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Generalization of navigation
memory in honeybees

Eric Bullinger1*, Uwe Greggers2 and Randolf Menzel2*
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2Neurobiologie, Freie Universität Berlin, Berlin, Germany

Flying insects like the honeybee learn multiple features of the environment for

e�cient navigation. Here we introduce a novel paradigm in the natural habitat,

and ask whether the memory of such features is generalized to novel test

conditions. Foraging bees from colonies located in 5 di�erent home areas were

tested in a common area for their search flights. The home areas di�ered in

the arrangements of rising natural objects or their lack, and in the existence or

lack of elongated ground structures. The test area resembled partly or not at all

the layout of landmarks in the respective home areas. In particular, the test area

lacked rising objects. The search flights were tracked with harmonic radar and

quantified by multiples procedures, extracting their di�erences on an individual

basis. Random search as the only guide for searching was excluded by two model

calculations. The frequencies of directions of flight sectors di�ered from both

model calculations and between the home areas in a graded fashion. Densities

of search flight fixes were used to create heat maps and classified by a partial

least squares regression analysis. Classification was performed with a support

vector machine in order to account for optimal hyperplanes. A rank order of well

separated clusters was found that partly resemble the graded di�erences between

the ground structures of the home areas and the test area. The guiding e�ect of

elongated ground structures was quantified with respect to the sequence, angle

and distance from these ground structures. We conclude that foragers generalize

their specific landscape memory in a graded way to the landscape features in

the test area, and argue that both the existence and absences of landmarks are

taken into account. The conclusion is discussed in the context of the learning

and generalization process in an insect, the honeybee, with an emphasis on

exploratory learning in the context of navigation.

KEYWORDS

landmark learning, orientation flight, observational learning, matching landmarks,

random search, elongated ground structures

1. Introduction

Successful navigation requires forming a lasting memory of the locations and identities

of significant objects in the environment in relation to each other and a compass. Multiple

perceptual systems are involved in probing the world during navigation, and vision is usually

the most important sense in further reaching navigation. Recognizing and storing the spatial

relations of objects requires reference systems of two kinds, egocentric and environmental

(or allocentric). Egocentric references include view point memories, path integration (or

dead-reckoning) and body relations to a geocentric reference like the sun compass (Wehner

et al., 1996; Collett and Rees, 1997; Collett et al., 2003). Environmental (allocentric)

references structure memory such that the spatial relations between egocentric and

geocentric references as well as the spatial relations between identified objects are stored. The

level of integration between egocentric and allocentric references in insects, and particularly
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in honeybees, is under debate (Collett and Graham, 2004).

The underlying neural processes may be conceptualized as the

activation of multiple isolated ad-hoc procedures or as the retrieval

of a concise navigation memory. In the latter case, generalization

tests may provide us with hints about the level of integration across

the multiple neural processes involved. Support for this view comes

from multiple observations in test conditions in which close visual

cues at a feeding site were systematically changed both during

training and testing in order to uncover higher order memory

processing (Giurfa, 2003, 2015). In these experiments, bees were

asked whether they generalize across learned cues that can be

discriminated but contain hidden parameters that binds them to

categories, i.e., learning of bilateral symmetry (Giurfa et al., 1995),

matching-to-sample (Giurfa et al., 2001).

Landscape memory acquired during exploratory orientation

flights and foraging flights in honeybees has been characterized

so far mostly by isolating perceptual and procedures components

(e.g., path integration, matching of visual images), and were

mostly tested separately often even not over dimensions of natural

navigation. Here we apply a different approach by characterizing

the partial use of the acquired landscape memory in the home

area in a novel test area that differs in its landscape structure

more or less, a procedure called generalization in learning theory

(Blough, 1975; Kehoe, 2008). Animals from a colony located at

a different site (its home area) are transported into a test area

that partially resembles landscape features on the ground but

differs drastically with respect to rising objects both close by

and at the horizon (Figure 1, see also Section 4). Five different

home areas were chosen, and all animals were released at the

same place in the test area. Four home areas were so far away

from the test area that no test bees ever came close to the test

area. One home area was located 1.6 km away from the test

area, and indeed a few of these animals managed to fly back

to their home area. These few animals were not included in

our analyzes.

All animals were experienced foragers having calibrated their

sky compass and visual odometer, and learned the multiple

landscape features for successful homing. The learning flights of

the test animals were not recorded due to technical limitations, but

we are safe to assume that their intensive exploration and foraging

activity prior to testing established a strong navigation memory

(Capaldi et al., 2000; Menzel et al., 2005; Degen et al., 2015, 2018).

It is known that foragers transported into an unknown area return

multiple times to the release site (Dyer, 1996; Menzel et al., 1998),

possibly applying search routines that include random components

and possibly also innate guidance components with respect to

compass cues and landscape features. Random search patterns have

been well analyzed in the desert ant Cataglyphis (Wehner and

Srinivasan, 1981), but were not addressed yet for the honeybee in

the dimension of natural navigation. Thus, we expect that animals

from different home areas will perform search flights with multiple

returns to the release site with random components directions and

distances explored but possibly also some structured flights related

to landscape features. Most importantly, the search flight patterns

of animals from different homes areas would not differ if only

these processes guide them. However, if the navigation memory

acquired in their home area can at least be partially generalized to

the features experienced in the test area, their behavior will differ

from each other. We argue that the generalization process may

motivate them to explore some landscape features in the test area

more intensively. The local density of exploration may thus reflect

a generalization effect that may support the notion of a concise

navigation memory.

The navigation memory established in the 5 home areas will

differ due to the layout of the respective landmarks, potentially

resulting in different search patterns in the same test area

(Figure 1). Thus, a similarity measure based on the search patterns

may reflect components of the navigationmemory.We hypothesize

that generalization indicates a form of navigation memory based

predominantly on salient elongated landmarks. Matching of stored

views of the panorama with views in the test area should play no

or little role in our experiments because of the drastic difference

of panorama between the home areas and the test area for four

of the five home areas. The same will apply to localized rising

landmarks because there were none such landmarks in the test area.

Ground structures, however, may influence their search flights. In

the test area, the animals may thus identify features preferentially

on the ground that partially resemble features they had learned

in their home area, and thus they may generalize between such

features. Reduced generalization may also depend on the lack of

landscape features the animals has learned in the home area. These

hidden effects of generalization need to be kept inmindwhen trying

to relate physical characters of the home area with those of the

test area.

First, we shall examine whether the search flights follow

a random search strategy running two mathematical models.

After showing that random flight alone cannot explain

the search behavior, we find that the search flights differ

between animals from the different home areas. We next

asked about the impact of the elongated ground structures

in the test area. Finally, we quantify the differences in

search strategy of animals from the different home areas and

compare the effects by analyzing the differences between the

elongated ground structures of the home areas with that of the

test area.

2. Results

2.1. Analytical procedure

The statistical analysis proceeds as follows (see Figure 2 for an

illustration). First, specific features are calculated individually for

each bee. Examples are the relative time spent in one of 16 cardinal

directions (Section 2.2), heat map analysis (Section 2.3), or time

spent near a ground structure (Section 2.4). The distribution of a

specific feature among all bees of a group, visualized as boxplot,

is compared between any two groups to identify statistically

distinctive properties of the flight paths. A mathematical model

generating random flight paths (see Section 2.2) was developed and

utilized to study the randomness of the observed bees (Figure 3B).

2.2. Directional analysis of model-based vs.
real search patterns

The basic search strategy of all animals released at the

unexpected and unknown site in the test area consisted of
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FIGURE 1

Areal views of the test area (F) and the 5 home areas (A–E). The release site R in the test area is marked with a red star, and the location of the radar

with a red dot. The locations of the hives in the five home areas are marked with blue pentagons. The elongated ground structures in the test and

home areas are highlighted with orange lines. The scale in each subfigure corresponds to 200m. IRC, irrigation channels. Notice that the ground

structures in the test area are more similar to home areas (A, B) than to (C–E), and that home areas (D, E) are highly di�erent from the test area and

from each other. Most importantly, the home areas di�er from each other and the test area not only in the ground structures, but also in the

panorama and the distribution of rising objects.

multiple returns to the release site via multiple loops ranging

over different distances and in different directions (Figure 3A). No

systematic sequences of growing distances and changing directions

were apparent. One may assume, therefore, that the bees just

performed random search flights. We tested this question by

running two models of random search. Our model calculations

assumed multiple returns to the release site with randomly directed

loops of increasing size (Figure 3B). These search paths were

generated based on a modified version of the ant model by

Wehner and Srinivasan (1981) (see Section Methods for the

details). The S model bees include the sector not covered by

the radar (radar blanking), while the R bees paths are identical

to the S bees, but excluding the fixes in the radar blanking

(Figure 3B). Figure 3C shows all fixes of all real bees together with

the assumed sector covered by the radar that captures over 99.5%

of the fixes.

If bees from the 5 different home areas (see Figure 1 for the

layout of the landmarks) would apply a random search strategy

only, they should explore the area around the release site about

equally frequently and no differences would be expected from the

model R or S simulated bees. In a first step we compared the

relative number of fixes in 16 angular sectors around the release

site by normalizing it in each sector to that of the simulated bees

of model R on the level of the individual bees from the 5 home

areas and those of the modeled “bees” in model S. We chose the

results of model R because it takes into account the bias of no fixes

in the area not scanned by the radar, the radar blanking sector.

Figure 4 shows the relative proportions of flight directions for the

bees from the five home areas (A–E) and the simulated bees in

the models R and S. These relative distributions taken together

for all distances were statistically analyzed using the Measure

of Effect Size (mes) based on Cohen’s U3 test for two samples

(Cohen, 1988). Figure 4, Supplementary Data Sheet S2 contains all

directions as well as statistical analyzes with the Kruskal-Wallis

test.

Significant differences according to the measures of effect size

as expressed by ∆mes were specified for the three threshold values

≥ 0.1, 0.2, and 0.3, and these values are given in Figures 4A1,

A2 for two examples (NW and SSW) of the 16 directional sectors

together with the relative frequencies per bee of the directions for

the 5 groups of test bees and the “bees” of the two models, R and

S. The full set of the results of all 16 directional sectors are given in

Supplementary Data Sheet S2. Although the radar blanking implies

a dominance of flights into the N–E sector, several bee groups

spent more time in south-western direction as compared to the

R bees (Figure 4C). The bees from the different home areas differed

in their relative directional distributions both in comparison with

that of the models and between the 5 test groups as indicated

by the pairwise measure of effect size (Figure 4B). The respective

numbers of statistically significant cases for the measures of effect

size are much more frequent with a total number of 183 including

the two models, and 31 between the 5 groups of test bees only,

where significant means p ≤ 0.01 or ∆mes ≥ 0.2. The measures

of effect size shows significant differences between 18 out of

21 pairs, the exception here are A vs. B, A vs. C, and C vs. E

(Figure 4B).
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FIGURE 2

Illustration of the analysis procedure. Step 1: The flight path of each bee is used to calculate a number of features (the black, red and blue boxes),

compressed in vertical direction for illustration purposes. These features are Directional analysis Relative time spent in each of 16 cardinal directions,

relative to the release site→ n = 16 features, Heatmap analysis Relative time spent in 19 ·18 = 342 squares of 100m times 100m→ n = 342 features,

Heatmap analysis with PLS Partial least square projections of the 342 heatmap squares → n = 3 features, Analysis of edges Relative time spent near

each edge, in five distance ranges (4 · 5 = 20 features), for each of these also the relative time spent in one of six angle ranges (additionally

4 · 5 · 6 = 120 features), thus in total → n = 140 features. Step 2: The distribution of each feature within the bees of each of the seven groups (A–E, R,

S) is visualized by boxplots (same color as feature, e.g., 1A stands for Feature 1 of all bees in Group A). Step 3: The feature distributions are statistically

compared using measure of e�ect analyzes. Bottom row Some of the features of Step 1, at the example of Bee A01: angular histogram of the

directional analysis (left), heatmap (middle), and time spent near edges (right). Significance levels: *** ∆mes ≥ 0.4, ** ∆mes ≥ 0.3, * ∆mes ≥ 0.2.

2.3. Quantifying the generalization e�ect
on the basis of the spatial distribution of
radar fixes

We constructed a 19 × 18 matrix of equally sized tiles

(100 × 100m, numbered 0–I in W–E and 0–H in N–S

direction, with Tile 99 centered at the release site). Then,

each bee’s flight path fixes were interpolated and a smoothing

filter applied, as described in Section 4.3.2, resulting in

a spatially discretized heat map per bee, see Figures 5A1,

A2 for two examples. Further results of this analyzes are

given in Supplementary Data Sheet S5 (significance of each

one of the 19 · 18 = 342 tiles, as in Figures 5B1–B3),

Supplementary Data Sheet S5 (pairwise comparison), and

Supplementary Data Sheet S5 (comparison of one group to all

others).
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FIGURE 3

The structure of search flights. (A) Example of a bee’s search flight (Bee 05 from Home Area E). (B) Example of a simulated bee’s flight. Two models

were run, Model S with search loops in all directions (black and blue trajectories) and Model R in which fixes outside the radar range (dashed line)

were excluded (only blue parts of the trajectories). (C) All fixes of all search flights plotted together with the radar range(green dashed line) with the

release site at the origin. Fixes in the range in black, in blue the approx. 0.45% outside that range (in proximity of the radar, south of the radar range).

The dashed line (red, cyan, magenta and yellow) highlight the edges (elongated ground structures) of the test site. Red dot: radar site, Red star:

release site, Green arrows: direction of flight.

Figures 5B1–B3 show three example of the distribution of the

heat map value, were the boxplots show the distribution of the

frequency of the filtered fixes in one heat map box, sorted by group,

for the others, see Supplementary Data Sheet S4. Several results are

obvious. First, the homogeneity varies by group and by box, e.g.,

compare the very homogeneous Groups B and D in Box 48, Groups

R and S in Box 99 as well as Group A and E in Box E7 (small

interquartile range, i.e., height of the box), to the heterogeneity

of Group C in Box 48 or Group B in Box E7 (large interquartile

rage). For each box and each pair of groups, we calculated the

∆mes, see Supplementary Data Sheet S5. Figures 5C1, C2 show the

number of groups that can be distinguished using a single heat

map box, when setting as threshold ∆mes ≥ 0.2, i.e., significance

level ∗∗. In both cases, model group S was ignored as those bees

can easily be distinguished as they are the only ones with fixes

outside of the radar range. Figure 5C2 only compares the real bees

among themselves. Several boxes allow for discriminating many

pairs of groups, for example Box 96 and A6, but many other

boxes are useful for discrimination of a few pairs (yellow colored

boxes). No clear pattern is evident. When including Group R in the

comparison, as shown in Figure 5C1, many more boxes are useful

for discrimination of the groups, i.e., allowing the discrimination

of Group R to the real bees, Groups A–E. Here, boxes further away

from the release site, situated in Box 99, are more informative then

when comparing only bees in Groups A–E. We conclude that the

spatial distribution of fixes differs between the five home areas and

cannot be explained by random flights or equal guidance of all test

animals by landscape features of the test area.

2.3.1. Partial least squares regression analysis
To quantify the generalization effect, we applied a variant

of principle component analysis (PCA), a partial least squares

regression (PLS) analysis (see the Method/Computation, Section

4.3.2), to the heat map data with spatial discretization as shown

in the previous section, aiming to quantify a similarity-difference

gradient of the unknown guidance parameters.

PLS estimates a linear model fitting the predictor X, here

the sampled spatial distribution data (342 dimensions) for each

of the 66 bees, and to the observation data Y (here the seven-

dimensional, binary selector of the home area of each of the 66

bees). In comparison to PCA, PLS’s advantages are that it can deal

with correlations in the rows of the predictor matrix and that it

takes Y directly into account, while PCA only works on X. Similarly

to PCA, the PLS’s principal components can be used to obtain

a reduced order linear model. We then analyzed the three most

relevant components for each bee. We performed three different

PLS analyzes. The first included all seven groups (five test and

both model groups R and S). Its three main components explained

91.4% of the variance. The second analysis ignored the S group, and

there the three main components explained 90.6% of the variance,

while the third analysis, which ignored all test bees, explained

87.8%.

The top three PLS scores can be visualized as points in 3D

(Figure 6A) and their support vectors as heat maps (Figures 6C1–

C3). Figure 6A additionally shows the minimum volume ellipsoids

that contain the 3D PLS scores of each bee in a group.

Supplementary Data Sheet S8 contains files in the X3D-format,

which allows for rotating and zooming the 3D representation. The

dominant support vector, Figure 6C1 resembles Figure 5C1, the

region away from the release site seems very important. The second

PLS vector, Figure 6C1, also looks somehow similar to Figure 6C2

and thus appears to be more important to discriminate among the

test groups A–E.

As could be expected, model S is well separated from all

other groups as only its bees fly in the radar blank (see

Supplementary Data Sheet S8), but also the R model bees differ

from the real bees (Figure 6A). The latter is even better visible

when viewing this from a different angle as in Figure 7A1. Here,

a hyperplane, shown in gray, was obtained with a support vector
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FIGURE 4

Relative proportions of flight directions for the bees from the five home areas (A–E) and the simulated bees in the models R and S. (A1, A2) Statistical

analyzes of the directional frequencies, at the example of directions NW (A1) and SSW (A2). The boxplots show the distribution of the relative time

each bee within its group spent in the sector NW or SSW, respectively, additively normalized by the median of the R bees, i.e., 0% means the same

probability as the median of the R bees, 5% means 5% more time in that sector. The ordinates are scaled di�erently due to two extreme outliers in

the NW-direction. Significant di�erences between groups of bees are shown by the green lines, with * corresponding the a di�erence of Measures of

E�ect Size based on Cohen’s U3 test for two samples (∆mes) of at least 0.2, while ** for ∆mes ≥ 0.3, and *** for ∆mes ≥ 0.4 up to the maximal

di�erence of 0.5. Two examples are shown here, with the full set of results in Supplementary Data Sheet S2. (B) Total number of significant

di�erences among the 16 directions for each pair of groups, with ∆mes ≥ 0.3 (which corresponds to **), the number is also color coded according

to the colorbar on the right. In total, there are 118 cases where a direction can be used to used to discriminate two groups with ∆mes ≥ 0.3, i.e.,

significance level **. (C) Boxplots of the distribution of the median relative time the bees of each group spent in each of the 16-wind compass

directions [see (A1) and (A2) for two examples], additively normalized by the corresponding value of the R bees. Thus, all probabilities are zero for the

R bees, while e.g., a positive value of 5% correspond to directions in which at least half of the bees of a group spent 5% more time than half of the R

bees in that direction. All outliers (+) are labeled with the abbreviated direction they represent.

machine (SVM) classification, to separate Group R from Groups

A–E. In this 3D diagramm, each bee (dot) has a signed distance

from the hyperplane, with positive distance on one side (filled

dots) and negative distance (empty dots) on the other. Figure 7B1

shows the distribution of these distances among the bees of each

group, with zero being the separatrix, the separating hyperplane.

Intriguingly, the distance to this separatrix orders the bee groups

alphabetically and the corresponding mes statistics show very

significant differences between R bees and each other group, but

also between any two of the test bee groups: a 1mes ≥ 0.4,

i.e., a significance level ∗∗∗ for all pairs, except for the pair C

vs. D having only a 1mes = 0.35, thus still a significance

level ∗∗. The separatrix itself can also be visualized as a heat

map, see Figure 7C1. Thus, the separatrix balances boxes away

from the release site (in blue) to some boxes closer the release

site (in red), and positive distances correlate to blue boxes in

that visualization.

The PLS analysis can also be performed only on real bees,

see second line Figure 7. Here, we show a hyperplane separating

Group A and B from Groups C–E. This analysis allows for

separating all bee groups with significance level ∗∗∗, thus also C

from D, even though the separatrix was not chosen to perform this

task. The heat map view of the separatrix shows a more intricate

pattern, whose structure is not obvious (Figure 7C2). Combined

with the distance information, this reveals that E bees searched

more to the north and south of the Release, and less in several

other spots as e.g., in the south-east, see the blue colored boxes in

Figure 7B2.
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FIGURE 5

Heatmap analysis of individual bees. (A1, A2) Heat map examples. (A1) Bee A01, bee number 1 from area A; (A2) Bee R01, bee number 1 from model

R. The respective flight trajectories are given in pale lines. The relative number per box of fixes of the smoothed trajectories is color coded as

indicated in the color bar to the right; the sum over all boxes is one. The inner purple lines indicate the area covered by the radar, the outer ones

cover an extra distance of 50m from the radar, which corresponds to the size of the smoothing filter. (B1–B3) Boxplots of the relative frequencies of

fixes of each bee being in one of the three selected boxes of the total of 342 boxes as indicated by the blue, green and cyan lines. (B1) Box 48, (B2)

Box 99, and (B3) E7. (C1, C2) Number of group pairs with ∆mes ≥ 0.3, i.e., significance level **. (C1) All pairs of bee groups A to E plus R, i.e., 15 in

total; (C1) all pairs of bee groups A to E only, i.e., 10 in total. The colorbars to the right gives the color code for the number of pairs. Significance

levels: ** ∆mes ≥ 0.3.
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FIGURE 6

PLS analysis of the heat maps of radar fixes of all test and model groups. (A) 3D plot of the top three PLS scores for each bee’s heat map (circles),

together with minimum volume ellipsoids covering all PLS scores of one group. Color code of the ellipsoids and circles: A, B, C, D, E, and R. (B)

Colorbar of the PLS support vectors values, normalized to the interval [−1,+1], for (C1–C3). (C1–C3) Top three PLS support vectors, with color

coding as in (B): (C1) first, (C2) second, and (C3) third PLS support vector. Left and bottom label: distance from the release site, ♦, in meter relative to

the Release Site; top and right: x and y label of the spatial discretization boxes. For example, PLS Support Vector 1 is mostly positive (red) outside of

the radar range (magenta half circles, inner one: true radar range, outer one: increased range due to smoothing filter) and all bees in Group S have a

higher positive value for the corresponding PLS score than all other bees, see (A), Thus, the bees in Group S spent a higher proportion of their time

outside of the radar range than the bees A–E and R, as for them this time could not be measured.

The previous analyzes completely ignored the landscape of the

test area. The next section studies how the bee flight paths correlate

to the dominant landscape structures of the test area.

2.4. The guiding e�ect of edges

Next, we focused on the relative time each bee spent near

one of the four edges, and then on the bees direction of flight

relative to the edge direction when close to these edges. Figure 3C

seems to show an accumulation of fixes along the three edges in

southwest–northeast direction. To study this quantitatively, the

radar pixels of each bee were individually interpolated (see Section

Methods), and for each resampled flight pixel, the closest edge

in a Euclidean distance sense was determined (Figure 8A). The

radar coverage was then partitioned in 21 zones: five distances

ranges at most 10, 25, 50, or 100m from their closest edge,

plus the rest, see Figure 8B for the relative coverage of each

range. Figure 8C exemplarily shows the path of Bee A05, color-

coded according to these distance ranges; for the other bees, see

Supplementary Data Sheet S11.

The distribution of the relative time a bee spent in a specific

distance range to an edge shows a large heterogeneity among the

test bees, while the model bees are much more homogeneous.

Bees A differ from all others with respect to the time spent near
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FIGURE 7

Separatrices, obtained using support vector machines (SVM), of the three main PLS components. (A1–C1) (first row) Hyperplane separating R bees

from all other groups, with PLS that ignored S group. (A2–C2) (second row) Hyperplane separating the A and B group from the C, D, and E groups, in

the space of the three dominant PLS support vectors where both R and S group were ignored. (A1, A2) (first column) 3D view of each bee’s heatmap

projected onto the three main PLS support vectors (◦ or •), together with a minimum volume ellipsoid containing all bees of one group (color code

for points and ellipsoids: A, B, C, D, E, and model group R) as well as the separating hyperplane (in gray). All bees on one side (positive side) of the

hyperplane are marked •, those on the other side (negative side) by ◦. (B1, B2) (second column) Distribution of the signed distance of each bee to the

separating hyperplane within each group, with the separatrix marked by the dashed line at distance zero. Positive distance corresponds to points

above the hyperplane and are denoted by • in the 3D views (A1, A2), while points below have a negative distance and are marked by ◦. In both cases,

the distance to the separatrix allows for discriminating each pair of groups with significance level ***, i.e., a 1mes ≥ 0.4, except for the pair C vs. D in

(B1) with **, due to 1mes = 0.35. (C1, C2) (third column) Separating hyperplanes viewed as heat maps, color coded as in Figure 6B. Significance

levels: *** ∆mes ≥ 0.4, ** ∆mes ≥ 0.3.

Edge 1, the edge passing close to the release site, see blue bars in

pairs that include group A such as A–B, or A–R in Figure 9A. As

this figure only highlights the zones that allow for discrimination,

the information which bees flew more in a zone can be found in

Supplementary Data Sheet S12. Edge 3 is the opposite, bees from

home area A spent significantly less time there than bees from other

hives and also less than the model bees R. The latter also differ

from Bees C and E as the model bees spent more time close to

Edge 3. Edge 2 is useful for discriminating Bees E, as these bees

spent significantly less time there as bees from hive C and D as

well as the model bees R. Interestingly, there is a high heterogeneity

among bees A, B, and C with respect to the amount of time spent

near Edge 2. Edge 4, the bushes behind the radar, give quite some

discrimination information, even though the bees flew relatively

rarely there. The mes test shows significant differences between

11 out of 15 pairs. Only the pairs of bees A–B, C–E, C–R, and

E–R show similar closeness. Overall, using all four edges allows

for discriminating any pair of bee group, as for any pairs there

is at least one bar above 0.2 in Figure 9A. This clearly indicates

that bees from different home areas use edges differently in their

search flights.

Figure 9 summarizes the mes-statistics for the pairwise

discrimination using all 20 time near edges and the 120 flight

angle near edges. The ∆mes of all 20 time near edges for each

pair of bee groups (Figure 9A) shows that Edge 4 is a very good

discriminant for many pairs, i.e., B–C, C–D, A–E, B–E, D–E, B–

R, and D–R, while Edge 3 discriminates well A–D and E–R, and

Edge 1 the pairs A–B, A–C, and A–R. C–R can best be discriminated

by Edge 3, especially by the distance range 75m to 100m. For C–

E, the edges 1, 2, and 4 are equally discriminating with several

∆mes = 0.3. Only B–D can only be discriminated at ∗, with only

two features (close to Edge 1 and 4) showing an ∆mes > 0.2.

To summarize, the near edge measurements allow in almost all

cases for very good discrimination (of at least ∆mes = 0.43, often

even equal to the maximally attainable ∆mes = 0.5) (Figure 9B).

Only the pairs of bees A–D, B–D and C–E have lower values,
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FIGURE 8

Discrimination analysis based on time and flight angle near edges. (A) Pixels within the five distance ranges of 0 to 10m, 10 to 25, 50 to 75m, and 75

to 100m (color intensity coded) to one of the four edges (color coded). Color coding of closest edge and distance to edge as in (B). The radar range

is the blue bordered circular sector. Latitudidal and longitudinal coordinates are relative to the Release Site, Relative surface within the radar range

covered by the distance ranges (rows) to each edge (columns E1–E4). The sums of the relative surface near each edge is shown below, the sums for

each distance range on the left. Further away than 100m from any edge are 57% of the pixels. This figure also serves as legend for the color coding

of the 4× 5 distance ranges. (C) Flight path of Bee A05 with color-coding as in (B) of path segments when closer than 100m to an edge. The full path

is plotted as a black line.

with B–D the lowest at 0.23. The time spent near Edge 2 and 3

showed much less significant differences than near Edge 1 and 4

(Supplementary Data Sheet S12).

Often, the ∆mes of a pair of group at various distances to one

of the edge are similar or even equal, as e.g., for Edge 4 in C–D,

B–E (Figure 9A). This is, however, not always the case as Edge 1

in B–E and D–E shows where the fixes close than 10m have a

discrimination of ∆mes = 0.5 while all ranges further away from

Edge 1 do not show a significant discrimination. In some cases,

the ranges close to an edge show higher discrimination value, e.g.,

Edge 3 in E–R or the already mentioned case Edge 1 in B–E and

D–E. In others, the ranges further away from the Edge are more

discriminatory than the closer ones, see for example Edge 4 in C–

E, Edge 3 in C–R, Edge 1 and E–R. These result clearly indicates a

specificity of the home area groups with respect to the guidance

effect of the edges. An interesting result of the edge analysis in

Figure 9A uncovered that the statistically relevant zone is not only

close to the edges, but also beyond the distance bees were shown to

see them, i.e., approximately 30m (Menzel et al., 2019).

Next, we studied the flight angle relative to the nearest edge.

Within each distance range as above, we analyzed the frequency

of the flight angle relative to the edge, discretized in six ranges of

15◦ width, i.e., 0◦ to 15◦ up to 75◦ to 90◦. The 120 statistics for

each bee, four edges à five distance ranges à six angle ranges, can be

found in Supplementary Data Sheet S12. The flight angles allow for

an even better discrimination, as each pair has at least one ∆mes =
0.5, most pairs have several test cases maximally discriminating

between them (see Figure 9B), which shows the best ∆mes for any

distance and angle feature. For any pair of two bee groups, more

than 20 test cases exist having a ∆mes > 0.2, thus showing a

significant difference. Also, all pairs can be discriminated with at

least five test cases having a ∆mes ≥ 0.4. Two pairs are particularly

distinctive: both B and C bees have 19 or more test cases that

distinguishes them from the model bees R, at a ∆mes = 0.5. This

shows that their search strategies are very different from random

searches and from equal guidance by any of the edges. While the

other test bees can also be well discriminated from the R group, the

number of test cases highly discriminating them from the R group

is much lower. This is a notable result as the pairs A and B as well C

andD seemed to behave similarly in the spatial distribution analysis

of fixes (PLS analysis Figure 6, separatrices Figure 7).

Figure 9C highlights which edges are present in the top

25 discriminating test cases shown in Figure 9B. The bar heights

are proportional to the cumulated ∆mes per pair while the colored

bar with the number to their left show how many of the 25 test

cases are near one of the four edges, with Edge 1 in cyan at
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FIGURE 9

Discrimination analysis based on time and flight angle near edges. (A) ∆mes for the time spent in each of 20 vicinities of the edges, sorted by pair of

groups. The three significance levels are shown in red on the right. For example, Groups C–D can be discriminated very well, while B–D cannot using

only time near edges. (B) ∆mes for the 25 best discrimination measures for each pair of bee groups, combining time near edges as well as angles.

∆mes values (y-axis), sorted in decreasing order, with index 1 to 25 on the x-axis. As not all lines are visible everywhere, start and end are specified

above and to the right, respectively. The three significance levels are shown in red on the right. For example, Groups C–D can be discriminated

extremely well with 13 measures at the maximal ∆mes, but also B–D with 11 measures, which are all flight anle measurements, see (A). (C) Number

(in blue on the left of each bar) and sum (black and height of bar) of best ∆mes values per group pair and edge of all discriminants shown in (B). The

height is scaled to 100%, which corresponds to 12.5, i.e., 25 times the maximal ∆mes of 0.5. Significance levels: *** ∆mes ≥ 0.4, ** ∆mes ≥ 0.3,
*
∆mes ≥ 0.2.

the bottom and Edge 4 in yellow at the top. All edges are

present for each pair, however differences are clearly visible. For

example, Edge 1 is not important for discriminating the pairs

B–C and B–D, but plays a significant role for discriminating
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E from C, D, and R as well as A from C, E and R. Edge 2

and 3 are extremely important for the pairs B–D and C–R, and

also much for B–C and E–R. Edge 4 plays a significant role for

most pairs, with notable exception of the pairs B–D, C–R, and

E–R.

3. Discussion

We have applied here generalization tests to characterize

navigational memory taking advantage of the fact that honeybees

are central place foragers that return frequently to their nest, the

hive. Foraging bees were collected from hives located in different

country sites, their explored home area. They were trained to a close

feeding site, collected when leaving the feeder and transported to a

common test site where they were released at the same release site.

The home areas were selected such that they differed more or less

from the test area. In particular, the home areas provided a more or

less rich panorama, and the test area lacked a prominent panorama.

The test area provided mostly elongated ground structures (called

edges here) of rather simple geometry, and the home areas differed

in a graded way in this respect. If the test bees would not, at

least partially, generalize their site specific navigation memory,

they are expected to apply a stereotypical search strategy and no

differences would appear between bees from different home areas.

Inexperienced bees or bees unfamiliar with a landscape perform

multiple exploratory loops in different directions and over different

distances (Capaldi et al., 2000; Menzel et al., 2005; Degen et al.,

2015, 2018). Experienced bees released in an unexplored area

also perform rather regular loops of search flights that have a

number of common features. Bees fly in different directions over

different distances during the outbound flight components and

return to the release site multiple times (Menzel and Greggers,

2015). Thus, the lack of memorized guiding cues is thus likely to

induce random search possibly similar to those of the well-studied

desert ant Cataglyphis (Wehner and Srinivasan, 1981). In addition,

stereotypical flights according to innate responses to landscape

features may be apparent. In both cases no differences between bees

of the different home areas are expected. Two models simulating

random components of distance and direction were run, one that

included all directions around the release site (Model S) and one

whose fixes in the unscanned sector of the radar were excluded

(Model R). Although random components certainly contribute to

the search strategy of the test bees random search as the only

or dominant strategy and the application of common strategies

in response to landscape features and compass directions can be

rejected on the result of multiple analyzes.

The results of our analyzes can be summarized as follows. The

distribution of flight directions differs significantly between test

bees and the random models as well as between bees from different

home areas (Figure 4). The spatial distribution of flight fixes

quantified by heat maps reveal significant differences between any

two groups of test and model bees at specific heat map quadrants

(Figure 5). A unified view was obtained by a partial least squares

regression (PLS) analysis that uncovered structural differences

in the flight fixes’ spatial distribution. The three dominant PLS

support vectors explain approx. 90% of the heat map data variance.

As PLS support vectors as well as hyperplanes separating the

three dominant PLS support vectors of bee groups can be plotted

as heat maps, the PLS analysis is also a highly informative way

of visualizing these differences (Figures 6, 7). These hyperplanes

separate bee groups very well, especially the model bees R from all

test bees, but also all test bee groups from each other with very

high significance. Most importantly, a gradient of similarity can

be derived from these two hyperplanes (Figures 7B1, B2), with the

appearance of three supergroups among the test bees: Groups A

and B, C and D, as well as E (Figure 7B2). The analyzes did not

take into consideration the edges of the test area. From a view

point of existence or absence of edges and structured panorama,

D and E home areas differ more strongly than A and B homes areas

from the test area, and home area C lies in between (Figure 1). A

and B home areas are characterized by elongated ground structures

but in different ways (irrigation channel, rows of trees, compass

direction). These differences are reflected in the preference of

Edge 1 by A bees, less guidance by Edge 2 in B bees, and no

attraction to Edge 4 for Groups A, B, and D. Their respective home

areas were characterized by further distant panorama, border lines

of agricultural fields and segments of elongated ground structures

that differed quite considerably from those in the test area. The

edges in the test area impact the search flights of the bees in each

group differently (Figure 9). Quantifying the bee’s proximity to the

ground structures revealed that the bees of each groups differed

significantly from each other in their flying behavior, both with

respect to the time spent close to each edge (Figure 9A), as well as

to the angle they flew to or away from these edges (Figure 9B). This

effect was not only visible in close proximity to an edge, but also

in the range of 75m to 100m, where the bees probably cannot see

the edge. Groups B and C differed most from the random bees, see

Figure 9B. Groups B differed mostly around Edge 2 to 4 from the

model bees, for Group C only near Edges 2 and 3 as well as 1, but

not Edge 4. A summary of the discrimination of bee groups using

the edges is not as simple as for the heat maps. Nevertheless, it is

obvious from Figure 9 that restricting the bee data to the proximity

of the edges is sufficient to highly discriminate among any two pair

of bee groups. This requires all four edges as for any edge there are

pairs best discriminated using that edge, and other pairs, where a

specific edge does not show discriminatory information.

Taken together, sole guidance by a random search strategy and

the effect of stereotypical potentially innate guiding factors can be

rejected. The heat map PLS analysis (Figures 6, 7) supports the

conclusion that a similarity gradient based on the elongated ground

structures guided the search flights. Bees from home area E that

lacked any similarity with the test area behaved most closely to the

modeled R random bees. Bees from home areas A and B behaved

most different from modeled R random bees, and were close to

each other. Bees from home area C and D were in between and

were also rather close to each other. A detailed analysis of the effect

of the edges on the different bee groups uncovered that the edges

impacted the bees, both with respect to the time spent near an edge,

as well as to their flight directions.

The latter finding is important because elongated ground

structures might be attractive innately to bees, and flight directions

might be bound to directions of elongated ground structures.

Indeed, elongated ground structures are frequently used for
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guidance in honeybees (Menzel et al., 2019) and bumble bees

(Brebner et al., 2021). These structures need to be learned

(discussion in Menzel et al., 2019). Elongated ground structures

like irrigation channels, rows of bushes or trees, edges of forest

and a river bank characterized the home areas differently. Two

irrigation channels and a borderline between two grasslands were

the only elongated ground structure in the test area. A row of

bushes and a parallel running small road as well as a parallel

creek were in the south of the radar. Most of the flights beyond

the row of bushes was, however, occluded by the radar blanking

sector. The skyline of the horizon was even over most of the

test area covered by the searching bees within the radar range

(≤ 2◦ visual angle). This was not the case in any of the 5 home

areas. Thus, the effect of panorama matching was not addressed

in our experiments, but the lack of any panorama cue in the

test area may have impacted the search flights of the test bees

differently. Piloting toward a beacon can also be excluded because

the only beacon in the test area was the radar antenna that was

not approached. Preferred compass directions can also be excluded

for both the earth magnetic field and the sun compass. In both

cases such preferred directions would have to be detected in all

5 experimental groups. This applies also for the possibility that

searching bees would prefer a constant angle to the sun azimuth

because the experiments were performed between a constant time

window (12:00 a.m. and 3 p.m.). We thus conclude that the home

area specific effects indicate a generalization effect of navigation

memory acquired in the respective home area.

Elongated ground structures are characterized by unique

features for flying animals that make them most suitable as

reference objects in mid-range navigation. They keep a stable

relationship to a compass direction (von Frisch and Lindauer,

1954; Dyer and Gould, 1983), they are polarized in relation to the

goal (leading to, leading away) and in relation to other localized

landmarks, they may be identical to elongated landmarks at the

goal, thus following it will lead the animal to the goal, they

provide potentially a network of extended landmark features that

characterize locations uniquely. These alignment effects has been

well studied in human navigation (McNamara et al., 2003). In

laboratory mammals, the alignment effect requires a functional

hippocampus, possibly via boundary vector cells (Barry et al.,

2006). Robots were found to use line-like landmarks for efficient

navigation (Se et al., 2005; Furlan et al., 2007). Most importantly,

flying animals identify such extended ground structures in a

map-like aerial view making them highly attractive as guiding

structures. It is thus not surprising that both bats and birds

use linear landmarks for navigation (Heithaus et al., 1975;

Biro et al., 2004; Lipp et al., 2004; Geva-Sagiv et al., 2015).

ased on the data reported here we conclude that elongated

ground structures are also salient components of the honeybees’

navigation memory.

We have used here a generalization test procedure to explore

the properties of landscape memory. We deal with immediate

specific transfer in the navigation context, the ability of an animal

to respond to partially learned and novel stimuli. Based on the

rich literature about navigation in bees (see Introduction) we

believe that the existence or absence of panorama and local cues,

the kind of panorama and local cues as well as the existence,

appearance and compass directions of edges are very well learned

and discriminated by bees. However, this was not verified for

the cues involved in the experiments reported here. In particular

the learning and discrimination of isolated cues involved was not

studied. Such experiments under natural conditions and within

the dimensions of natural navigation training procedures are

close to impossible because environmental features cannot be

moved around systematically, separated or freely combined. This

is unfortunate because learning about a stimulus or combinations

of stimuli influences strongly how the behavior is generalized

to other stimuli. In laboratory experiments different training

procedures are used to distinguish between the animal’s ability to

discriminate, and subsequently generalize to other stimuli (Blough,

1975; Kehoe, 2008). Still, generalization tests are highly informative

because it is reasonable to assume that self-training and exploratory

learning under natural conditions will be rather similar and close

to optimal across different animals of the same colony that are

exposed to the same environment, and animals of different home

areas will have different navigation memories. The ability to

generalize (rather than to discriminate/not discriminate) is thus a

key component of cognition bound to phenomena like selective

attention, expectation, categorization, similarity judgments and

saving (Rescorla, 1992; Blaisdell, 2008; Zentall et al., 2008).

“Generalization occurs in learning, and is essential for deriving

knowledge from experiences and for skills of all kinds. It is the

basis of predicting future situations from past experience and for

drawing analogies” (Gregory and Zangwill, 1987 p. 284). Thus,

generalization speaks to the cognitive dimensions of using memory

for solving a problem.

We conclude from the analyzes above that bees from the

different home areas were guided in the test area by a generalization

effect of their navigational memory. Although we have focused on

the elongated ground structures the parameters of guidance are

not as obvious. We argued that the generalization process may

motivate the bees to explore some landscape features in the test

area more intensively, and indeed the local density of exploration

reflects a graded generalization effect to landscape features in

the test area (elongated ground structures). However, the lack of

learned features will certainly also play an important role. Not

existing landscape features in the test area (structured horizon,

rising objects, their spatial distribution and other features) cannot

be explored. The amount of guiding effect of such structures in

their home area will potentially add to generalization by hidden

dissimilarity effects.

The level of cognition reached by the navigating bee has

to be studied along two lines of questions, (1) do bees expect

landscape features such that they travel novel short cuts and

freely change their states of motivation, cognitive properties

assigned to a cognitive map (Tolman, 1948), (2) do bees compose

their multiple experiences and thus multiple memories about the

pattern of landscape such that they form a spatial schema, a

high order cognitive process well documented for rodents and

humans (Richards et al., 2014; Farzanfar et al., 2023). The first

line of question has been addressed multiple times in honeybee

navigation and strong evidence has been found in favor of a

cognitive map (Wang et al., 2022; Menzel, 2023). The procedure of

a generalization test as presented here will speak to the second line
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of question if multiple repetitions of pairs of home areas and test

areas are tested helping to uncover categorization and reference to

generalize spatial representations.

4. Methods

The experiments were carried out close to the village Klein

Lüben (Brandenburg, Germany). The area is characterized by

open grass land, agricultural land, forest, creeks, irrigation

channels, small roads and the river Elbe. The harmonic radar

for flight tracking in the test area was placed at the coordinates

52◦58′31.14′′N 11◦50′11.35′′E. The test bees were released at the

Site R (Figure 1F 52◦58′36.37′′N 11◦50′13.37′′E). Five colonies of

Apis mellifera carnica were positioned in five different areas (home

sites Figures 1A–E) that differed with respect to the respective

landscape structures. Hive A was located at 52◦59′07.94′′N

11◦49′05.34′′E, 1.64 km NW of Release Site R, and Hive B at

52◦58′53.18′′N 11◦48′30.87′′E, 2.1 km E of R. Both areas consisted

of predominantly agricultural fields, a road, and irrigation channels.

Hive A was close to a row of high rising poplar trees, and

Hive B close to isolated low trees. The home area around

Hive C (52◦57′22.23′′N 11◦51′42.29′′E, 2.89 km SW of R) was

characterized predominantly by open meadows with irrigation

channels and an edge of a small forest in the N. Hive D

(53◦00′08.98′′N 11◦52′17.75′′E, 2.21 kmNE of R) was located in the

middle of a large forest with a SE–NW stretching forest aisle. Hive E

(52◦58′46.02′′N 11◦46′15.86′′E) was placed at the bank of the river

Elbe overlooking a country side with scattered trees. The distance

between Hive E and the radar location was 4.55 km. The river was

between 350 and 450 m wide during the years 2009 and 2010. In

2011 the river flooding lead to a width of > 10.00m of open water.

Figure 1 gives an impression about the similarity/difference of the

elongated ground structures in the test area and the 5 home areas.

Notice that the layout of the ground structures in the test area was

more similar to that in home areas A and B than to C–F and that

home areas E and F were very different between each other and the

test area.

The experiments were carried out in the summers (July to

September) of the years 2009, 2010 and 2011. The colonies were

placed at the respective sites at least 4 weeks before the experiments

started, ensuring that only foragers were tested that were familiar

with the home area and had not experienced any other area.

Foragers of each colony were trained to a feeding site very close

to the respective hive (< 7m). Single foragers were then collected

at the feeder after they had sucked their fill, transported in a dark

box to the test area within < 30 min, equipped with a transponder

for tracking their flight with harmonic radar and released at the

release site R in the test area (Figure 1F). All test bees from the 5

colonies were released at the same respective site R. The test area

was characterized by two irrigation channels (IRC) NW and NE

of the release site R. They ran parallel to each other at a distance

of 611m stretching from SW to NE. In addition, a borderline

between two grasslands mown at different times ran parallel to

the IRC, roughly in the middle of the large and otherwise rather

evenly structured grassland. Release site R was located close to

this borderline. Additionally, several rather weak ground structures

characterized the test area: lines in the grass running parallel to

the borderline originated from mowing of grass, patches of grass

growing at different height, and a dip in the ground running

through most of the test area from SW to NE contrasting grassland

with different grass species. The test area’s border running SW–SE

was characterized by a row of bushes (at the closest 30m SE of the

radar station) running parallel to a small road and a creek. There

were no trees or other high rising structures within 1 km of the

radar other than the radar station itself (height 6m) and the row

of bushes behind the radar. The home areas of the 5 hives were

selected to either resemble partially the elongated ground structures

in the test area (e.g., the two IRC, the border between two grasslands

and the row of bushes) or to be different in various respect (rising

close or/and far landmarks) from the landscape structure of the test

area. The search flights of the bees were tracked from the radar fixes

collected every 3 s with a customsmade program that converted the

fixes from the circular display to a Cartesianmap (Cheeseman et al.,

2012). Finally, the fixes were imported into Matlab and overlaid for

visualization purposes to test site’s Google map. The map was also

used to quantify the landscape features in the test area.

The release site in the test area was chosen such that most of the

search behavior could be monitored as indicated by the finding that

during most of a test flights the respective bee was seen on the radar

screen. Between 30 and 50% of the bees (depending on home area)

left the scanned area for short periods. Most of them returned to the

release site. No information was available where the bees from the

different home areas had foraged. No spots of dense forage (e.g.,

flowering tree or bush) were found within the natural range (up

to 2 km radius) of the respective hives during the experimental

periods (July, August, September). We, therefore, assume that bees

foraged on widely scattered flowers, and thus the individual bees

from the different hives may have foraged in different directions

and over different areas from their respective hive. The colonies

were regularly inspected and ample food store (pollen and nectar)

was found in all cases. The test area was the most even and spacious

pastry we could find (and where the farmers allowed us to work).

The flat and horizontal level lacked any obstacle besides the row of

bushes, an ideal condition for harmonic radar tracking. The skyline

was flat within≤ 2◦ visual angle around the release site over a large

proportion of the area within which the test bees performed their

search flights (Menzel et al., 2005). This applies to all of the area

scanned by the radar besides the area up to 200m NE from the row

of bushes behind the radar.

We tested a total number of 50 bees leading to one flight

trajectory each. Each animal was released only once, because no

animal could be recaptured. The numbers of tested animals (N) and

the total number of radar fixes (n) were for the different colonies:

home area A N = 14, n = 6.098, home area B N = 11, n = 4128,

home area C N = 5, n = 1.722, home area D N = 13, n = 4.611,

home area E N = 7, n = 2.496.

4.1. Radar tracking

Tracking bees with a harmonic radar was achieved as described

in Cheeseman et al. (2012). We used a system with a sending

unit consisting of a 9.4GHz radar transceiver (Raytheon Marine

GmbH, Kiel, NSC 2525/7 XU) combined with a parabolic antenna
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providing approximately 44 dBi. The transponder fixed to the

thorax of the bee consisted of a dipole antenna with a Low Barrier

Schottky Diode HSCH-5340 of centered inductivity. The second

harmonic component of the signal (18.8GHz) was the target for

the radar. The receiving unit consisted of an 18.8GHz parabolic

antenna, with a low-noise pre-amplifier directly coupled to a mixer

(18.8GHz oscillator), and a downstream amplifier with a 90MHz

ZF-Filter. A 60MHz ZF-Signal was used for signal recognition. The

transponder had a weight of 10.5mg and a length of 12mm. We

used a silver or gold wire with a diameter of 0.3mm and a loop

inductance of 1.3 nH. The range of the harmonic radar was 900m.

Several limitations of the applied methods and the test conditions

need to be mentioned. The range of the radar was limited to 900m

radius and did not scan through an angle of 150◦ to the SW due

to the switch-off of the radar beam (radar blanking) and a row

of bushes along a small road. Therefore, data about the searching

behavior were available only within a limited sector (210◦).

4.2. Random bees

Based on a modified version of the ant model by Wehner and

Srinivasan (1981), we developed a model of an artificial bee that

explores the surrounding of its release site with a flight pattern

that is independent of the landscape. Starting at the release in a

random direction, the “bees” fly 10.000 steps of unit length with

heading changes from step to step as specified by random numbers

generated as the arctangent of a normal distribution (zero mean,

standard deviation 0.25) and filtered by a tenth-order low-pass

digital Butterworth filter with normalized cut-off frequency 0.05.

Whenever the distance to the release site is larger than 1+k/10 unit

lengths, with k = 1, 2, . . . the index of the flight loop, the heading

angle is rotated by an extra 180◦. This rotation is also added when

the simulated bees comes closer than 0.1 unit length to the release

site. This raw path is then smoothed by a moving average filter of

length 25. Finally, comparing 1.000 simulated paths to those of all

real bee, the unit length was fitted to 2.22m to achieve the same

median distance from the release site as in the real flight data. The

model bees are labeled S when their path include the sector not

covered by the radar (radar blanking), and labeled R when only

considering the circle segment covered by the radar, Figure 3C for

an example.

One thousand random bees were simulated for quantifying the

scaling, but in the analyzes, only 16 random bees (with and without

radar blanking) were used to have a similar number as test bees

per group.

4.3. Computations

The calculations were performed, except noted otherwise,

with Matlab (R2020b) and its toolboxes “Statistics and Machine

Learning” and “Image Processing.” The radar fixes were available

to Matlab in radar-based Cartesian coordinates. They were then

transformed to release-site coordinates, both in Cartesian as well

as polar coordinates.

4.3.1. Statistical approach
Figure 2 illustrates the procedure used in this study. The

data were analyzed using the Kruskal-Wallis test (only in the

appendices) and the Measure of Effect Size (mes) based on

Cohen’s U3 test for two samples (Cohen, 1988) as implemented

by Hentschke and Stüttgen (2011). Classical significance tests, e.g.,

null hypothesis significance testing, depend on sample size, while

effect size does not. This mes compares two populations, A and

B, and returns the percentage of population A that lies above the

median of population B. Thus, the mes always lies in the interval

[0, 1] as 100% = 1, and mes = 0.5 corresponds to equal medians.

The further away a mes is from 0.5, the more significant the

two populations differ. This difference is denoted by ∆mes where

∆mes = |mes− 0.5|. According to Hentschke and Stüttgen (2011),

mes is able to uncover important aspects of the data that standard

null hypothesis significance testing does not make visible.

For determining significant differences between pairwise

groups, we applied Kruskal-Wallis significance tests (Kruskal and

Wallis, 1952) (only shown in the appendices) and the Measures

of Effect Size (mes) based on Cohen’s U3 test (Cohen, 1988), the

latter using the toolbox “Measures of Effect Size” by Hentschke and

Stüttgen, Version 1.6.1 (Hentschke and Stüttgen, 2011).

4.3.2. Heat map and edge analyzes
For the heat map and edge analyzes, the fixes were resampled

by linear interpolation to obtain 10 additional points equally

distanced between fixes. The heat maps were obtain by first

smoothing the resampled data points using a 2D moving

average filter of kernel size 50 × 50m, thus smoothing them

up to a chessboard distance of 50m. For the edge analysis,

the Euclidean distance from each landscape feature to each of

the resampled fixes was calculated in order to determine the

closest landscape feature, the distance to it as well as the angle

between the closest landscape feature and the flight direction.

These data was then statistically analyzed. The partial least

square regression was calculated by Matlab’s plsregress, the

minimum volume ellipsoids were obtained by MinVolEllipse

(on Matlab Central, by Moshtagh, 2009). For obtaining the

separating hyperplanes, called separatrices, these ellipsoids were

resampled with 441 points, the optimal separatrix was calculated

using Matlab’s fitcsvm with linear kernel functions, which is

using a support vector machine approach. The distance between

ellipsoids was obtained with the help of the Ellipsoid Toolbox

(Kurzhanskiy and Varaiya, 2006), which uses YALMIP (Löfberg,

2004). Further functions from Matlab Central: maxdistcolor

by Cobeldick (2020), distinguishable_colors by Holy

(2023), plotBarStackGroups by Bollig (2011).

4.3.3. Boxplots
Boxplots are used to illustrate distributions, and are particularly

useful for non-Gaussian ones. The red line depicts the median, the

second quartile, while the blue box goes from the first to the third

quartile, i.e., covers half the data. The box height is called inter

quartile range, IQR. The notch on each box, extending 1.57/
√
nIQR

above and below the median, with n the number of data points,

gives the 95% confidence interval for the median (McGill et al.,

Frontiers in Behavioral Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1070957
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Bullinger et al. 10.3389/fnbeh.2023.1070957

1978). The lines up and down, called whiskers, extend from the box

up to the last data points that is not further than 1.5 IQR from the

first or the third quartile. The data points further away are outliers

and marked by a plus sign.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://osf.io/ygbde/.

Author contributions

UG and RM: conceptualization. EB: statistical analyzes. EB and

RM: writing. All authors contributed to the article and approved

the submitted version.

Funding

We acknowledge support by the Open Access Publication

Initiative of Freie Universität Berlin and Deutsche

Forschungsgemeinschaft DFG grant Me 365/41_1.

Acknowledgments

The authors appreciate Monica Schliemann-Bullinger’s

valuable and profound comments to various drafts of this

manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnbeh.2023.

1070957/full#supplementary-material

SUPPLEMENTARY DATA SHEET S1

Primary data.

SUPPLEMENTARY DATA SHEET S2

Directional analysis.

SUPPLEMENTARY DATA SHEET S3

Circle statistics.

SUPPLEMENTARY DATA SHEET S4

Heat maps.

SUPPLEMENTARY DATA SHEET S5

Significance analyses of heat map tiles.

SUPPLEMENTARY DATA SHEET S6

Pairwise comparison of bee groups wrt. heat maps.

SUPPLEMENTARY DATA SHEET S7

Significant tiles for comparing one bee group to all others.

SUPPLEMENTARY DATA SHEET S8

PLS result in 3D.

SUPPLEMENTARY DATA SHEET S9

PLS results as heat maps.

SUPPLEMENTARY DATA SHEET S10

PLS separatices as heat maps.

SUPPLEMENTARY DATA SHEET S11

Flight paths near edges.

SUPPLEMENTARY DATA SHEET S12

Significance analyses of time and flight angle near edges for all bee groups.

References

Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., et al. (2006).
The boundary vector cell model of place cell firing and spatial memory. Rev. Neurosci.
17, 71–97. doi: 10.1515/revneuro.2006.17.1-2.71

Biro, D., Meade, J., and Guilford, T. (2004). Familiar route loyalty implies visual
pilotage in the homing pigeon. Proc. Natl. Acad. Sci. U.S.A. 101, 17440–17443.
doi: 10.1073/pnas.0406984101

Blaisdell, A. P. (2008). “Cognitive dimension of operant learning,” in Learning and
Memory: A Comprehensive Reference, Vol. 1, Chapter 10, eds J. H. Byrne and R. Menzel
(Oxford: Academic Press), 173–195.

Blough, D. S. (1975). Steady state data and a quantitative model of operant
generalization and discrimination. J. Exp. Psychol. Anim. Behav. Process. 1, 3–21.
doi: 10.1037/0097-7403.1.1.3

Bollig, E. (2011). Plot Groups of Stacked Bars. MATLAB Central File Exchange.
Available online at: https://www.mathworks.com/matlabcentral/fileexchange/32884-
plot-groups-of-stacked-bars (accessed July 30, 2022).

Brebner, J. S., Makinson, J. C., Bates, O. K., Rossi, N., Lim, K. S., Dubois, T., et al.
(2021). Bumble bees strategically use ground level linear features in navigation. Anim.
Behav. 179, 147–160. doi: 10.1016/j.anbehav.2021.07.003

Capaldi, E. A., Smith, A. D., Osborne, J. L., Fahrbach, S. E., Farris, S. M., Reynolds,
D. R., et al. (2000). Ontogeny of orientation flight in the honeybee revealed by harmonic
radar. Nature 403, 537–540. doi: 10.1038/35000564

Cheeseman, J. F., Winnebeck, E. C., Millar, C. D., Kirkland, L. S., Sleigh,
J., Goodwin, M., et al. (2012). General anesthesia alters time perception by
phase shifting the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 109, 7061–7066.
doi: 10.1073/pnas.1201734109

Cobeldick, S. (2020). Maximally Distinct Color Generator. MATLAB Central
File Exchange. Available online at: https://www.mathworks.com/matlabcentral/
fileexchange/70215-maximally-distinct-color-generator (accessed August 22, 2021).

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Cambridge:
Academic Press.

Frontiers in Behavioral Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1070957
https://osf.io/ygbde/
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1070957/full#supplementary-material
https://doi.org/10.1515/revneuro.2006.17.1-2.71
https://doi.org/10.1073/pnas.0406984101
https://doi.org/10.1037/0097-7403.1.1.3
https://www.mathworks.com/matlabcentral/fileexchange/32884-plot-groups-of-stacked-bars
https://www.mathworks.com/matlabcentral/fileexchange/32884-plot-groups-of-stacked-bars
https://doi.org/10.1016/j.anbehav.2021.07.003
https://doi.org/10.1038/35000564
https://doi.org/10.1073/pnas.1201734109
https://www.mathworks.com/matlabcentral/fileexchange/70215-maximally-distinct-color-generator
https://www.mathworks.com/matlabcentral/fileexchange/70215-maximally-distinct-color-generator
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Bullinger et al. 10.3389/fnbeh.2023.1070957

Collett, T. S., and Graham, P. (2004). Animal navigation: path
integration, visual landmarks and cognitive maps. Curr. Biol. 14, R475-R477.
doi: 10.1016/j.cub.2004.06.013

Collett, T. S., Graham, P., and Durier, V. (2003). Route learning by
insects. Curr. Opin. Neurobiol. 13, 718–725. doi: 10.1016/j.conb.2003.
10.004

Collett, T. S., and Rees, J. A. (1997). View-based navigation in hymenopteramultiple
strategies of landmark guidance in the approach to a feeder. J. Compar. Physiol. A 181,
47–58. doi: 10.1007/s003590050092

Degen, J., Hovestadt, T., Storms, M., and Menzel, R. (2018). Exploratory behavior
of re-orienting foragers differs from other flight patterns of honeybees. PLoS ONE 13,
e0202171. doi: 10.1371/journal.pone.0202171

Degen, J., Kirbach, A., Reiter, L., Lehmann, K., Norton, P., Storms, M., et al. (2015).
Exploratory behaviour of honeybees during orientation flights. Anim. Behav. 102,
45–57. doi: 10.1016/j.anbehav.2014.12.030

Dyer, F. C. (1996). Spatial memory and navigation by honeybees on the scale
of the foraging range. J. Exp. Biol. 199(Pt 1), 147–154. doi: 10.1242/jeb.199.
1.147

Dyer, F. C., and Gould, J. L. (1983). Honey bee navigation. Am. Sci. 71, 587–597.

Farzanfar, D., Spiers, H. J., Moscovitch, M., and Rosenbaum, R. S. (2023).
From cognitive maps to spatial schemas. Nat. Rev. Neurosci. 24, 63–79.
doi: 10.1038/s41583-022-00655-9

Furlan, A., Baldwin, T., and Klippel, A. (2007). “Landmark classification for route
directions,” in Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions
(Prague: Association for Computational Linguistics), 9–16.

Geva-Sagiv, M., Las, L., Yovel, Y., and Ulanovsky, N. (2015). Spatial cognition in
bats and rats from sensory acquisition to multiscale maps and navigation. Nat. Rev.
Neurosci 16, 94–108. doi: 10.1038/nrn3888

Giurfa, M. (2003). Cognitive neuroethology: Dissecting non-elemental learning in a
honeybee brain. Curr. Opin. Neurobiol. 13, 726–735. doi: 10.1016/j.conb.2003.10.015

Giurfa, M. (2015). Learning and cognition in insects.WIREs Cogn. Sci. 6, 383–395.
doi: 10.1002/wcs.1348

Giurfa, M., Eichmann, B., and Menzel, R. (1995). “Symmetry as a perceptual
category in honeybee vision,” in Learning and Memory, eds N. Elsner and R. Menzel
(Stuttgart: Thieme Verlag), 423.

Giurfa, M., Zhang, S., Jenett, A., and andMandyam, V., Srinivasan, R. M. (2001).
The concepts of ’sameness’ and ’difference’ in an insect. Nature 410, 930–933.
doi: 10.1038/35073582

Gregory, R. L., and Zangwill, O. L. (Eds.). (1987). The Oxford Companion to the
Mind. Oxford: Oxford University Press.

Heithaus, E. R., Fleming, T. H., and Opler, P. A. (1975). Foraging patterns and
resource utilization in seven species of bats in a seasonal tropical forest. Ecology 56,
841–854. doi: 10.2307/1936295

Hentschke, H., and Stüttgen, M. C. (2011). Computation of measures
of effect size for neuroscience data sets. Eur. J. Neurosci. 34, 1887–1894.
doi: 10.1111/j.1460-9568.2011.07902.x

Holy, T. E. (2023). Generate Maximally Perceptually-Distinct Colors. MATLAB
Central File Exchange. Available online at: https://www.mathworks.com/
matlabcentral/fileexchange/29702-generate-maximally-perceptually-distinct-colors
(accessed September 22, 2022).

Kehoe, E. J. (2008). “Discrimination and generalization,” in Learning and Memory:
A Comprehensive Reference, Chapter 1.08, eds J. H. Byrne and R. Menzel (Oxford:
Academic Press), 123–149.

Kruskal, W. H., and Wallis, W. A. (1952). Use of ranks in one-criterion variance
analysis. J. Am. Stat. Assoc. 47, 583–621. doi: 10.1080/01621459.1952.10483441

Kurzhanskiy, A. A., andVaraiya, P. (2006). “Ellipsoidal toolbox (ET),” in Proceedings
of the 45th IEEEConference onDecision and Control (SanDiego, CA: IEEE), 1498–1503.

Lipp, H.-P., Vyssotski, A. L., Wolfer, D. P., Renaudineau, S., Savini, M., Tröster,
G., et al. (2004). Pigeon homing along highways and exits. Curr. Biol. 14, 1239–1249.
doi: 10.1016/j.cub.2004.07.024

Löfberg, J. (2004). “YALMIP: a toolbox formodeling and optimization inMATLAB,”
in 2004 IEEE International Conference on Robotics and Automation (Taipei: IEEE),
284–289.

McGill, R., Tukey, J. W., and Larsen, W. A. (1978). Variations of box plots. Am. Stat.
32, 12–16. doi: 10.1080/00031305.1978.10479236

McNamara, T. P., Rump, B., and Werner, S. (2003). Egocentric and geocentric
frames of reference in memory of large-scale space. Psychon. Bull. Rev. 10, 589–595.
doi: 10.3758/BF03196519

Menzel, R. (2023). Navigation and dance communication in honeybees: a cognitive
perspective. J. Compar. Physiol. A. in press.

Menzel, R., Geiger, K., Joerges, J., Müller, U., and Chittka, L. (1998). Bees travel novel
homeward routes by integrating separately acquired vectormemories.Anim. Behav. 55,
139–152. doi: 10.1006/anbe.1997.0574

Menzel, R., and Greggers, U. (2015). The memory structure of navigation in
honeybees. J. Compar. Physiol. A 201, 547–561. doi: 10.1007/s00359-015-0987-6

Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., et al. (2005).
Honey bees navigate according to a map-like spatial memory. Proc. Natl. Acad. Sci.
U.S.A. 102, 3040–3045. doi: 10.1073/pnas.0408550102

Menzel, R., Tison, L., Fischer-Nakai, J., Cheeseman, J., Balbuena, M. S., Chen, X., et
al. (2019). Guidance of navigating honeybees by learned elongated ground structures.
Front. Behav. Neurosci. 12, 322. doi: 10.3389/fnbeh.2018.00322

Moshtagh, N. (2009). Minimum Volume Enclosing Ellipsoid. MATLAB Central
File Exchange. Available online at: https://www.mathworks.com/matlabcentral/
fileexchange/9542-minimum-volume-enclosing-ellipsoid (Retrieved October 18,
2020).

Rescorla, R. A. (1992). Response-outcome versus outcome-response associations in
instrumental learning. Anim. Learn. Behav. 20, 223–232. doi: 10.3758/BF03213376

Richards, B. A., Xia, F., Santoro, A., Husse, J., Woodin, M. A., Josselyn, S. A., et al.
(2014). Patterns across multiple memories are identified over time. Nat. Neurosci. 17,
981–986. doi: 10.1038/nn.3736

Se, S., Lowe, D. G., and Little, J. J. (2005). Vision-based global
localization and mapping for mobile robots. IEEE Trans. Robot. 21, 364–375.
doi: 10.1109/TRO.2004.839228

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189–208.
doi: 10.1037/h0061626

von Frisch, K., and Lindauer, M. (1954). Himmel und erde in konkurrenz bei der
orientierung der bienen. Naturwiss 41, 245–253. doi: 10.1007/BF00634944

Wang, Z., Chen, X., Becker, F., Greggers, U., Walter, S., Werner, M., et al. (2022).
“Honey bees get map coordinates from the dance,” in Proceedings of the National
Academy of Sciences. Available online at: https://www.biorxiv.org/content/10.1101/
2022.07.27.501756v1.full.pdf

Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects:
coupling of egocentric and geocentric information. J. Exp. Biol. 199, 129–140.
doi: 10.1242/jeb.199.1.129

Wehner, R., and Srinivasan, M. V. (1981). Searching behaviour of desert ants,
genus Cataglyphis (formicidae, hymenoptera). J. Compar. Physiol. 142, 315–338.
doi: 10.1007/BF00605445

Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. R., and
Rattermann, M. J. (2008). Concept learning in animals. Compar. Cogn. Behav. Rev. 3,
13–45. doi: 10.3819/ccbr.2008.30002

Frontiers in Behavioral Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1070957
https://doi.org/10.1016/j.cub.2004.06.013
https://doi.org/10.1016/j.conb.2003.10.004
https://doi.org/10.1007/s003590050092
https://doi.org/10.1371/journal.pone.0202171
https://doi.org/10.1016/j.anbehav.2014.12.030
https://doi.org/10.1242/jeb.199.1.147
https://doi.org/10.1038/s41583-022-00655-9
https://doi.org/10.1038/nrn3888
https://doi.org/10.1016/j.conb.2003.10.015
https://doi.org/10.1002/wcs.1348
https://doi.org/10.1038/35073582
https://doi.org/10.2307/1936295
https://doi.org/10.1111/j.1460-9568.2011.07902.x
https://www.mathworks.com/matlabcentral/fileexchange/29702-generate-maximally-perceptually-distinct-colors
https://www.mathworks.com/matlabcentral/fileexchange/29702-generate-maximally-perceptually-distinct-colors
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1016/j.cub.2004.07.024
https://doi.org/10.1080/00031305.1978.10479236
https://doi.org/10.3758/BF03196519
https://doi.org/10.1006/anbe.1997.0574
https://doi.org/10.1007/s00359-015-0987-6
https://doi.org/10.1073/pnas.0408550102
https://doi.org/10.3389/fnbeh.2018.00322
https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
https://doi.org/10.3758/BF03213376
https://doi.org/10.1038/nn.3736
https://doi.org/10.1109/TRO.2004.839228
https://doi.org/10.1037/h0061626
https://doi.org/10.1007/BF00634944
https://www.biorxiv.org/content/10.1101/2022.07.27.501756v1.full.pdf
https://www.biorxiv.org/content/10.1101/2022.07.27.501756v1.full.pdf
https://doi.org/10.1242/jeb.199.1.129
https://doi.org/10.1007/BF00605445
https://doi.org/10.3819/ccbr.2008.30002
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org

	Generalization of navigation memory in honeybees
	1. Introduction
	2. Results
	2.1. Analytical procedure
	2.2. Directional analysis of model-based vs. real search patterns
	2.3. Quantifying the generalization effect on the basis of the spatial distribution of radar fixes
	2.3.1. Partial least squares regression analysis

	2.4. The guiding effect of edges

	3. Discussion
	4. Methods
	4.1. Radar tracking
	4.2. Random bees
	4.3. Computations
	4.3.1. Statistical approach
	4.3.2. Heat map and edge analyzes
	4.3.3. Boxplots


	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


