Fung et al., 2004). Studies have confirmed that 50–81% of acute stroke
patients may experience swallowing problems (Hamdy, 2010). In most cases, the post-
stroke dysphagia (PSD) will improve spontaneously. However, approximately 11–50%
of patients may have long-term disability (Kumar et al., 2010; Cohen et al., 2016).

Although dysphagia gradually resolves spontaneously in the early stages
of disease in most cases, severe and persistent forms of dysphagia remain
prevalent in about 13% of stroke patients (Mann et al., 1999). The presence
of dysphagia is linked to increased physical and psychological stress in
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patients, families, and caregivers, along with reduced quality
of life (Eslick and Talley, 2008). In addition, dysphagia may
cause various life-threatening complications, such as aspiration
pneumonia, asphyxia, dehydration, and malnutrition (Smithard
et al., 1996). In particular, aspiration pneumonia can trigger
various complications, the most acute being infection and
sepsis (Kalita et al., 2015). These complications increase the
risk of prolonged hospital stays, high medical expenses and
significant mortality, causing a major negative impact at
both the individual and society level. Therefore, rehabilitation
therapy of PSD remains a significant clinical issue that needs to
be urgently addressed.

Studies have demonstrated that central causes of dysphagia
in stroke patients include cortical or brain-stem damages, and
peripheral causes include damages to the nerves or muscles
involved in swallowing. The brain-stem lesions are more
commonly associated with dysphagia (Balcerak et al., 2022).
Notably, dysphagia is usually caused by infratentorial lesions,
while sensory afferent disturbances usually cause dysphagia in
supratentorial stroke. However, the exact mechanism of PSD is
not well understood.

The treatment options of PSD include behavioral therapy,
oral care, pharmacology, neurostimulation, and dietary
interventions. Various physical therapies and preventive
measures can avoid dysphagia-related complications. However,
there is a lack of medical or electrophysiological interventions to
facilitate recovery from dysphagia after acute or subacute stroke.

Existing treatments for PSD include postural training (Hägg
and Larsson, 2004), dietary modification (Hägg and Anniko,
2008; McCullough et al., 2012), swallowing movements (Hägg
and Anniko, 2008), compensation techniques (Lin et al., 2003),
drug therapy, oral motor stimulation (Kang et al., 2012), music
therapy (Kim, 2010), facial sensory stimulation, pharyngeal
electrical stimulation, neuromuscular electrical stimulation,
non-invasive brain stimulation, botulinum toxin injection, and
acupuncture therapy (Terré et al., 2013; Yang et al., 2015).
Nevertheless, these treatment strategies cannot change the
physiology of impaired swallowing biomechanics as well as
cannot promote the recovery of impaired swallowing neural
networks in stroke patients (Speyer et al., 2010).

According to a previous study, the pathogenic cascade of
dysphagia is as follows: after peripheral or central (corticobulbar
tract) impairment of the cranial nerves innervating the
swallowing muscles, tongue movement is limited, with soft
palate paralysis. Consequently, intraoral and pharyngeal
pressure cannot be fully increased, movement of food from
the oral cavity to the pharynx and esophagus is weak, and
transit time is significantly prolonged. The retention increases
hyperreflexia or spasm of sphincter and cricopharyngeal
muscle in the esophageal inlet of patients with supraglomerular
damage (pseudobulbar palsy) and movement of the swallowing
muscles is uncoordinated, resulting in accidental ingestion of
food into the trachea (Ertekin et al., 2000). In recent years,

accumulating evidence has shown that transcranial magnetic
stimulation (TMS) can induce changes in the excitability of
the cerebral cortex, promote plastic alterations in nerves,
control the release of neurotransmitters (Lanza et al., 2015),
and manage dysphagia through regulating neuroplasticity. The
main objective of this review is to synthesize clinical studies and
investigate the effectiveness, mechanisms of action, advantages,
and disadvantages of TMS in clinical practice.

Transcranial magnetic stimulation

Transcranial magnetic stimulation is a non-invasive
stimulation technique based on the principles of neuroplasticity
that induces changes in neurological pathways by altering
neurons in target cortical areas through synaptogenesis,
reorganization, network strengthening, and inhibition, causing
local depolarization of the magnetic field below the skull and
activation or inhibition of activity in cortical areas (Hallett,
2000; Koerselman et al., 2004). It was also reported that the
feasibility of using external magnetism to stimulate the nerves
and brain (Barker et al., 1985). The group described TMS as a
non-invasive technique to stimulate the human motor cortex.
At present, TMS is widely used as a routine diagnostic tool
in neurophysiological studies owing to its safe and technical
characteristics (Rossi et al., 2009). This approach is based on
speech, language, and swallowing disorders of the nervous
system (Naeser et al., 2005; Khedr et al., 2009; Verin and
Leroi, 2009; Barwood et al., 2011a,b,c). TMS exerts therapeutic
effects by directly modulating specific pathways in the brain,
which may ultimately affect longer-term communication and
swallowing outcomes. Recent advances in TMS technology
facilitate its application in clinical neurorehabilitation programs
for patients with brain injury. Earlier reports have also
demonstrated positive therapeutic effects on swallowing
function after TMS, highlighting its potential as a treatment
modality for dysphagia (Ridding and Rothwell, 2007). Multiple
systematic reviews and meta-analyses have confirmed the
beneficial effects of TMS on PSD (Yang et al., 2015; Pisegna
et al., 2016; Liao et al., 2017; Chiang et al., 2019; Marchina et al.,
2021) and swallow-related outcomes in patients. Moreover, the
most intense effects of peripheral and cortical neurostimulation,
including those of TMS, occur during the first 2 weeks after
stroke (Yang et al., 2015). The efficacy of TMS for PSD from
clinical trials and meta-analyses were illustrated in Table 1.

Mechanism of action of transcranial
magnetic stimulation

Transcranial magnetic stimulation, a tool for high-pressure
brain stimulation, presents an alternative method for treatment
of dysphagia via modulation of neuroplasticity. The procedure
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TABLE 1 Summary of studies on the efficacy of TMS for PSD from clinical trials and meta-analyses.

Stimulation
mode and
intensity

Stimulation target Sample Treatment
cycle

Test
method

Main results References

rTMS (3 Hz) Target cortical
representation in
ipsilateral pharyngeal
region

21 5 days WST rTMS > basic rehabilitation training;
improvement rates of the control and
rTMS groups were 31.0 and 65.6%,
respectively; WST score; the standard,
improvement of dysphagia in the rTMS
group was significantly higher than that in
the control group (p < 0.05)

Yang et al., 2015;
Jiao et al., 2022

rTMS (10 Hz) Bilateral irritation 35 3 weeks CDS, DOSS,
PAS, VDS

CDS, DOSS, PAS, and VDS scores in both
groups; scores in the bilateral
group > scores in the unilateral group
(p < 0.05)

Park et al., 2017

rTMS (10 Hz) Ipsilateral motor cortex 35 3 weeks CDS, DOSS,
PAS, VDS

CDS, DOSS, PAS, and VDS scores in both
groups; scores in the bilateral
group > scores in the unilateral group
(p < 0.05)

Park et al., 2017

TMS (5 Hz) Lingual cortical motor
area

15 10 days VFSS, SAPP No significant difference in VFSS or SAPP
were observed between the two groups

Cheng et al.,
2017

TMS (3 Hz) Ipsilateral 15 5 days WST, DD,
cortical
excitability

Both WST and DD were improved as well
as cortical excitability in the affected
hemisphere

Du et al., 2016

TMS (1 Hz) Contralateral 13 5 days WST, DD,
cortical
excitability

Both WST and DD were improved as well
as cortical excitability in the unaffected
hemisphere and cortical excitability in the
affected hemisphere

Du et al., 2016

rTMS (10 Hz) Ipsilateral 16 10 days SSA, DD,
cortical
excitability

Cortical excitability in the affected or
unaffected hemisphere were improved;
significant improvement in SSA score; no
change in DD score

Zhang et al.,
2019

rTMS (1 Hz) Contralateral 16 10 days SSA, DD,
cortical
excitability

Cortical excitability in the affected or
unaffected hemisphere were improved;
significant improvement in SSA score; no
change in DD score

Zhang et al.,
2019

rTMS (1 Hz) Epilepsy 16 10 days SSA, DD,
cortical
excitability

Cortical excitability in the affected or
unaffected hemisphere were improved;
SSA score in the bilateral group > SSA
score in the unilateral group; no change in
DD score

Zhang et al.,
2019

rTMS (1 Hz) Contralateral 6 15 days MASA and
Functional
Oral Intake
Scale

MASA and functional oral intake scale
scores were improved

Tarameshlu
et al., 2019

TMS (3 Hz) Ipsilateral esophageal
cortical area

14 5 days DD Improvement in DD score Khedr et al.,
2009

rTMS (10 Hz) Contralateral motor
cortex of bilateral
mylohyoid muscles

11 2 weeks CDS, DOSS,
PAS, VDS

DOSS, PAS and VDS scores in the bilateral
group > scores in the unilateral group

Park et al., 2017

rTMS (10 Hz) Ipsilateral motor cortex
of mylohyoid muscle

12 2 weeks CDS, DOSS,
PAS, VDS

DOSS, PAS and VDS scores in the bilateral
group > scores in the unilateral group

Park et al., 2017

rTMS (1 Hz) Ipsilateral 4 5 days MASA MASA scores were improved Ghelichi et al.,
2016

rTMS (5 Hz) Ipsilateral pharyngeal
motor hotspot

8 2 weeks PAS, VDS VDS score: significant improvement in
pharyngeal motor function. Activation of
bilateral primary motor cortices, anterior
motor cortex, and right prefrontal cortex

Park et al., 2019

(Continued)
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TABLE 1 Continued

Stimulation
mode and
intensity

Stimulation target Sample Treatment
cycle

Test
method

Main results References

rTMS (5 Hz) Lingual motor cortex 2 2 weeks MASA and
swallowing-
related
quality of
life

MASA and swallowing-related quality of
life were improved

Cheng et al.,
2015

rTMS (10 Hz) Cerebellum 1 / PMEP, cPAS Improvement in PMEP amplitude (55%
above baseline) and swallowing safety
(17% below baseline)

Vasant et al.,
2019

rTMS (1 Hz) Contralateral 14 4 weeks MASA and
quality of
life
assessments

Improvement in quality of life; no
significant change in MASA

Ünlüer et al.,
2019

TMS, transcranial magnetic stimulation; PSD, post-stroke dysphagia; WST, water-swallowing test; CDS, Clinical Dysphagia Scale; DOSS, Dysphagia Outcome and Severity Scale; PAS,
Permeation Aspiration Scale; MASA, Mann Assessment of Swallowing Ability; VDS, Videofluoroscopic Dysphagia Scale; PMEP, representative pharyngeal motor evoked potential
amplitude; VFSS, videofluoroscopic swallowing study; SAPP, swallowing activity and participation profile; cPAS, cumulative penetration-aspiration score; DD, degree of dysphagia; SSA,
standardized swallowing assessment.

is based on the principle of inductance and non-invasively
transmits electrical energy to the brain through the scalp and
skull (Wassermann, 1998). A large current pulse generator
is employed to release high currents thousands of amperes
greater than that flowing through the coil, up to several
kilowatts in power. These short magnetic pulses cause a
sustained increase or decrease in cortical excitability. A brief
but intense current is passed through a TMS coil placed on
the scalp, creating a magnetic field that penetrates the skull
to a depth of about 1.5–2 cm and induces a sufficiently
strong electric field to depolarize surface axons and activate
cortical neural networks (Lefaucheur et al., 2014). In addition,
an electromyographic response to the target musculature is
produced, known as motor-evoked potential (MEP) (Fitzgerald
et al., 2006). Subsequently, descending motor shooting along
the corticospinal tracts from the cortex to peripheral muscles
is elicited to adjust the excitability of the cerebral cortex.
TMS can be divided into high frequency (≥1 Hz) TMS and
low frequency (≤1 Hz) stimulation processes (Wassermann,
1998). High frequency tends to enhance the excitability of
the cerebral cortex while low frequency exerts the opposite
effect (Hamdy et al., 1998; Fitzgerald et al., 2006). In stroke
patients recovering from dysphagia, functional recovery was
found to be associated with increased cortical representation
of the intact hemisphere, highlighting the importance of
reorganization of intact neural networks in PSD recovery
(Pascual-Leone et al., 1998). Repetitively applied TMS, also
known repetitive TMS (rTMS), can induce changes in synaptic
plasticity similar to long-term potentiation (LTP) or long-
term depression (LTD), that is, increased or decreased synaptic
strength (Stefan et al., 2002; Hoogendam et al., 2010). The
precise mechanism remains unknown but is thought to be
mediated by the activity of N-methyl-D-aspartate (NMDA)
receptors, as revealed by studies using NMDA antagonists

(Fitzgerald et al., 2006; Huang et al., 2007). Other known
rTMS modalities include intermittent (excitatory) theta burst
stimulation (iTBS) and continuous (inhibitory) TBS (cTBS)
(Ridding and Rothwell, 2007). However, recent reports suggest
that the ability to respond to these protocols varies on an
individual basis (Ridding and Rothwell, 2007).

Studies have confirmed that the damages to subcortical
white matter (the internal capsule and within the brainstem)
caused dysphagia, possibly due to disruption in the
sensorimotor pathways of the corticobulbar tract. TMS
may exert effects on PSD by regulating sensorimotor pathways
in the brain. However, the details of how TMS change the
communication and connection of cortical neural networks to
achieve the therapeutic effect remain largely unexplored. The
advantages and disadvantages of TMS were shown in Table 2.

Advantages of transcranial magnetic
stimulation

Transcranial magnetic stimulation is widely regarded as a
safe and non-invasive form of nerve stimulation that can be used
to directly manipulate cerebral cortex activity. In recent years,
this innovative neuromodulation technology has been widely
applied in neuroscience and countless cognitive fields (Barwood
et al., 2011b) and shown to exert therapeutic effects by directly
regulating specific pathways in the brain, which could ultimately
affect longer-term communication and swallowing disorder
prognosis (Naeser et al., 2005; Cotelli et al., 2008; Khedr et al.,
2009; Verin and Leroi, 2009; Barwood et al., 2011a,c; Geeganage
et al., 2012; Murdoch et al., 2012). The potential nerve priming
effect induced by TMS is reported to effectively improve
performance. Recent progress in TMS technology facilitates
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TABLE 2 Advantages and disadvantages of transcranial magnetic stimulation (TMS).

Advantages Disadvantages

À Good safety and non-invasiveness À No significant beneficial effects on genetic factors, death, dependence,
disability, prognosis and length of hospital stay

Á Long-term impact on communication and swallowing disorder prognosis Á The effect of nerve stimulation therapy was not analyzed separately

Â Potentially improves performance after administration Â The number of studies is limited, with small sample sizes, uneven case quality,
and heterogeneity among studies

Ã TMS can enhance muscle control of swallowing after stroke

Ä Shorter course of treatment

Å TMS induces alterations in the functional status of local cerebral cortex, enhances
synaptic function, and regulates neuronal function in the brain

Æ Accurate and optimal balance in the excitatory and inhibitory control functions of
the cerebral cortex

its application in clinical neurorehabilitation programs for
patients with brain injury and the existing evidence shows
that high-frequency TMS can enhance the muscle control of
swallowing after stroke. For instance, in a study by Verin and
Leroi (Geeganage et al., 2012) using TMS to stimulate the
musculohyoid cortical area, the swallowing function of the
patient improved at 3 days after stimulation. In a review by
Cochrane (Zhai et al., 2020) on management of PSD, cortical
rTMS reduced the need for physical or cognitive engagement
in complex cases and had the potential to shorten the course
of treatment. Previous studies have demonstrated that this
non-reduced magnetic signal can reach the target area of
brain tissue through the skull, thereby changing the functional
status of the local cerebral cortex, enhancing synaptic function,
and regulating neuronal function in the brain (Bath et al.,
2018). Moreover, TMS has different intensities, frequencies
and stimulation areas and can modulate the relationships and
interactions among neural networks, thus affecting the functions
of different regions. TMS promotes accurate and optimal
balance of excitatory and inhibitory control functions in the
cerebral cortex.

Current limitations

Despite the considerable benefits of TMS, lots of limitations
restrict its use in clinical practice in terms of effectiveness,
safety, and clinical study design. First, no significant beneficial
effects of TMS on genetic factors, death, dependence, disability,
prognosis, or length of hospital stay have been reported (Hoshi
and Tamura, 1993; Wiethoff et al., 2014; Horvath et al.,
2016). Second, patients in a few of earlier trials received
traditional rehabilitation training, which made it impossible
to separately analyze the effects of nerve stimulation therapy.
In treatment of PSD with TMS, the optimal choice of
stimulation site (unaffected hemisphere, affected hemisphere,
or bilateral hemispheres) has not yet been determined. Based
on different viewpoints on the recovery mechanism of PSD,

the choice of excitatory stimulation (high frequency) or
inhibitory stimulation (low frequency) at the corresponding
site (involved, affected, or bilateral side) is controversial. In
additions, the number of reported studies is limited, with small
sample sizes, uneven case quality and significant heterogeneity
among studies. Therefore, the available data are insufficient
draw accurate conclusions on the recommended optimal
treatment regimen.

Future prospects

This review provides a summary of the efficacy and
underlying mechanisms of TMS activity in patients with PSD.
A large majority of studies to date has used water-swallowing
test (WST), clinical dysphagia scale (CDS), Dysphagia Outcome
and Severity Scale (DOSS), Permeation Aspiration Scale
(PAS), Mann Assessment of Swallowing Ability (MASA),
Videofluoroscopic Dysphagia Scale (VDS), representative
pharyngeal motor evoked potential (PMEP) amplitude,
cumulative penetration-aspiration score (cPAS), and degree
of dysphagia (DD) to evaluate the significance of the results.
However, given the evidence for the validity of the results, it
may be possible to incorporate more credible tests to draw
strong conclusions in future studies. In 1993, Hoshi and
Tamura demonstrated the validity of measuring different
cortical regions with functional near-infrared spectroscopy
(fNIRS). For the first time, the potential of fNIRS imaging brain
activation sequences were reported (Ehlis et al., 2009). fNIRS is a
neuroimaging technique used to map the function of the human
cerebral cortex that utilizes the principle of near-infrared
(NIR) spectroscopy (NIRS). Changes in optical properties of
the human cerebral cortex are detected simultaneously from
multiple measurement sites and the results displayed in the form
of maps or images in specific areas. Over the years, fNIRS has
emerged as a key neuroimaging technique that has contributed
significantly to advances in understanding human brain
function. In recent years, the validity of fNIRS measurements
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has been repeatedly demonstrated by simultaneous functional
magnetic resonance imaging (fMRI) measurements, with
widely recognized applications in newborn/child and adult
language processing in cognitive neuroscience. Although TMS
demonstrate great potential to accelerate the improvement of
swallowing function in patients with PSD, there is currently a
lack of real-time assessment tool for brain function to optimize
TMS parameters. As an assessment tool of brain activity, fNIRS
can be used to measure the changes in hemoglobin (Hb)
concentrations within the brain, which can not only evaluate the
effect of TMS treatment, but also can guide the optimization of
TMS treatment regimen during the PSD rehabilitation. In the
future, we should combine the TMS and fNIRS to serve as a
reference for upcoming clinical and laboratory research.
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