
fnbeh-16-996089 September 23, 2022 Time: 14:44 # 1

TYPE Mini Review
PUBLISHED 29 September 2022
DOI 10.3389/fnbeh.2022.996089

OPEN ACCESS

EDITED BY

Owen Chao,
University of Minnesota, United States

REVIEWED BY

Lisa M. Savage,
Binghamton University, United States

*CORRESPONDENCE

Kazuto Kobayashi
kazuto@fmu.ac.jp

SPECIALTY SECTION

This article was submitted to
Learning and Memory,
a section of the journal
Frontiers in Behavioral Neuroscience

RECEIVED 17 July 2022
ACCEPTED 12 September 2022
PUBLISHED 29 September 2022

CITATION

Okada K, Hashimoto K and
Kobayashi K (2022) Cholinergic
regulation of object recognition
memory.
Front. Behav. Neurosci. 16:996089.
doi: 10.3389/fnbeh.2022.996089

COPYRIGHT

© 2022 Okada, Hashimoto and
Kobayashi. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Cholinergic regulation of object
recognition memory
Kana Okada1, Kouichi Hashimoto1 and Kazuto Kobayashi2*
1Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima
University, Hiroshima, Japan, 2Department of Molecular Genetics, Institute of Biomedical Sciences,
Fukushima Medical University School of Medicine, Fukushima, Japan

Object recognition memory refers to a basic memory mechanism to identify

and recall various features of objects. This memory has been investigated

by numerous studies in human, primates and rodents to elucidate the

neuropsychological underpinnings in mammalian memory, as well as provide

the diagnosis of dementia in some neurological diseases, such as Alzheimer’s

disease and Parkinson’s disease. Since Alzheimer’s disease at the early stage

is reported to be accompanied with cholinergic cell loss and impairment

in recognition memory, the central cholinergic system has been studied to

investigate the neural mechanism underlying recognition memory. Previous

studies have suggested an important role of cholinergic neurons in the

acquisition of some variants of object recognition memory in rodents.

Cholinergic neurons in the medial septum and ventral diagonal band of

Broca that project mainly to the hippocampus and parahippocampal area are

related to recognition memory for object location. Cholinergic projections

from the nucleus basalis magnocellularis innervating the entire cortex are

associated with recognition memory for object identification. Especially, the

brain regions that receive cholinergic projections, such as the perirhinal cortex

and prefrontal cortex, are involved in recognition memory for object-in-place

memory and object recency. In addition, experimental studies using rodent

models for Alzheimer’s disease have reported that neurodegeneration within

the central cholinergic system causes a deficit in object recognition memory.

Elucidating how various types of object recognition memory are regulated by

distinct cholinergic cell groups is necessary to clarify the neuronal mechanism

for recognition memory and the development of therapeutic treatments

for dementia.

KEYWORDS

basal forebrain, cholinergic system, hippocampus, muscarinic receptor, nicotinic
receptor, perirhinal cortex

Introduction

Recognition memory is a simple type of declarative memory, defined as the ability to
feel familiarity and to discriminate familiar items from unfamiliar ones (Mandler, 1980;
Mackintosh, 1987; Squire, 1998). To evaluate recognition memory, spontaneous object
recognition memory tasks are widely used in rodents (Ennaceur and Delacour, 1988;
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Dere et al., 2006; Aggleton and Nelson, 2020). In such tasks,
animals are placed in an apparatus with objects, and they explore
spontaneously. When object recognition memory is normally
preserved, the time spent exploring novel objects is longer than
that spent exploring familiar objects. This novelty preference is
derived from the innate behavior of rodents to react to what was
changed.

Previous studies have included experiments with numerous
variants of the object recognition memory task to elucidate
its neuronal mechanisms of recognition memory (Brown and
Aggleton, 2001; Squire et al., 2007). Lesion studies showed
that recognition memory for object location depends on the
hippocampus and entorhinal cortex but not on the perirhinal
cortex (Save et al., 1992; Parron et al., 2006). The suppression of
the perirhinal cortex caused impairment in recognition memory
for object identification, whereas the hippocampal lesion did
not impair that memory (Save et al., 1992; Abe and Iwasaki,
2001; Brown et al., 2012). In addition, the medial temporal
lobe is one of the brain regions that receive projections from
cholinergic neurons in the basal forebrain (Bigl et al., 1982;
Mesulam et al., 1983; Rye et al., 1984). Functional cooperation
among the medial temporal lobe structures pivotally functions
in several aspects of object recognition memory (Brown and
Aggleton, 2001; Squire et al., 2007; Aggleton et al., 2012).

Clinical studies also suggest that the dysfunction of the basal
forebrain cholinergic system causes impairment in recognition
memory. Alzheimer’s disease is a severe memory disorder that
is associated with a loss of cholinergic neurons in the forebrain,
followed by neurodegeneration of a wide range of brain regions
(Davies and Maloney, 1976; Pákáski and Kálmán, 2008; Schmitz
and Zaborszky, 2021). The earliest sign of this disease is
impairment in recognition of previously encountered stimuli
(Ally, 2012). Cholinergic involvement in object recognition
memory has been suggested by this clinical indication from
Alzheimer’s disease. However, it remains unclear how the
distinct cell groups in cholinergic systems are involved in the
memory and interact with each other.

In the present review, we describe cholinergic regulation of
object recognition memory, in which different cholinergic cell
groups in the basal forebrain contribute to different aspects of
memory. We also explain several behavioral factors that affect
the performance in the memory task. Finally, we discuss the
therapeutic possibility of cholinergic agents for correction of the
impairment of object recognition memory seen in dementia.

Central cholinergic system

In the central nervous system, cholinergic neurons are
composed of several distinct cell groups (Mesulam et al.,
1983; Woolf et al., 1984; Woolf and Butcher, 1985; see
Figure 1). Basal forebrain cholinergic neurons provide
their projections to the entire neocortex and limbic cortex

(Schmitz and Zaborszky, 2021). Cholinergic interneurons
make local innervations within the striatum and neocortex
(Mesulam et al., 1983; Zhou et al., 2002; von Engelhardt et al.,
2007). In the cholinergic system, acetylcholine acts on nicotinic
and muscarinic acetylcholine receptors, which are ionotropic
and G protein-coupled metabotropic receptors, respectively
(Levey et al., 1991; Alkondon and Albuquerque, 2004; Dani
and Bertrand, 2007). These types of receptors are differentially
distributed in the hippocampus, neocortex, and striatum in
presynaptic and postsynaptic manners (Dannenberg et al., 2017;
Obermayer et al., 2017).

Cholinergic neurons in the basal forebrain are divided into
several groups; the medial septum (MS), ventral/horizontal
diagonal band of Broca (vDB/hDB), and nucleus basalis
magnocellularis or nucleus basalis of Meynert (nBM). The MS
and vDB include cholinergic neurons projecting mainly to the
hippocampus (the CA1-CA3, hilus, and dentate gyrus) and
subiculum via the fornix. They also provide cholinergic
innervations to the entorhinal, perirhinal, postrhinal,
retrosplenial, infralimbic and prelimbic cortices (Gaykema
et al., 1990; Gulyás et al., 1999; Kondo and Zaborszky, 2016).
Cholinergic signaling in these projection areas has been
assumed to occur both non-synaptically and synaptically (Vizi
and Kiss, 1998; Zoli et al., 1999; Takács et al., 2018). Cholinergic
neurons located in the hDB, innervate the main olfactory bulb,
insular cortex and piriform cortex (Woolf et al., 1984; Záborszky
et al., 1986). The caudal part of the basal forebrain cholinergic
system consists of large cholinergic neurons in the nBM. This
group includes cholinergic cells that are distributed throughout
the ventral pallidum, magnocellular preoptic nucleus, nucleus
basalis and substantia innominate. This cell group innervates
the entire neocortex (isocortex) and amygdala (Mesulam et al.,
1983; Eckenstein et al., 1988). They also innervate allocortical
areas including the retrosplenial, entorhinal, and perirhinal
cortices (Bigl et al., 1982; Woolf and Butcher, 1982, 1985; Rye
et al., 1984; Woolf et al., 1984; Carlsen et al., 1985; Woolf, 1991).

Various types of cholinergic
system controlling object
recognition memory

Cholinergic projections from the
medial septum and ventral diagonal
band of Broca

Previous studies have revealed that cholinergic neurons
in the MS/vDB are important in certain types of object
recognition memory. A cholinergic lesion in the MS with 192
IgG-saporin decreases choline acetyltransferase activity in the
hippocampus and frontal cortex, and impairs object location
memory, but not object recognition memory (Cai et al., 2012).

Frontiers in Behavioral Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.996089
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-996089 September 23, 2022 Time: 14:44 # 3

Okada et al. 10.3389/fnbeh.2022.996089

FIGURE 1

Schematic illustrations of cholinergic innervation from the basal forebrain of rodent. (A) Schematic sagittal view of the rodent brain illustrating
cholinergic projection from the medial septum and ventral diagonal band of Broca (MS/vDB) to the medial prefrontal cortex (mPFC),
retrosplenial cortex (RSC), entorhinal cortex (EC), hippocampus (HIP, and perirhinal/postrhinal cortices (PRHC). Cholinergic projections are
indicated by orange lines. (B) Schematic sagittal view of the rodent brain showing cholinergic projection from the horizontal diagonal band of
Broca (hDB) and nucleus basalis magnocellularis (nBM). Cholinergic neurons in the hDB innervates the olfactory bulb (OB), insular cortex (ISC)
and piriform cortex (PRFC). Cholinergic neurons in the nBM project to the entire cortex including the mPFC and PRHC. Cholinergic modulations
are indicated green and blue lines. Projections to the amygdala are omitted from the illustration. (C) Schematic dorsal view of the rodent
cholinergic system. The right hemisphere shows cholinergic innervation from the MS/vDB. The left hemisphere indicates cholinergic
projections from the hDB and nBM.

Selective cholinergic cell elimination in the MS/vDB by the
immunotoxin-mediated cell targeting technique also impairs
the object location memory in both multiple-trial and one-
trial object recognition memory tasks (Okada et al., 2015;
Figures 2A–C). One-trial recognition memory task simply
consists of a sample trial and a test trial (Ennaceur and
Delacour, 1988; Dere et al., 2006), whereas multiple-trial object
recognition task is composed of some repeated sample and
test trials (Poucet, 1989; Save et al., 1992; Okada et al., 2015).
Amount of familiarization in the sample phase is reported to
affect the performance in the test trials in object recognition
memory (Albasser et al., 2009; Broadbent et al., 2010; Antunes
and Biala, 2012). In contrast, another study reported that
192 IgG-saporin cholinergic lesions in the MS do not cause
impairment of object location memory (Dashniani et al.,
2015), although the difference in behavioral phenotypes may
be because of their lesion sizes or subsections. For example,
lesion of the MS left approximately 70% cholinergic neurons
in the study of Dashniani et al. (2015), and their lesion size
seems to be smaller than that in Okada et al. (2015). The
injection sites of Dashniani et al. (2015) are located posterior
in the MS to the sites of Cai et al. (2012). Injection sites of
Okada et al. (2015) included a wide range of the MS/vDB
along with the anteroposterior and mediolateral axes. The MS
has a clear mediolateral topographical arrangement (Gaykema
et al., 1990). The medial part of the MS projects to the

dorsal hippocampus, the subiculum, and the lateral entorhinal
cortex, whereas the lateral MS mainly projects to the ventral
hippocampus, the subiculum, and the medial entorhinal cortex
(Gaykema et al., 1990). In addition, neurons in the MS and
rostral vDB mainly innervate the entire hippocampus, the
subiculum and the entorhinal cortex, while neurons in the
caudal vDB projects to the dorsal hippocampus, the dorsal
subiculum and the lateral entorhinal cortex (Gaykema et al.,
1990). The dorsal and ventral hippocampal structures are
differently involved in mnemonic function (Hughes, 1965; Hock
and Bunsey, 1998; Moser and Moser, 1998; Cassel et al., 2002).
The medial and lateral entorhinal cortices are also differently
implemented in the object recognition memory (Aggleton and
Nelson, 2020). These anatomical and functional findings suggest
that cholinergic neurons in subsections of the MS/vDB are
differently involved in object location recognition memory or
object-in-place recognition memory.

Cholinergic hippocampal activity is also reported to be
important in object recognition memory (Aloisi et al., 1997;
Giovannini et al., 2001; Stanley et al., 2012; Rashid and
Ahmed, 2019). Neurochemical analysis shows that acetylcholine
efflux in the hippocampus increases during spatial novelty
and object exploration (Aloisi et al., 1997; Giovannini et al.,
2001; Stanley et al., 2012). Pharmacological studies also
indicate that cholinergic activity in the hippocampus and
parahippocampal areas plays a role in novelty preference
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FIGURE 2

Schematic drawing of various object recognition tasks in rodents. Small colored circles and polygons indicate objects in an open field.
Experimental protocols for evaluating the object recognition memory are shown. (A) The multiple-trial task evaluates the object recognition
memory for the location and identification of the objects. In this task, successive six exposures are conducted with an ITI within 1 day. After three
trials of sample exposure, two objects were relocated and an object location test is conducted. After re-exposure to the same arrangement
objects in the object location test, a familiar object is replaced by a novel object in the object identification test. (B–G) One-trial tasks evaluate
the object recognition memory, in which a sample trial and a test trial are conducted with an ITI on the same day, and some changes in the
experimental conditions as for the objects are made in the test trial. In the object location task (B), one of two objects is relocated in the test
trial. In the object identification task (C), one of two objects is replaced with another object in the test trial. In the object-in-place task (D), two
of four objects are relocated in the test trial. In the object recency task (E), two objects in the first sample are exchanged by two other objects in
the second sample, and then different objects in two samples are presented in the test trial. In the object-in-context task (F), a set of objects in a
context in the first sample are replaced with another set of objects in a different context in the second sample, and then different objects in two
samples in the first context are presented in the test trial. In the episodic-like memory task (G), four objects in the first samples are exchanged
by four other objects in the second sample, and then the objects consisted of two objects from each sample are presented in the test trial.

in several types of object recognition memory task. For
example, the activity of muscarinic acetylcholine receptors
in the hippocampus and entorhinal cortex is involved in
the acquisition and retrieval of object location memory
(Rashid and Ahmed, 2019). Acute activation of nicotinic
receptors in the hippocampus or perirhinal cortex similarly
enhances the acquisition of object recognition memory and
object location memory, but not the retrieval of these
memories (Melichercik et al., 2012). Local scopolamine
infusion indicates that muscarinic activity in the hippocampus
and perirhinal cortex is involved in short-term (90 min)
object recognition memory, but muscarinic activity in the
perirhinal cortex plays a role also in long-term (24 h) object
recognition memory (Balderas et al., 2012). These results
suggest that cholinergic hippocampal activity is involved in the
performance of object location memory. It is unknown how

cholinergic hippocampal activity modulates object recognition
memory.

Cholinergic lesions of the MS with 192 IgG-saporin cause
a deficit in object-in-context recognition memory, but not
in episodic-like object recognition memory (Easton et al.,
2011; Figures 2F,G). This impairment in object-in-context
memory is suggested to be caused by failure in rapid updating
of place cells when the object changes its environment.
Indeed, MS cholinergic lesions with 192 IgG-saporin impair
the development of new place cell representation in a novel
context (Ikonen et al., 2002). Scopolamine infusion alters the
firing properties of hippocampal place cells and grid cells in
the entorhinal cortex (Brazhnik et al., 2004; Newman et al.,
2014). Exploration in novel environments influences the firing
properties of place cells and grid cells, suggesting that the
increase of acetylcholine release in novel environment is related
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to alternation of firing patterns of these cells (Barry et al., 2012).
Therefore, cholinergic activity in the hippocampus is strongly
related to memory with salient spatial components.

Cholinergic projections from the
nucleus basalis of Meynert

Previous studies have revealed that cholinergic neurons in
the nBM are important in a different type of object recognition
memory from cholinergic neurons in the MS/vDB. A cholinergic
lesion in the nBM by 192 IgG-saporin does not cause a novelty
preference deficit in the object recognition memory test after 60-
min delay (Savage et al., 2011). A selective cholinergic ablation in
the nBM by the immunotoxin-mediated cell targeting technique
also shows an intact novelty preference in the multiple-trial
object recognition memory task, but it causes the impairment
in one-trial object recognition memory after 3–30-min delays
(Okada et al., 2015; Figures 2A,C).

Cholinergic neurons in the nBM project to the neocortex
and amygdala, but also to the frontal, entorhinal, and perirhinal
cortices (Woolf and Butcher, 1982, 1985; Rye et al., 1984; Woolf
et al., 1984; Carlsen et al., 1985). Cholinergic transmission
in the perirhinal cortex is reported to play a pivotal role in
object recognition memory (Brown et al., 2012). Local infusion
of methyllycaconitine or scopolamine in the perirhinal cortex
impairs the acquisition of object recognition memory (Abe
and Iwasaki, 2001; Winters and Bussey, 2005; Tinsley et al.,
2011). Acute and pre-sample nicotinic receptor activation in
the perirhinal cortex enhances novelty preference in the object
recognition memory task (Melichercik et al., 2012). On the other
hand, the cholinergic activity in the perirhinal cortex is not
necessary for the retrieval of object recognition memory. Local
scopolamine infusion into the perirhinal cortex does not affect
object recognition memory during the test trial (Winters et al.,
2006). Moreover, cholinergic activity in the perirhinal cortex
is important in other variations of object recognition memory
such as object-in-place and object recency memory (Brown
et al., 2012; Figures 2D,E). Some studies have reported that the
perirhinal cortex has no role in the object recognition memory
in the absence of visual information (Winters and Reid, 2010;
Albasser et al., 2013).

Acetylcholine in the medial prefrontal cortex is involved in
novelty preference in the object recognition memory task (Esaki
et al., 2021a,b). Nicotinic activation in the medial prefrontal
cortex enhances the performance of object recognition memory
(Esaki et al., 2021a,b). Scopolamine infusion into the medial
prefrontal cortex impairs the acquisition of object-in-place
recognition memory, but not the retrieval of the memory
(Esaki et al., 2021a,b). This treatment also impairs the object
recency memory (Barker and Warburton, 2011). Acetylcholine
release in the prefrontal cortex is necessary for attention
(Dalley et al., 2004; Nyberg, 2005; Bloem et al., 2014), suggesting

that cortical cholinergic activity might be related to the
acquisition of object recognition memory through its novelty-
induced attention.

Cholinergic projections from the
horizontal diagonal band of Broca

There seems to be no report which indicates that cholinergic
neurons of the hDB are related to object recognition memory,
though cholinergic lesions in this area have been reported
to increase depressive-like behaviors (Chen et al., 2021). The
piriform cortex is reported to be important in processing
odor-object recognition and integrating multisensory object
information (Porada et al., 2019). On the other hand, there
is the possibility that cholinergic projection to the perirhinal
cortex is involved in object recognition memory via the hDB
(Winters and Bussey, 2005). It is an issue to be addressed
whether cholinergic projection from the hDB to the piriform
and perirhinal cortices play a role in the processing of object
recognition memory.

Cholinergic interneurons

Striatal cholinergic interneurons are regarded as tonically
active neurons (Kimura, 1986; Inokawa et al., 2010), and
modulate striatal dopaminergic activity (Calabresi et al., 2000;
Wang et al., 2006). Striatal cholinergic interneurons play a
role in cognitive processes such as spatial working memory,
reward-related learning (Kitabatake et al., 2003), habit learning
(Packard and Knowlton, 2002; Aoki et al., 2018; Amaya and
Smith, 2021), and behavioral flexibility (Ragozzino et al., 2009;
Okada et al., 2014; Prado et al., 2017). Mice deficient in the
vesicular acetylcholine transporter in the striatum have been
reported to show impairment in short-term (15-min delay)
object recognition memory (Palmer et al., 2016), indicating
that cholinergic activity in the striatum is also relevant to the
acquisition of object recognition memory. In contrast, there
have been no reports to date on the role of cortical cholinergic
interneurons in object recognition memory.

Behavioral factors affecting object
recognition memory

In the object recognition task, the experimenter uses
the rodents’ inherent behavioral treat with their exploration
and preference to the novelty, in order to evaluate the
animals’ recognition memory. The rodents are able to react
and re-explore the objects when the objects are altered with
various properties, including material, size, and topographical
arrangement or location (Cheal, 1978; Sutherland et al., 1982;
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Poucet et al., 1986; Thinus-Blanc et al., 1987; Ennaceur
and Delacour, 1988; Save et al., 1992). This task does
not require learning associated with any rules or any
apparent reinforcements, but it is based on the inherent
and spontaneous exploratory behavior toward novel or
changed objects (Ennaceur and Delacour, 1988). Since the
object recognition task uses the rodents’ spontaneous novelty
preference that is measured by exploration to unfamiliar objects
against more familiar objects, it is inevitable that the mentioned
behavioral parameters of exploratory activity and attention
would interfere the estimation of the object recognition memory
(Antunes and Biala, 2012).

Exploration in the open field

Evaluation of object recognition memory is based on the
comparison between the explorations to unfamiliar and familiar
objects in the test phase. When the animals show the lack or
deficit of exploratory behavior itself, they are excluded from
the data analysis of the experiments (Ennaceur and Delacour,
1988; Tinsley et al., 2011). Microdialysis studies in rodents
have demonstrated that acetylcholine release in the cortex and
hippocampus increases during exploration in a novel open field
(Aloisi et al., 1997; Thiel et al., 1998; Giovannini et al., 2001).
This increment of the acetylcholine levels gets shorter and
smaller during re-exposure to the open field, suggesting that
cholinergic activity is associated with exploration for novelty
and declines according to habituation (Giovannini et al., 2001).

Cholinergic lesions in the basal forebrain by 192 IgG-
saporin and systemic scopolamine administration do not alter
rodents’ behavior in the open field (Psyrdellis et al., 2016;
Dobryakova et al., 2018). In contrast, another report showed that
cholinergic lesions led to hyperactivity in the open field (Waite
et al., 1995). Systemic high-dose treatment (> 0.03 mg/kg) of
scopolamine has been reported to impair locomotor activity
(Klinkenberg and Blokland, 2010). These contradictory results
suggest that the locomotor activity during the exploration
appears to be altered by cholinergic dysfunction, depending on
differences in the severity and location of the cholinergic lesion.

Seeking novelty and attention

Animals show the novelty preference dependent on the
integrity of their attention and memory in the test phase of
object recognition memory (Silvers et al., 2007; Antunes and
Biala, 2012). Several studies have shown that novelty signals
during learning are associated with hippocampal or cortical
acetylcholine transmission (Wilson and Rolls, 1990; Hasselmo,
1999; Ranganath and Rainer, 2003; Meeter et al., 2004; Barry
et al., 2012). Acute nicotine administration improves attention
and memory (Levin et al., 2006), and enhances novelty detection

and subsequent recognition memory (Froeliger et al., 2009).
Administration of scopolamine and mecamylamine revealed
that nicotinic and muscarinic receptors are also important
in attentional processing (Mirza and Stolerman, 1998, 2000;
Klinkenberg and Blokland, 2010). A selective cholinergic lesion
of the nBM or prefrontal cortex impairs attention and visual
cue detection (McGaughy and Sarter, 1998; McGaughy et al.,
2002; Chudasama et al., 2004; Klinkenberg and Blokland,
2010), suggesting that cholinergic modulation of attention
and cue detection is mediated by the prefrontal cortex. The
basal forebrain cholinergic system appears to regulate object
recognition memory, at least partly, through attention.

Impairments in object recognition
memory in animal models for
Alzheimer’s disease

Alzheimer’s disease is a progressive dementia. This disease
is characterized by anterograde amnesia of short-term episodic
memory, together with impairment in attention and spatial
recognition at the early stage (Snowden et al., 2011). Impairment
in recognition memory frequently occurs in patients at the
prodromal stage of cognitive symptoms (Ally, 2012), and
recognition memory deficit is one of biomarkers of Alzheimer’s
disease (Russo et al., 2017; Goldstein et al., 2019). Cholinergic
neurons in the basal forebrain are highly vulnerable to the
effects of tauopathy in Alzheimer’s disease, and neuronal loss is
generated in the basal forebrain area, but cholinergic cell loss is
more severe in the nBM than in the MS/vDB (Geula et al., 2021).
To mimic the key components associated with the early stage
of Alzheimer’s disease, a selective elimination of cholinergic
neurons in the rodent basal forebrain has been conducted for use
as a valid model of Alzheimer’s disease at the early stage (Cutuli
et al., 2009, 2013; Okada et al., 2015). These model mice show
alterations in object recognition memory and object location
memory (Cutuli et al., 2013; Okada et al., 2015).

Alzheimer’s disease is characterized by neuronal
degeneration with the extracellular amyloid plaques and
intracellular neurofibrillary tangles (Murphy and LeVine,
2010). The amyloid plaques are composed mainly of amyloid
beta (Aβ) derived from the processing of amyloid precursor
protein (APP), and neurofibrillary tangles are formed by hyper-
phosphorylated tau protein (Zhang et al., 2006; Schmidt et al.,
2009; De Strooper, 2010; Murphy and LeVine, 2010). Transgenic
mouse models with some mutations in the genes encoding APP,
presenilin, and tau have been reported to show deficits in
object recognition memory (Dodart et al., 2000; Huang et al.,
2006; Middei et al., 2006; Hillen et al., 2010; Zhang et al., 2012;
Spilman et al., 2014; Grayson et al., 2015; Mehla et al., 2019).
Moreover, object recognition memory was impaired by the
intracerebroventricular injection of Aβ (Tsunekawa et al., 2008;
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Meunier et al., 2013). Deficits of object recognition memory in
these model mice were rescued by the treatment of donepezil as
an acetylcholinesterase inhibitor (Zhang et al., 2012), although
there are contradictory results in other studies (Tsunekawa
et al., 2008; Spilman et al., 2014). The impairments in object
recognition memory and object location memory in themodels
with cholinergic deletions have been reported to be recovered
by treatment with donepezil or rivastigmine (Cutuli et al., 2013;
Okada et al., 2015). Although it is still unknown how cholinergic
activity is related to the neuropathology and cognitive decline,
the object recognition memory task is a useful tool to study the
mechanisms underlying the pathology of Alzheimer’s disease,
and develop therapeutic treatments for dementia.

Future aspects

This review revealed that distinct cholinergic cell groups
in the basal forebrain are related to different types of object
recognition memory. Cholinergic neurons in the MS/vDB
innervating the hippocampal area are involved in object
location recognition memory. Cholinergic neurons in the
nBM projecting mainly to the entire neocortex have a
role in object recognition memory. The perirhinal cortex
plays an important role in object recognition memory, and
receives cholinergic innervation from both the MS/vDB
and nBM. Cholinergic activity in the prefrontal cortex is
also necessary for object recognition memory. It is needed
to determine which cholinergic cell groups projecting to
the perirhinal or prefrontal cortex contribute to object
recognition memory. Moreover, the contribution of cholinergic
interneurons in the striatum and neocortex remains unknown.
In addition, deficits in recognition memory are replicated
in various rodent models of several neurological disorders,
and the deficits can be rescued by cholinesterase inhibitors
that activate cholinergic activity. It is unknown how the
inhibitors work for the recovery of mnemonic dysfunctions
caused by the neuronal degeneration in Alzheimer’s disease.
Further experiments will help to explain how the distinct
cholinergic neurons could control the cholinergic projection

areas during the processes of object recognition memory.
Elucidating the cholinergic regulation of object recognition
memory will be useful for the development of therapeutic
treatments for dementia.
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