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Executive functions and motivation have been established as key aspects for

neurofeedback success. However, task-specific influence of cognitive strategies is

scarcely explored. In this study, we test the ability to modulate the dorsolateral

prefrontal cortex, a strong candidate for clinical application of neurofeedback

in several disorders with dysexecutive syndrome, and investigate how feedback

contributes to better performance in a single session. Participants of both

neurofeedback (n = 17) and sham-control (n = 10) groups were able to modulate

DLPFC in most runs (with or without feedback) while performing a working

memory imagery task. However, activity in the target area was higher and more

sustained in the active group when receiving feedback. Furthermore, we found

increased activity in the nucleus accumbens in the active group, compared with

a predominantly negative response along the block in participants receiving sham

feedback. Moreover, they acknowledged the non-contingency between imagery

and feedback, reflecting the impact on motivation. This study reinforces DLPFC

as a robust target for neurofeedback clinical implementations and enhances the

critical influence of the ventral striatum, both poised to achieve success in the

self-regulation of brain activity.
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Introduction

Neurofeedback (NF), as an operant conditioning of brain activity, has been largely performed
for different training purposes and in distinct experimental groups—initially with EEG
(Lévesque et al., 2006; Kouijzer et al., 2009) and, in the last decades, taking profit of the
greater spatial resolution of real-time fMRI (Weiskopf et al., 2003). It has also been applied in
several clinical conditions such as depression (Linden et al., 2012; Young et al., 2017; Mehler
et al., 2018; Takamura et al., 2020), stroke (Sitaram et al., 2012; Liew et al., 2016), obesity,
and overweight (Frank et al., 2012; Spetter et al., 2017; Kohl et al., 2019), neurodegenerative
disease (Subramanian et al., 2016; Hohenfeld et al., 2017; Papoutsi et al., 2018), chronic pain
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(DeCharms et al., 2005; Guan et al., 2015), ADHD (Alegria et al.,
2017; Zilverstand et al., 2017; Rubia et al., 2019), ASD (Ramot
et al., 2017; Pereira et al., 2019; Direito et al., 2021) and addiction
(Martz et al., 2020), with globally encouraging results. However,
a deeper understanding of the underlying cognitive strategies and
neurofeedback-specific neural networks is still required before fully
translating these experimental science efforts into rehabilitation in
clinical practice.

A number of key regions have been implicated in cognitive
processes related to neurofeedback, these including self-
regulation/control, learning, and reward, regardless of the brain
areas that are activated by the specific mental task (Emmert et al.,
2016; Sitaram et al., 2017; Paret et al., 2019). Three main networks
are involved in neurofeedback: (1) the fronto-parietal network
(FPN), also termed executive control network, which includes the
dorsolateral pre-frontal cortex (DLPFC) and posterior parietal
cortex (PPC); (2) the cingulum-opercular network (CON), also
known as the salience network, anchored on anterior insula (aI) and
anterior cingulate cortex (ACC); and (3) the basal ganglia network
(BGN). Thalamus and visual association areas are also involved
in neurofeedback processing, through their connection with the
aforementioned networks. CON underlies conscious perception of
feedback, and, in its interaction with the ventral striatum (from
BGN), also takes part in unconscious reward processing. Dorsal
striatum (from BGN) has been implied in neurofeedback procedural
learning. FPN is well established as a key component of the
neurofeedback network, being activated by the mental imagery task
itself (Zvyagintsev et al., 2013; Spagna et al., 2021), during strategy
execution period, but also during feedback processing along with
CON (Dewiputri et al., 2021). Our present work focuses on the core
of FPN, the dorsolateral prefrontal cortex (DLPFC).

The dorsolateral prefrontal cortex (DLPFC), a cluster of
functional brain regions identified in humans and other primates
is a key hub for executive functions (Elliott, 2003; Niendam et al.,
2012)—an umbrella term covering multiple high-order cognitive
functions, such as working memory, attention, cognitive flexibility,
action planning, and inhibition of inappropriate behaviors. Specific
functional contributions of DLPFC in executive functions include
maintenance of information for goal-directed activity, manipulation,
response selection and inhibition (Niendam et al., 2012; Rabinovici
et al., 2015). The large set of functional coverage makes impairments
in executive functions poor as a disease specific physiopathological
model but very attractive as a potential neurorehabilitation target.
If we could successfully train FPN in association with positive
clinical outcomes, it will have significant day-to-day functional
impact in a number of neurological and psychiatric diseases, where
executive dysfunction emerges (even if in a non-causal way) traduced
in impaired intellectual ability and disrupted adaptive behavior
(Enriquez-Geppert et al., 2013; Rabinovici et al., 2015).

Accordingly, the dorsolateral prefrontal cortex (DLPFC) has been
used as a neurofeedback training target both in health (Zhang
et al., 2013; Sherwood et al., 2016a,b; van den Boom et al., 2018;
Travassos et al., 2020; Yu et al., 2021; Weiss et al., 2022) and disease,
including depression (Takamura et al., 2020), anxiety (Lisk et al.,
2020; Morgenroth et al., 2020), overweight/obesity (Spetter et al.,
2017; Kohl et al., 2019) and craving (Karch et al., 2015, 2019). Most
of these studies were founded on the role of DLPFC in inhibition
of inappropriate behavior and/or top-down control (namely in the
interaction with the affective brain circuits), some of them performing

connectivity-based neurofeedback (Spetter et al., 2017; Lisk et al.,
2020; Morgenroth et al., 2020; Weiss et al., 2022). Here, similarly to
studies from Zhang, Sherwood and van den Boom research groups,
we target DLPFC because of its pivotal role in working memory.

In this sham-controlled single session study, we validate a rt-fMRI
neurofeedback training framework for DLPFC self-modulation using
a working memory paradigm on healthy subjects (without executive
dysfunction). The paradigm is based on a backward digit-span, a
working memory task often used in neuropsychological assessment,
adapted to a neurofeedback/imagery task by Zhang et al. (2013). In
our study, we now include both train and transfer runs, to evaluate
whether the participants are able to enhance the target activation
even without feedback and if neurofeedback runs improve this ability.
Furthermore, a recent machine learning mega-analysis pointed out
that a pre-training no-feedback run was one of the two factors
influencing neurofeedback performance (Haugg et al., 2021).

The second critical modification we introduced was the origin of
feedback signal in the sham group, which in our case were regions of
interest (ROIs) placed in the white matter, as opposed to the yoked
feedback used in Zhang et al. (2013) study and van den Boom et al.
(2018), and the n-back train without feedback in Sherwood et al.
(2016a,b). There is no consensus about the optimal control condition
for rt-fMRI NF studies, however feedback from an alternative brain
signal seems to control for most of the factors in order to establish
causality, namely, it conceptually demonstrates neurophysiological
specificity, in contrast with yoked feedback (Sorger et al., 2019).
In our working memory paradigm is very challenging to find an
independent brain region, considering the broad coverage of the
executive network and connectivity with other relevant networks,
such as the salience network and the default mode network (DMN),
and even subcortical structures and the cerebellum—circuits that
studies from Zhang’s group shown further to be modified by their NF
paradigm (Shen et al., 2015; Zhang et al., 2016). This was the rationale
to choose white matter as control ROI—an independent BOLD signal.
A possible drawback is that the lower amplitude (Gawryluk et al.,
2014) may derive a higher probability of participants becoming aware
of the non-contigency of neurofeedback signal, ultimately influencing
motivation.

A final contribution was the investigation of the temporal
properties of neurofeedback processing within the activation block
by extracting the mean BOLD signal time-courses of the target ROI.
We expect this could give us a better insight of possible differences
between neurofeedback and sham groups in the immediate response
to feedback and consequent dynamical adjustments inside the block.

In this study, we aim to engage the central executive network
(CEN), specifically the DLPFC, validating a potentially robust
workflow to be implemented in a number of clinical groups where
executive dysfunction plays a significant role, with individual, social
and economic impact. We test the ability of healthy subjects
to modulate this functionally defined target area through mental
imagery, using a working memory task. We compare these results with
the sham-control group, receiving feedback from a set of white matter
voxels evenly distributed in each participant’s centrum semiovale,
trying to disentangle the functional overlap of DLPFC as a key region
for neurofeedback processing, along with other critical networks such
as the reward system. Thus, we hypothesize that:

(1) The active NF group would be able to achieve greater control
over signal modulation in the DLPFC when compared to
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the sham-control group, given the correspondence between
feedback and mental strategy.

(2) Reward networks (CON and BGN) involved in neurofeedback
processing will significantly contribute to this difference in this
one single session experiment.

Material and methods

Participants

Twenty-seven healthy volunteers participated in this study.
Seventeen subjects were allocated to the active neurofeedback group
(10 male, mean age 27.8±4.2 years) and 10 subjects to the sham
neurofeedback group (5 male, mean age 26.2±2.9 years). All had a
normal or corrected-to-normal vision and no history of neurological
or psychiatric diseases. All participants except one were right-handed.
All gave informed written consent before participating, in accordance
with the declaration of Helsinki, and the study complied with the
safety guidelines for magnetic resonance imaging (MRI) research on
humans. The work was approved by the Ethics Committee of the
Faculty of Medicine of the University of Coimbra.

Experimental protocol

The experimental session was composed of an anatomical
run—where structural brain information is acquired—followed by six
functional runs—task-related runs where brain activation is inferred
by measuring the blood oxygenation level-dependent (BOLD) signal
(Figure 1). These runs consisted of a localizer run followed by five
imagery runs. The localizer run was used to functionally map the
DLPFC spatial mask used in the following runs as the neurofeedback
target region. The first and the last imagery runs were performed
without providing feedback information to the participant. The
scanning session lasted approximately 1.5 h, followed by a debriefing
questionnaire.

Functional localizer
The localizer task consisted of three conditions: a 1-back and

a 2-back condition distributed randomly in 10 blocks (five blocks
per condition), alternating with baseline blocks. Each block has
15 volumes and 15 digits, with five of them being targets and the
remaining 10 non-targets. Each digit was displayed for 400 ms.
Each block was preceded by the instruction to remember one or
two preceding numbers. This stimulus was created and presented in
Presentationr software (Version 20.1, Neurobehavioral Systems, Inc.,
Berkeley, CA, www.neurobs.com).

Participants were instructed to press a button when the number
displayed matches the one from one step earlier in the sequence (1-
back condition) or two steps earlier (2-back condition; specific task
instructions to participants are described in detail in Supplementary
Material). The total length of the run was 10.5 min, and participant
responses were recorded through an MR-compatible response box
(Cedrus Lumina LSC-400B).

For online ROI definition, we functionally targeted DLPFC
using the real-time fMRI software package Turbo-BrainVoyager 3.2
(TBV; Brain Innovation, Maastricht, The Netherlands). Real-time

preprocessing included 3D head motion correction (6 degrees of
freedom) compared to the first volume. Online statistical analysis of
incoming volumes was incremental, using a recursive least squares
general linear model (GLM) based on a design matrix automatically
created from the imported stimulation protocol and including
the convolution of the BOLD time course with a two-gamma
hemodynamic response curve (HRF).

Activation clusters were estimated, in a first approach, according
to the contrast “2-back” > “baseline” that usually resulted in
the highest percent of signal change (PSC). However, in some
participants, we found very large clusters of activation in DLPFC
(merging with pre-motor areas) with this contrast. In these cases,
switching to the “2-back” > “1-back” contrast allowed us to
delineate a more circumscribed effort-related cluster, associated with
cognitive-load and manipulation, and find a more accurate peak voxel
to center the rectangle drawn on multi-slice view of TBV. The defined
rectangle extended to the slice above and below (a total of three slices)
and the average of significant voxels was displayed in the time-course.
We generally considered ROIs appropriate as NF targets, when their
PSC was around 1% or more. Anatomical references were also taken
into account by an expert neuroradiologist (DP) to determine DLPFC,
guaranteeing it was located anterior to the premotor cortex and
superior to the planes including the lateral ventricles. All targets were
selected on the left hemisphere since participants were performing a
verbal working memory task during imagery runs (Emch et al., 2019).

For the sham feedback group, we selected between 18 and
24 functional voxels of white matter, evenly distributed per
hemisphere, in each participant centrum semiovale.

Imagery runs
The imagery runs included two conditions—“imagery” and

“baseline”—presented alternatively six times per run with an
additional “baseline” block at the beginning of each run, each
condition block lasting 30 s. During the neurofeedback runs,
participants were instructed to empty the thermometer during
“baseline” conditions and increase the thermometer bars during the
“imagery” condition. Subjects were instructed to use a cognitive
strategy of backward reciting the self-generated sequences sub-vocally
to increase the number of bars in the thermometer (Zhang et al.,
2013). The content, length, and difficulty of the sequences they
generated and the speed of recitation could be adjusted according to
the feedback. Instructions provided to the neurofeedback and sham
groups were identical and none of the participants was aware of the
existence of a control condition. For detailed instructions, as provided
to participants, please refer to Supplementary Material.

Debriefing
After the scanning session, participants answered a debriefing

questionnaire that included subjective questions about their feelings
during the acquisition (How did you feel during the NF session?),
the contingency between effort and feedback change (Did you feel
there was a correspondence between the used strategies and the given
feedback?) and the strategies they used (What was the maximum
number of sequences you could picture in each block? And themaximum
digit number? Which strategies worked better? And which ones did
not work?). An independent sample t-test was performed to evaluate
group differences in the number of digits and sequences generated by
the participants.
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FIGURE 1

fMRI session overview.

Data acquisition

MRI data acquisition was conducted on a 3T Siemens Magnetom
TrioTim scanner with a 12-channel head coil. For the anatomical runs
we used a high-resolution magnetization-prepared rapid acquisition
gradient echo (MPRAGE) sequence (176 slices; echo time (TE):
3.42 ms; repetition time (TR): 2,530 ms; voxel size: 1 × 1 × 1 mm;
flip angle (FA): 7◦; field of view (FOV): 256 × 256 mm).
Functional imaging was acquired with an echo-planar imaging (EPI)
sequence with 32 slices, in-plane resolution: 3 × 3 mm, FOV:
192 × 210 mm, matrix 64 × 70, slice thickness: 2.5 mm, FA:
75◦, TR = 2,000 ms and TE = 30 ms. Functional runs included
two “dummy scans” at the beginning of the acquisition (discarded
and not stored) that allowed the magnetization to stabilize to a
steady state.

Feedback calculation and presentation

During the neurofeedback runs, apart from the first baseline
block, visual feedback was provided in the form of a thermometer
that was updated every TR based on the mean ROI activation of
the neurofeedback target selected during the localizer run. In order
to correct for head movements across runs, we performed an intra-
session alignment (six degrees of freedom), using the first volume of
the localizer as a reference for all runs.

The thermometer was divided into 10 discrete levels with a
maximum value of 2.5%, where each level represented a given range of
percent BOLD signal change (0 for an empty thermometer and 0.25%
for each level). The feedback value fb for the current time point n is
calculated within each block given the current value val, a baseline
level bl (mean BOLD value in the target region, during the previous
“baseline” block) according to equation 1:

fb (n) =
val (n)− bl

bl
× 100 (1)

fMRI data analysis

Offline fMRI data analysis was performed using BrainVoyager QX
2.8 (Brain Innovation, Maastricht, The Netherlands). Preprocessing
steps included slice scan time correction, 3D motion correction
(6 degrees of freedom), temporal high-pass filtering (GLM Fourier
method, two cycles, i.e., a GLM with predictors that accommodate
sine and cosine functions with two cycles over the entire
time-course of the run), spatial smoothing using a 3D gaussian
kernel (FWHM = 6 mm), and normalization to Talairach (TAL)
coordinate space.

First-level analysis was performed using a GLM for each run.
The design matrix included a predictor for each experimental
condition convolved with the BrainVoyager’s default two-gamma
HRF, and confound predictors for the six motion parameters (three
translational and three rotational) and motion spikes (volumes with a
root mean square displacement greater than 0.25).

Second-level analysis was based on a random effects (RFX) GLM,
correcting for multiple comparisons with false discovery rate (FDR;
q = 0.005).

Localizer for DLPFC
A group activation map was generated for the localizer run

combining participants from the active and sham groups, using
RFX-GLM contrasting the “2-back” and “baseline” conditions (FDR-
corrected q = 0.005).
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Characterization of the target region
To characterize the target ROIs selected online for each

participant, we computed the t-value for the contrast of interest
(“2-back” > “baseline”) during the localizer run and estimated the
size (number of voxels) and the center coordinates of each ROI. To
measure the variability of ROI definition across participants from the
active group, we created a probability map of the overlap (%) between
the subject-specific ROIs.

DLPFC modulation across subject groups
First, we computed the t-value in DLPFC for the contrast of

interest (“imagery” > “baseline”) for all imagery runs in both groups.
We used this value as the measure of the participant’s ability to
modulate the target region.

To assess the effect of group assignment (between-subjects factor,
active neurofeedback group vs. sham feedback group) on DLPFC
modulation across the five runs (within-subject factor) we performed
a mixed-model ANOVA. To analyze if between group differences were
determined by neurofeedback and not only related with imagery task
performance (closed loop vs. open loop), we performed a two-way
ANOVA considering the group assignment as a fixed factor and runs
without feedback (average of train and transfer runs) and runs with
feedback (average of the three NF runs) as dependent variables.

To evaluate the existence of a within-session learning effect on
the active group, we performed a paired sample t-test between
modulation ability during the transfer and train runs for both groups.

Whole-brain analysis
We analyzed whole-brain statistical maps of the NF runs for the

active group. Using an RFX-GLM map, we contrasted “imagery” and
“baseline” conditions (FDR-corrected q = 0.005), revealing the brain
regions recruited by this cognitive process. We summarized the center
coordinates and t-values of each cluster.

Laterality index (LI) was quantitatively assessed using the LI-tool
(Wilke and Lidzba, 2007) over the whole brain (excluding the occipital
lobe), based on bootstrapped LI curves.

To further explore the mechanisms of contingent feedback, we
checked for whole-brain differences between the active and sham
groups during the neurofeedback runs. We used a standard repeated-
measures ANOVA in BrainVoyager with condition (“imagery” and
“baseline”) as within-subjects factor and group (active vs. sham)
assigned as between-subjects factor.

Event-related average responses

We examined the event-related average (ERA) responses of
functionally relevant ROIs extracted from the previous analyses. To
this end, the mean BOLD signal time-courses of the DLPFC and
ventral striatum were converted into PSC (signal variation relative
to the average BOLD value during the “baseline” condition). Then,
the time-course was segmented based on the onset and offset of each
“Imagery” condition block (we considered two volumes before the
onset and five after the end of each block to better understand the
temporal profile of the response). Finally, we averaged these segments
across trials and participants for each group, allowing for the between
group comparison of the response of each brain region.

Results

Characterization of the neurofeedback
target region (ROI Analysis)

Localizer for DLPFC
The definition of the subject-specific target ROI on the DLPFC

for both groups was performed based on the online statistical map
of the localizer run, contrasting the “2-back” against the “baseline”
blocks. Coordinates in Talairach space, number of voxels and t-value
for the contrast of interest of the selected ROIs for each participant are
provided as Supplementary Table 1.

In Figure 2, we display the probabilistic map for the target ROIs
used to provide feedback to the active NF group, from which we
can assess the degree of overlap of the ROIs defined online for each
participant of this group.

In the sham group, providing feedback from white matter ROIs
was variable and presented a positive display (thermometer with at
least one level) for almost 40% of the timepoints, although with lower
amplitude. Histograms representing the distribution of time points
(number of given feedbacks) by thermometer level (1–10) for all
blocks (baseline and imagery) in all the three neurofeedback runs are
presented as Supplementary Figure S1.

DLPFC modulation across subject groups
We did not find a significant interaction between group

assignment and runs (F(4, 22) = 1.617), p = 0.205) in the mixed-
model ANOVA. However, we found a significant effect for group
assignment (between-subject; F(1, 77) = 5.056, p = 0.034). Within
neurofeedback runs, post-hoc independent sample t-tests (with
Bonferroni correction) show significant differences in DLPFC activity
between groups in runs 1 (p = 0.024) and 3 (p = 0.012), as represented
in Figure 3.

When comparing runs with feedback and without feedback
(train and transfer) to evaluate group differences related to feedback
contingency (two-way ANOVA), we found a group assignment effect
(F(2, 24) = 3.860, p = 0.035) with significant difference between
groups only in neurofeedback runs (p = 0.014) on post-hoc pairwise
comparisons (with Bonferroni correction).

No significant differences were found on paired sample t-test
between train and transfer runs on the active NF group (Figure 4)
or in the sham group (no learning effect).

Exploring brain regions involved in working
memory and neurofeedback (whole brain
analysis)

Localizer and imagery in active group (N = 17)
Whole-brain analysis of the localizer run, considering the contrast

“baseline” < “2-back”, highlighted clusters on the DLPFC, premotor
cortex, supplementary motor area (SMA), basal ganglia, thalamus,
intraparietal sulcus (IPS), anterior insula, superior frontal gyrus
(SFG), superior vermis (cerebellum), and red nucleus/substantia nigra
(RN/SN; Figure 5).

Considering the active group during the neurofeedback runs
(baseline < imagery), we identified a significant overlap with
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FIGURE 2

Probability map of the target ROI selected online in the DLPFC for the active NF group. The map translates the degree of overlap (%) between the ROIs
defined for each participant.

FIGURE 3

Unpaired t-test between the active and sham group for each NF run, using Bonferroni’s correction. Dark color areas represent one standard deviation;
light color areas represent the 95% confidence interval for the mean. Gray dots represent data for each subject. The brown line is the mean for each
group.

the localizer run, except that in the imagery task an evident
left lateralization of fronto-parietal activations was also noted.
This visual impression was quantitatively assessed and the

laterality index confirms a predominantly left-hemispheric
activation (LI 0.26, above 0.2 considered as reliable evidence
for lateralization).

Frontiers in Behavioral Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1014223
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Pereira et al. 10.3389/fnbeh.2023.1014223

FIGURE 4

Unpaired t-test between train and transfer for active NF group. Dark color areas represent one standard deviation, light color areas represent the 95%
confidence interval for the mean. Gray dots represent data for each subject. The brown line is the mean for each group.

A summary of the activation clusters during neurofeedback
runs is provided in Table 1, together with the average of the
coordinates in Talairach space and t-value for the contrast
of interest. Figure 6 displays both positive and negative
activation clusters.

Active vs. sham
To assess the impact of providing contingent feedback, i.e., effect

of group assignment (active neurofeedback group vs. sham feedback
group), we analyzed the difference of mean modulation between
groups, as measured by the contrast of interest (“imagery” >

“baseline”), during neurofeedback runs. A cluster located on ventral
striatum, apparently in correspondence to nucleus acccumbens,
emerged from this exploratory between group comparison
(Figure 7).

Event-related average responses

DLPFC
To check for differences in the BOLD signal response of the

target ROI, we plot the event-related averages for the active and sham

neurofeedback groups in Figure 8. Both groups show an activation
peak at the beginning, but only the active neurofeedback group was
able to sustain high activity levels until the end of the block.

Ventral striatum
The same analysis was applied to the cluster on the ventral

striatum (Figure 9), showing a PSC increase at the beginning of
each block for the active neurofeedback group, returning to basal
levels at the end of the block, and a negative response for the sham
neurofeedback group.

Debriefing

In the debriefing questionnaire, all the subjects in the active
neurofeedback group perceived a correspondence between the
given feedback and the imagery task. Some of these felt that
this correspondence was independent of the strategies they used.
Most participants followed the suggested imagery task for activating
the DLPFC (inverted recall of self-generated numeric sequences),
although some reported to rely more on sequence visualization and
others on mental calculation. The reported number of digits varied

Frontiers in Behavioral Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1014223
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Pereira et al. 10.3389/fnbeh.2023.1014223

FIGURE 5

Localizer RFX map for N = 27. Activation clusters include regions integrated in executive functions network, namely DLPFC, premotor cortex,
supplementary motor area (SMA), basal ganglia, thalamus, intraparietal sulcus (IPS), anterior insula, superior frontal gyrus (SFG), superior vermis
(cerebellum), and red nucleus/substantia nigra (RN/SN).

TABLE 1 Clusters fromWhole-Brain Analysis, active feedback group, imagery> baseline, FDR (q = 0.005), min cluster size 20 voxels, MNI coordinates of peak.

Area (BA) X Y Z t-value of peak voxel

Right-AngGyrus (39) 53 −64 28 −7,799,764

Right-Broca-Operc (44) 34 16 15 9,836,548

Right-Insula (13) 41 −12 −3 −7,094,061

Right-PreMot+SuppMot (6) 26 −12 64 937,252

Left-PreMot+SuppMot (6) −47 5 36 11,785,719

Outside defined BAs 4 56 42 −5,892,329

Left-PreMot+SuppMot (6) −4 −22 50 −10,484,083

Right-DorsalACC (32) 0 52 6 −7,503,253

Left-AngGyrus (39) −39 −52 46 9,083,226

Left-dlPFC (dorsal; 9) −40 28 40 8,301,716

Left-PreMot+SuppMot (6) −47 5 36 11,785,719

Left-AngGyrus (39) −55 −63 24 −7,385,214

Left-SupTempGyrus (22) −57 −5 −10 −7,367,359

from 4 to 20 and the number of sequences from 2 to 12, per
block.

In the sham neurofeedback group, eight subjects (80%)
reported no apparent association between feedback and
imagery tasks. These participants tried different strategies,
such as recalling numbers in a different language, repeating
backwards the name of family members, and mentally
playing an instrument. The reported number of digits varied

from 3 to 16 and the number of sequences from 1 to 15,
per block.

The number of digits and sequences did not
differ significantly between groups (independent
sample t-test, p = 0.496 for digits and p = 0.784
for sequences).

A table with participants’ answers to the debriefing questionnaire
is provided as Supplementary Table 2.
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FIGURE 6

Whole-brain statistical maps of the NF runs for the active group. Positive clusters integrating the executive network with a left lateralization of fronto-
parietal activations and negative clusters integrating the default mode network namely mOFC, CCGp and precuneus, middle temporal gyrus (MTG),
angular gyrus and parahippocampal cortex [q(FDR) on the neurofeedback runs].

FIGURE 7

Whole-brain exploratory analysis (mixed ANOVA, p < 0.005, non-corrected) between active NF and sham groups. Positive cluster in ventral striatum
bilaterally.

Discussion

In this study, we assessed the feasibility of self-regulating the
activity of the DLPFC using a backward reciting digit imagery task
and explored the neural underpinnings of working memory imagery
and neurofeedback itself.

Left lateralized working memory network is
elicited by the imagery task

The group activation maps showed the expected recruitment of
regions of the FPN (including DLPFC and PPC), both during the
localizer and imagery runs. When comparing these two tasks, the
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FIGURE 8

Event-related fMRI time courses considering the neurofeedback target region for the active neurofeedback group (orange line) and the Sham feedback
group (blue line); the shaded regions correspond to the standard error of the mean (SEM). The first dotted vertical lines indicate the up-regulation block
onset and the second to the end. DLPFC exhibits greater activation for the active feedback and sham feedback groups. Both groups present an increase
at the beginning of the block, but only the active neurofeedback group sustains high activity levels; the Sham feedback group returns to baseline levels
after a few seconds.

imagery results are left lateralized, as confirmed by the calculated
laterality index (0, 26). This is consistent with the previous knowledge
regarding the neural correlates of verbal working memory tasks.
N-back task (localizer) elicits bilateral activation of lateral pre-frontal
and parietal regions with lateralization possibly varying according
to age and task difficulty (Owen et al., 2005; Rottschy et al., 2012;
Emch et al., 2019). Backwards reciting task has a correspondent
left lateralized functional map (Smith et al., 1996), regardless
if the self-generated sequence is numerical or alphabetical, and
with backward recitation requiring additional neural resources than
forward recitation, mainly in parietal areas (Zhou et al., 2006), both
used in our paradigm.

Additionally, functional maps showed (1) positive clusters
in basal ganglia and thalamus, also known to be involved in
working memory (Lewis et al., 2004); and (2) negative clusters
in DMN representative of the well-known anti-synergic coupling
(with negative correlation) of FPN-DMN. Both the interaction
between FPN and DMN and the cortico-subcortical connectivity
has already been shown, by Zhang’s group, to be modified
by rt-fMRI working memory neurofeedback, with consequent
performance modulation on post-training (Shen et al., 2015;
Zhang G. et al., 2015; Zhang Q. et al., 2015; Zhang et al.,
2016).

Active NF group has higher and more
sustained signal modulation of DLPFC

All participants from the active group and the majority
from the sham group were able to increase DLPFC activity
already in the initial training, before neurofeedback runs,
indicating that the proposed imagery task, in a population
without executive dysfunctions, is robust enough to
recruit and maintain DLPFC activity without any type of
feedback.

However, we also expected that the active NF group would be
able to achieve greater control over signal modulation in the DLPFC
when compared to the sham-control group, given the correspondence
between feedback and mental strategy (Sorger et al., 2019). Indeed,
our results show a significant difference in DLPFC activity during
the neurofeedback runs, being higher in the active NF group. On the
contrary, such differences were not found during the runs without
feedback (train and transfer), denoting that closing the neurofeedback
loop with valuable information increases the mean target ROI
activation, a result that is consistent with improved self-modulation
ability. Behaviorally, this was also implicit in the fact that only
participants from the sham group tried different imagery strategies,
while in the active group all maintained the provided suggestions,
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FIGURE 9

Event-related fMRI time courses considering the cluster on the ventral striatum for the active neurofeedback group (orange line) and the Sham feedback
group (green line); the shaded regions correspond to the standard error of the mean (SEM). The first dotted vertical lines indicate the up-regulation block
onset and the second to the end. The time courses show a positive transient response for the active neurofeedback group during the up-regulation
condition, particularly at the beginning of each block, followed by the return to baseline activation values; on the opposite, the results show a negative
response for the Sham group.

despite equal instructions for both groups. This is a reflection of
the associative learning framework supporting neurofeedback, since
reinforcement of the used mental strategy occurs when feedback acts
as a reward.

In addition to previous neurofeedback studies engaging DLPFC,
we demonstrate that active and sham neurofeedback groups differ not
only in the modulation amplitude but also in the way DLPFC activity
progresses along the NF run. Active neurofeedback participants were
able to sustain higher levels of BOLD activity along all the run,
while in the sham group it drops to null values after nine volumes
from the imagination task onset. Again, this is probably due to
the acknowledgement, as the run proceeds, of the non-contingency
between their effort and the represented signal change.

Another study using DLPFC as a neurofeedback target, found
differences in the dynamical regulation of physiological DLPFC
activity after neurofeedback training, although without a modification
of target activation levels (van den Boom et al., 2018). In this case,
there was a reduction in time needed to return to baseline, suggesting
that is possible to deactivate DLPFC in a deliberate way. They also
stated that control of the elevation phase is more difficult to achieve
with the neurofeedback since the execution of a WM task immediately

increases to maximum the BOLD signal. In our data, during feedback
runs, we also find an activity peak approximately at 6–8 s both for
active and sham groups and the main difference arises after, on the
ability to sustain it and not returning to baseline. However, van den
Boom et al. (2018) only presented their data on the post-test, so
we cannot compare the dynamics of DLPFC BOLD activity during
feedback from this study with our own. Another important difference,
since we are arguing on the contingency relevance, is that in their
study sham group received feedback from another participant, while
in our protocol feedback it was derived from white matter voxels.

Motivation may be the key factor
differentiating group performance

In line with our hypothesis that was mainly the motivation
differentiating both groups, when we performed an exploratory
whole-brain analysis we found a single cluster in the ventral striatum
(in particular, nucleus accumbens) with higher activation in NF
group compared to sham group on NF runs. The ventral striatum
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has been pointed as responsible for unconscious reward processing
in NF, with anterior cingulate cortex and anterior insular cortex
being involved in the conscious counterpart of reward and NF
perception, as reviewed by Sitaram et al. (2017). The nucleus
accumbens, in particular, is recognized as key integrative region
of both motivational and learning-memory circuits, receiving input
from cortical areas (including DLPFC), limbic system, and midbrain
(substantia nigra/ventral tegmental area) and, in turn, selecting
appropriate responses (Camara et al., 2009).

The event-related time course analysis performed on this cluster
during NF runs showed a positive response at the beginning of
each block for the active NF group contrasting with a negative
initial response and during almost all the block for the sham group
during NF runs. In the active NF group, the BOLD signal follows
the predicted pattern, peaking at approximately 6 s and then slowly
returning to baseline, according to previous reports that nucleus
accumbens activity is time-limited (i.e., not sustained) by dopamine
metabolism (Knutson and Gibbs, 2007; Greer et al., 2014). In the
sham group, although there is an initial overshooting (lower than
the active group), it is followed by a negative response all along
the block. Interestingly, this relationship inverts on down-regulation
(baseline), where participants in the sham group may percept an
apparent causality between their effort to zero the thermometer and
a BOLD sign that actually does not represent cortical activity (with
lower amplitude). When neurofeedback is taken from the equation
(train and transfer runs) the difference between groups on time
course analysis dissolves, as expected. Furthermore, subjectively, all
the participants in the active group perceived a correlation between
feedback and performance—against only 20% of the sham group, with
subjects reporting frustration along NF runs.

Conversely, striatal and midbrain structures included in the
reward network have been tested as the direct target in neurofeedback
experiments, searching for therapeutic effects on diseases affecting
the mesolimbic dopamine system. These studies offer a mirrored
perspective which complements our results, showing how these
structures contribute to successful learning in neurofeedback and
how they are linked to other brain regions. The experiment of
MacInnes et al. (2016) is relevant to understanding temporal BOLD
signal dynamics during neurofeedback and how directly targeting
the mesolimbic dopamine system contributes to learning volitional
cognitive strategies. They also found sustained activation in the target
region (ventral tegmental area—VTA) during all the 20 s of the
trial as a proof of improvement, but which was only present in the
post-test run, reflecting a learning effect (which was not present in
our study). During neurofeedback runs (compared to pre-test) they
showed higher connectivity VTA-caudate, VTA-hippocampus and
NAcc-caudate, also emphasizing the role of NAcc in neurofeedback
training targeting the reward network. A recent article (Hellrung
et al., 2022) similarly targeting VTA/SN provides a more profound
investigation of which specific neural mechanisms are related to the
transfer success when training VTA, showing that the most successful
individuals had stronger activation of cognitive control areas, mainly
the prefrontal cortex, during transfer. That is, higher individual
reward-related sensitivity in the DLPFC increases the chance of
neurofeedback training success. Links between these networks are
bidirectional and it has been proved that dopamine action in DLPFC
sustains working memory performance (Arnsten et al., 2015). In
conclusion, associative learning crucially contributes to real-time
fMRI neurofeedback effects, as also suggested by our results.

Implications to advances in the RT-fMRI
neurofeedback field and future directions

Previous neurofeedback studies targeting DLPFC for working
memory enhancement (Zhang et al., 2013; Sherwood et al.,
2016a,b; van den Boom et al., 2018), and also our own,
show that DLPFC readily activates with the explicitly suggested
imagery task, with improved self-modulation ability provided by
neurofeedback. However, in contrast to our study, none of the
previous studies investigate motivational effects or the participant
perception of feedback contingency and how it may influence NF
outcomes. Directly linked to this issue, the choice of an adequate
control condition is being highly debated in the neurofeedback
community and also varied across studies. It is suggested that
an ideal control must minimize the likelihood of placebo effects,
while maintaining neurophysiological specificity and promote equal
motivation/perception of success (Sorger et al., 2019). However, it is
particularly challenging when targeting such a key core network and
hub (as the executive network and in particular the DLPFC, which
are efficiently activated by a working memory imagery task and by
neurofeedback processing itself), to find a control ROI regulated as
easily, with similar signal properties, while not being related to it. That
is, both the sensitivity and the specificity of the control region are key
aspects to consider (Sorger et al., 2019).

In our study, we established a link between motivational aspects
and DLPFC self-modulation through rt-fMRI neurofeedback.
Notably, although sham participants could not identify a
correspondence between used strategies and given feedback, all
except one were able to provide an answer to the last two questions of
the debriefing, discriminating better and worse strategies. Also, the
number of digits and sequences did not differ significantly between
groups, suggesting that both were equally engaged on the imagery
task. Another critical point is that none of the participants was aware
of a control condition, that is, they did not know that receiving
false feedback was a possibility in this type of experiment (as they
were naïve to neurofeedback experiments). In this sense, our results
suggest that the perception of non-contingency did not affect effort,
perseverance on the task, or the belief that the feedback was real, but
had a motivational impact, which is supported by fMRI data.

Perception of contingency is vital for the operant conditioning
that is a foundational principle of neurofeedback and we find
motivational aspects difficult to be removed from the equation, at least
in neurofeedback tasks targeting executive functions. Critically, they
must be considered when reporting and interpreting neurofeedback
results, having implications on possible adjustments to achieve
optimized experimental design and, ultimately, in translation to
clinical implementation.

Limitations

We were not able to prove a learning effect from our
neurofeedback training, with both groups equally performing in the
transfer run. This was anticipated when we designed a single-session
neurofeedback experiment, being our main goal to study the general
capacity of individuals to regulate DLPFC (feasibility test). Although
the optimal number of neurofeedback sessions is not yet established
in the literature (possibly varying according to target and population),
it is consensual that a single session will hardly induce changes
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in neural processes (Thibault et al., 2018; Paret et al., 2019; Fede
et al., 2020). The fact that our participants were already able to
modulate DLPFC activity in train run, alludes to a possible initial
ceiling effect, precluding detection of within session learning and
perhaps contributing to justify the equal performance on transfer.
Furthermore, we did not control for fatigue or habituation, which may
also interfere in the results of the final run.

Another limitation is that our paradigm was not specifically
designed to unscramble task-dependent DLPFC BOLD-magnitude
from the engagement on neurofeedback process itself, namely in the
preparation and execution of mental strategies (Skottnik et al., 2019).
Sherwood et al. (2016b) showed that left DLPFC activity evolves
interchangeably in closed and open-loop neuromodulation across
training. However, we argue that the cognitive control globally linked
to neurofeedback training is equally present for sham feedback, as
previously reported by Ninaus et al. (2013), so that the differences we
found in DLPFC were related to the imagery task.

Here, we did not correct for physiological artifacts in feedback
signal computation. As far as we know, there is no gold standard for
the use of derivatives of cardiac and respiratory signals as confounds
in real-time. However, the impact of these regressors has been studied
in recent experiments performing connectivity-based neurofeedback
(Weiss et al., 2020). With similar objectives, the use of a control region
has been applied to account for global fluctuations (Dewiputri and
Auer, 2013).

Finally, our results on reward network during neurofeedback
training derived from a whole-brain exploratory analysis, demanding
further corroboration in a larger sample and with different target
areas. Here, we did not present a sampling plan. Since our study is a
proof-of-concept, the sample size rationale was based on the literature
of previous NF studies targeting DLPFC for executive functions
enhancement (Zhang et al., 2013; Sherwood et al., 2016a,b; van den
Boom et al., 2018).

Future perspectives

The present results suggest that neurofeedback promotes not
only greater signal modulation of DLPFC, but also a more sustained
activity of this target region along the neurofeedback runs. This ability
seems associated with motivation, since: (1) differences dissolved
when neurofeedback is removed; and (2) when comparing functional
maps from active NF and sham group, we found a single cluster
located on the ventral striatum, responsible for unconscious reward
processing.

DLPFC was easily activated by all subjects in most of the
runs (with or without feedback) and is clearly modulated by
neurofeedback, with the critical involvement of the reward network.
It is also a large and superficial brain area, easily accessible by other
technics (such as EEG, MEG or fNIRS), which makes it an ideal
target for training transfer. Its clinical potential is reinforced by
the important role that DLPFC plays in many high-level cognitive
functions. Thus, alterations to its normative functioning are linked
to the cognitive impairment found in a number of neuropsychiatric
disorders, which ultimately largely impacts individual functional
capacity and independence. Taking all together, DLPFC emerges as
a clinically-relevant neurorehabilitation and/or neuroenhancement
target, that deserves future translational research in the neurofeedback
field.
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