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Computer vision has emerged as a powerful tool to elevate behavioral
research. This protocol describes a computer vision machine learning pipeline
called AlphaTracker, which has minimal hardware requirements and produces
reliable tracking of multiple unmarked animals, as well as behavioral clustering.
AlphaTracker pairs a top-down pose-estimation software combined with
unsupervised clustering to facilitate behavioral motif discovery that will accelerate
behavioral research. All steps of the protocol are provided as open-source
software with graphic user interfaces or implementable with command-line
prompts. Users with a graphical processing unit (GPU) can model and analyze
animal behaviors of interest in less than a day. AlphaTracker greatly facilitates the
analysis of the mechanism of individual/social behavior and group dynamics.
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1. Introduction

1.1. Development of the protocol

The study of animal behavior can be dated back to the nineteenth century when

most researchers focused on observing natural behaviors (Darwin, 1872; Tinbergen, 1963).

While reductionist behavioral paradigms are still widely used to study specific aspects of

behavior in a controlled manner, allowing animals to freely explore spaces and to exhibit

complex behaviors greatly expands our understanding of system neuroscience (Kabra et al.,

2013; Wiltschko et al., 2015; Mathis et al., 2018; Pereira et al., 2020a; Padilla-Coreano

et al., 2022). Ethological behavioral research challenges our ability to quantify behavior and

draw statistically meaningful conclusions with traditional tracking methods and manual

annotations (Berman, 2018). Social behavior is evenmore challenging due to the difficulty for

a human to observe multiple animals simultaneously. Traditional animal tracking software

suffers from noisy prediction of animal poses and confusion between multiple, seemingly

identical animals. In addition, there remains a large gap between tracking animal keypoints

and the quantification and understanding of observed behaviors.

Frontiers in Behavioral Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2023.1111908
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2023.1111908&domain=pdf&date_stamp=2023-05-30
mailto:tye@salk.edu
mailto:lucewu@sjtu.edu.cn
https://doi.org/10.3389/fnbeh.2023.1111908
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbeh.2023.1111908/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnbeh.2023.1111908

Here we present a pipeline that allows reliable tracking of

multiple near-identical mice and the subsequent behavioral analysis

via unsupervised methods. AlphaTracker enables multi-animal

tracking of videos recorded via a webcam, rendering this tool

convenient and affordable for the laboratory setting. To facilitate

accessibility to AlphaTracker for individuals without access to a

GPU, we also provide a Google Colab version. We also provide

an unsupervised behavioral clustering algorithm for the unbiased

identification of behavioral motifs, the results of which can be

further inspected with customized functions in a Jupyter notebook

and a web-based user interface.

1.2. Applications of the method

AlphaTracker demonstrates excellent accuracy in diverse

backgrounds and setups. Our test cases include both wild-

type C57BL/6 black mice and mice with optical fibers and in

vivo recording head stages, the keypoints of which are often

occluded in keypoint tracking for existing software. AlphaTracker

demonstrates robust performance with various backgrounds

including home cages, metal operant conditioning chambers,

and open fields. Our tracking algorithm shows better accuracy

and precision than that of two different humans annotating

the same dataset. It supports not only top-view cameras, but

also cameras installed at an angle, and low-resolution webcams

(e.g., 675 p), making simultaneous monitoring of many animals

financially tractable.

AlphaTracker shows robust performance in tracking multiple

animals and identifying social behavior. Traditional methods of

attaching markers or changing fur colors can affect the natural

behavior of animals and thus confound the research. Our toolbox

was developed specifically for markerless tracking in multi-animal

paradigms. Such simultaneous observation of multiple freely-

behaving animals makes it a handy tool for social behavioral

neuroscience research.

Our unsupervised behavioral clustering bridges the gap

between current keypoint-tracking techniques and the challenge

of behavior comprehension. Clusters identified by our behavioral

clustering algorithm correspond greatly to human assignment

(Adjusted Rand Index of 0.201186, random assignment has the ARI

of 0.003451). We identified seven individual behaviors: walking,

digging, sniffing, rearing, turning, face grooming, and body

grooming, and nine social behaviors including following, chasing,

anogenital sniffing, face sniffing, and social rearing. We envision

our clustering algorithm, with proper training, demonstrating

extended application in tracking other animals such as marmosets,

fish, and humans with proper training.

2. Materials and methods

2.1. Materials

2.1.1. Software
• Operating system: Linux (Ubuntu 16.04 LTS, 18.04 LTS), or

Windows (10) (Windows only supports applying the tracking

model, but not training the neural network-based model).

• Anaconda: a free and open-source distribution of the Python

programming language. AlphaTracker is written in Python 3.8

and is not compatible with Python 2.

• AlphaTracker: an actively maintained toolbox freely

available at: https://github.com/MVIG-SJTU/AlphaTracker.

Instructions in this paper are based on this version. Recently,

we provided a sister version of our package on GitHub

(https://github.com/Tyelab/AlphaTracker2) which is more

friendly to Windows users as it provides a Python wrapper

for the DarkNet in the YOLO package, the original version

of which is a C-based toolbox that must be compiled on

Linux systems. With the goal of offering real-time tracking,

this version also adds some flexibility in processing speeds

by offering options for lighter-weight networks like Mobile

Net in place of the ResNet backbone with the goal of offering

real-time tracking.

• PyTorch: an open-source software library for Deep Learning.

Our toolbox has been tested on PyTorch 1.8.0.

• Nvidia Driver: a driver software with a version higher than

450 is required to run our model on a computer with Nvidia

GPU card, available at: https://www.nvidia.com/download/

index.aspx.

• Jupyter Notebook: a web-based interactive computing

platform available at: https://jupyter.org/install.

• Data annotation toolbox Sloth: an open-source software for

labeling keypoints and identities of objects, provided as part of

our toolbox.

2.1.2. Hardware
• Computer: Windows and Linux all can be used for

labeling data, performing behavioral clustering, and evaluating

trained tracking models. For training the tracking model,

desktops/cloud servers with GPU access are required. We

recommend >= 32 GB of RAM on the system for CPU

analysis.

• GPU: GPU is required for training the tracking model. We

recommend having a GPU with >= 8 GB memory, such

as the NVIDIA GeForce 1,080 or 2,080. Alternatively, our

toolbox can also be used on cloud computing services with

GPU support (e.g., Google Cloud/Amazon Web Services).

• Camera: Our toolbox supports both color and grayscale

videos, and even infrared light. Though we demonstrate

decent performance on images with low resolution, we

recommend cameras with a resolution of >=1,080 p for the

best performance. We used Logitech C930e cameras for data

acquisition in this paper.

2.1.3. Equipment setup
Users can either install our toolbox locally or

on Google Colab. We recommend users with GPU

access run AlphaTracker locally (local desktop or lab

server) to avoid reinstallation of dependency upon

restarting Colab.

For GPU support, NVIDIA drivers should be installed (see the

previous subsection for details). Windows users double-click the

downloaded .exe file to install it. Linux users first navigate to the
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folder with the “.run” file after downloading, open the terminal and

type the following command in the terminal:

1. cd path/of/driver

2. chmod +x ./Nvidia-driver-name.run

3. sudo ./Nvidia-driver-name.run

We recommend both Linux and Windows users install

Anaconda for managing packages and environments because

Anaconda supports multiple environments with different versions

of Python and supporting libraries. This avoids version mismatch

with existing packages and libraries of the operating system. Follow

the instructions at https://docs.anaconda.com/anaconda/install/ to

install Anaconda.

Windows users should install Git Bash by downloading from

https://git-scm.com/downloads. Open the “.exe” file named “Git

Bash” and run all commands within Git Bash.

2.2. Algorithm

The tracking component of the pipeline (AlphaTracker) is

adapted from AlphaPose (Fang et al., 2017, 2022), a human pose

estimation and tracking library that provides superior performance

in both accuracy and efficiency. The algorithm consists of three

steps: animal detection, keypoint estimation, and identity (ID)

tracking across frames (Figure 1).

First, the algorithm detects the positions of animals in each

frame with YOLOv3 (Redmon and Farhadi, 2018) which is a state-

of-the-art convolutional neural network designed to detect objects

at a high inference speed.

Next, individual animals are cropped out with the bounding

box output from YOLOv3. The cropped individual images are fed

into Squeeze-and-Excitation Networks (SENet) (Hu et al., 2017)

which estimates keypoint positions. For our mouse dataset, we

chose the snout, tail base and two ears as our four keypoints.

The outputs from SENet include x and y coordinates as well as a

confidence score which indicates the reliability of each identified

keypoint.

Finally, the algorithm tracks each animal across frames. This

presents a significant challenge for many platforms as animals

of the same genetic lines often look alike. Traditional Re-ID

methods previously implemented (Chen et al., 2018; Ristani and

Tomasi, 2018; Feng et al., 2019) tend to fail since such methods

typically rely on differences in the appearance of tracked animals.

In our pipeline, we propose a novel target association method

that captures hierarchical visual information to keep track of the

identities of nearly identical animals across frames. We define a

descriptor for the position and orientation of the animal from the

set of bounding boxes around the entire animal and individual body

parts. The similarity score of pairs of descriptors in adjacent frames

is calculated according to formula 1.

Sim(Dt
i ,D

t+1
i ) = IOU(boxti , box

t+1
j )+

1

n

n∑

k=1

IOU(Ptik, P
t+1
jk

) (1)

IOU(box1, box2) =
AreaOfOverlap(box1, box2)

AreaOfUnion(box1, box2)
(2)

In formula 1, Dt
i is the descriptor of animal i at frame t,

boxti is the bounding box of animal i at frame t predicted by the

convolutional neural network. Pt
ik
is the box that wraps the k-th

body point of animal i at frame t. IntersectionOverlapUnion (IOU)

is defined by formula 2. After sorting the descriptor similarities

in descending order, the descriptors between two adjacent frames

with the highest similarity are matched and assigned with the same

tracking ID. Across frames, descriptors for dyads are matched with

the second-highest similarity score. This procedure is repeated until

no animals are left unmatched.

In some cases, the predictions of bounding boxes and body

points may not be accurate due to either tracking errors or

occlusion. When the users correct the position of keypoints in

one frame, we apply Kalman filtering (Kalman, 1960) to model the

motion characterized by velocity and acceleration. We then modify

the keypoint position predictions in consecutive frames to ensure

consistency across time.

Our behavioral clustering classifies mouse behavior with an

unsupervised hierarchical clustering algorithm (Wiltschko et al.,

2015; Nilsson et al., 2020) for the following reasons: (1) Animal

behavioral taxonomy is intrinsically hierarchical in structure. (2) It

allows intuitive re-organization of results once the linkage matrix

is computed. In our method, we first extract the features of animal

behaviors based on the temporal dynamics of poses captured within

a 15-frame time window. The 15-frame time window is chosen

here since sub-second actions of animals have mean duration ±

s.d. = 425 ± 726 ms (Wiltschko et al., 2020). Such features include

biologically distinct features such as body length and displacement.

When analyzing social behavior, we set one mouse as the reference

and calculate the relative motion of the non-reference mouse.

Here, users can assign different weights to each feature to reflect

feature importance in behavioral clustering. We next apply an

agglomerative hierarchical clustering algorithm (Ward, 1963) to

cluster clips based on the similarity between their features. Finally, a

customized web-based UI allows easy inspection and modification

of clustering results.

2.3. Methods

Our protocol consists of several stages: installation, preparing

training datasets (Section 2.3.2), training the tracking model

(Section 2.3.3), running the tracking model (Section 2.3.4),

inspecting the tracking results with UI (Section 2.3.7), behavioral

clustering (Section 2.3.6), and inspecting clustering result (section

2.3.7). Users looking for a quick test of our toolbox can skip

the training stages (Sections 2.3.2, 2.3.3) and use the pretrained

tracking model directly (Section 2.3.4). We also have a tutorial for

our Colab version in Section 2.3.8.

2.3.1. Installation
1. Download the toolbox via the command line. Users can specify

a working directory and install it by running the following in the

Git Bash terminal.

1. cd path/of/interest
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FIGURE 1

AlphaTracker architecture and pipeline. The AlphaTracker architecture consists of three main components: object detection using YOLO, pose
estimation using Single Animal Pose Estimation (SAPE), and identity tracking based on intersection over union (IOU) with error correction via Kalman
filter. It outputs bounding boxes and user-defined keypoints for each detected animal, along with confidence scores for these predictions.

2. git clone https://github.com/MVIG-SJTU/

AlphaTracker.git

3. cd AlphaTracker

2. Users can install our toolbox with either command line or

via a coding-free GUI (Figure 2). Users can run the following

commands to install our toolbox via the command line. Note

that Windows users should first check out the “Windows”

branch before the actual installation. Our toolbox creates an

Anaconda virtual environment tomanage Python dependencies.

1. git checkout windows # Windows users

only

2. bash scripts/install.sh

To use our GUI for installation, users need to download a

GUI named “main_ui” from https://github.com/MVIG-SJTU/

AlphaTracker/releases and save it inside the AlphaTracker

folder. Users should: (1) Right-click the GUI app and choose

“Properties,” (2) Check the “allow execution” or “allow run

as a program” options under the “Permission” tab, (3) Open

the main GUI by double-clicking the icon, then (4) Click the

“Install” button to run the installation automatically. A video

tutorial is available at: https://youtu.be/fQ1bSoAkV5o.

2.3.2. Training dataset preparation
For users hoping to train the model using their own

parameters (e.g., animal species, lighting condition), we

include an image annotation toolkit to allow customized

annotation of training datasets. This toolkit was adapted from

an open-source tool Sloth and can be found under the directory

./Tracking/TheAnnotationTool/. This tool has only been tested

under Windows. We have also provided a demo training dataset

600 annotated frames of two unmarked mice interacting in a home

cage. Users can download this folder from https://drive.google.

com/file/d/1TYIXYYIkDDQQ6KRPqforrup_rtS0YetR/view?usp=

sharing and proceed to the next section for training.

1. Pick representative frames from input videos (>=200 frames

are recommended) and save these frames as a folder called “im.”

Place the folder under the folder “json.” These frames should be

as distinct from each other as possible to cover the posture space.

Models that learn from the entire space generalize better during

the actual implementation.

2. Click json/clickme.bat to create a new json file named

multi_person.json under the folder json/. Move the newly

generated JSON file into the directory json/im/.

3. Go back to the directory tool and click tool/start.bat. Select the

multi_person.json file and click “Open” to load all the images.

4. To meet the input specifications of AlphaTracker, strictly follow

the proceeding instructions for image annotation:

First, choose the “Face” option to generate a red bounding

box around the animal of interest on the image. Your definition

of a bounding box should be consistent (e.g., if you include the

tail in the bounding box, always do so). We recommend only

including the tail base for mice because tails are highly flexible

and extend to a large area.

Next, choose the “point” option to label keypoints for that

animal. If you have multiple keypoints, it is critical to follow the

same annotation order for all the animals (e.g., snout−→ left ear

−→ right ear−→ tail base). If you havemultiple animals, repeat the

process for another animal only after you are completely done

with the current animal (i.e., bounding box−→ all the keypoints)

because the order matters.

5. If there is a mistake, you should first select the image on the

bottom left of the UI, click the wrongly labeled coordinates, and

press “delete.”Make sure to delete all the subsequent coordinates

for this frame as well and redo the annotation because the order

of annotation is important for our algorithm.

6. Once you are done, press the “save” button to save the JSON file

before exiting the program. Rename and move the entire “im/”

folder (images and the JSON file) to a safer storage location for

later use. As a double-check, the generated JSON file should have

the same structure as in Figure 3.
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FIGURE 2

AlphaTracker UI. (Left) The AlphaTracker user interface provides six functionalities, including installing/uninstalling, training the tracking model,
running the tracking and clustering models, and examining and correcting tracking and clustering results. (Right) The installation involves verifying
the presence of Anaconda, installing required packages, setting up YOLO, and downloading the model weights and demo data.

FIGURE 3

Example annotation JSON file generated by Sloth. The example shows annotations for two frames, represented by blue boxes. Each frame depicts
two mice, one of which is highlighted in a yellow box. The yellow-boxed mouse is annotated with a bounding box for the body and four keypoints,
which correspond to the head, left ear, right ear, and tail base respectively.

2.3.3. Training the tracking model
1. Users either use our code-free GUI to specify the parameters

or modify the settings directly. If using the code-free GUI,

click the “Train” button on the main GUI. Select the image

folder with the training images and the JSON annotation

file in the prompt window. Modify the parameters in the

“training” tab. Users can hover their mouse cursor over

each parameter for detailed explanations. A video tutorial

is available at: https://youtu.be/txjrZiVS4Eo. If modifying the

setting directly, specify the parameters in the configuration file

./Tracking/AlphaTracker/setting.py.

Important parameters are as follows:

• image_root_list. List of paths to the directories of annotated

frames.

• json_file_list. List of paths to the corresponding annotation

JSON file.

• num_mouse. A list of themaximumnumber of animals that

may appear in each of the corresponding image folders.

• exp_name. Name for the current project.

• num_pose. The number of keypoints for each animal.

This must be consistent within the project. If users

have videos with different numbers of keypoints

per animal, they can set up individual projects

to keep the keypoint number consistent within

each project.

Depending on the training results, users may need to modify

hyperparameters related to training. For example, users can

lower the learning rate and increase the number of epochs.
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FIGURE 4

User interface for training the tracking model. The user interface for training the tracking model requires several inputs from the user. The inputs
include the path to the labeled images (“ImageDir”), a JSON label file (“Label”), the number of mice in the images (“num_mouse”), the experiment
name (“exp_name”), and pose pairs for defining the connections between keypoints to represent the skeleton (“pose_pairs”). Other adjustable
parameters such as the learning rate (“sppe_lr,” “yolo_lr”) and batch size (“sppe_batchSize,” “yolo_batchSize”) can be modified as needed.

However, over-reducing the learning rate may deteriorate

tracking quality. Some hyperparameters are explained as

follows.

• sppe_lr. Learning rate for the pose estimation module.

Default: 1e-4.

• sppe_epoch. Training epochs for the pose estimation

module. You might need to set a large number when

training from scratch.

• sppe_batchSize. Batch size for pose estimation. If you

encounter an out-of-memory (OOM) error, you may need

to reduce the batch size.

2. Train the AlphaTracker model by either clicking the “start”

button on the training page after specifying all the parameters (if

using the GUI, Figure 4) or by running the following command

in the command line.

1. cd path/of/interest/AlphaTracker/

Tracking/AlphaTracker/

2. conda activate alphaTracker

3. python train.py

2.3.4. Running the tracking model
If users have not trained their own models, they can use our

pretrained model by setting exp_name=demo in the configuration

file. This implicitly calls the pretrained model. In case users do

not have a video ready to use, we also provide a test video at:

./Tracking/AlphaTracker/data/demo.mp4.

1. Users can set the parameters for tracking by either specifying the

parameters in ./Tracking/AlphaTracker/setting.py or using the

code-free UI. If using the GUI, click the “Tracking” button on

the main GUI and select a video file. Modify the parameters on

the “tracking” page. Users can hover the mouse cursor over each

parameter for detailed explanations. A video tutorial is available

at: https://youtu.be/t2skgohliAc.

Important parameters are as follows:

• video_full_path. Path to the video

• start_frame. Index of the start frame of the video

• end_frame. Index of the last frame of the video

• max_pid_id_setting. Number of mice in the video

• result_folder. Path to the folder for saving the results

• vis_track_result. Whether to visualize the tracking

results by overlaying the predicted keypoints on

the video.

• exp_name. Project name. If users want to

use our pretrained model, set this parameter

to demo.

2. Users can start the tracking process by either clicking

the “Start” button on the tracking page of the
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FIGURE 5

User interface for running the tracking model. The UI for running the tracking model requires an input video (“Video”) and the name of the trained
model (“exp_name_track”). Users can specify the frame interval to be tracked by setting the start and end frames (“start_frame,” “end_frame”), and
indicate the maximum number of mice expected in the frames (“max_pid_id_setting”). The results will be saved in the specified result folder
(“result_folder”).

GUI (Figure 5) or by running the following in the

command line.

1. conda activate alphatracker

2. python track.py

2.3.5. Tracking result inspection
Users can inspect and modify the tracking results with

a browser-based UI (Figure 6, Supplementary Video 6). We

recommend Google Chrome as the default browser for using the

UI. Pre-installed Python3 is required as Python scripts are called

by the backend of the UI.

1. Users can start the UI by clicking the “Results” button on the

main GUI and clicking the “Start” button on the next page.

A video tutorial is available at: https://youtu.be/9Ksb04s8mm4.

Alternatively, users can run the following in the command line.

1. cd UI/

2. python setup.py

2. A window should now appear in the user’s browser. Click

html/ and select curate.html. Click the “Click Here” button to

upload the JSON tracking result (e.g., alphapose-results-forvis-

tracked.json). Click the second “Click Here” button to upload

the original video (e.g., demo.mp4). Specify the frame rate of the

imported video. The default frame rate is 25.0 fps.

The video player allows the users to browse the

videos with overlaying tracked keypoints and identities

indicated by colors. Users can jump to frames of interest

or scan through videos frame by frame. We provide speed

control to allow flexible navigation within each video. The

timeline visualizes the position of different keypoints. An

abrupt change in keypoint position often suggests an error

in tracking.

3. If the detected keypoints show large jitters, this indicates that

the SPPE (single perspective pose estimator) model may not be

properly trained. Users can return to the training stage, modify

the learning rate and the number of training epochs, or provide

more training data, and retrain the network.

4. Users can correct small errors such as mislabeled identities and

mislabeled keypoints. To correct mislabeled keypoints, users can

pause at the relevant frame(s) and drag eachmislabeled keypoint

to the correct position. To correct mislabeled identities, users

can exchange the identities between two mice. Since errors are

likely to persist after the newly corrected frame, users can select

a time interval by clicking “IN” at the start of the time interval

(typically, this is the frame being just modified) and “OUT” at

the end of the interval. Click “curate” to update the prediction

for all the frames in the interval.
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FIGURE 6

The UI for AlphaTracker allows for inspection and correction of tracking errors. The UI consists of four areas: Area I is a navigation bar with icons for
navigating between di�erent interfaces (1, 2), help function (3), undoing/redoing actions (6, 7), exporting results (4), and starting new sessions (5); The
operation area (Area II) in the UI allows the user to view and edit the overlaid skeletons on the video using the cursor. It also provides the option to
navigate between frames (2), initiate curation (3) and identity reassignment (3), take notes (5), and toggle the timeline’s time indicator (6). Area III is a
playback control panel with options for playing/pausing videos (1), displaying time and frame information (2, 3), controlling playback speed (4, 6), and
specifying the interval for curation (5); Area IV is a timeline displaying the progress of the video (1), and keypoint locations over time (2). Detailed
instructions for using the UI can be found on GitHub.

5. After finishing modifying the tracking results, users can export

the current clip information as a local JSON file by clicking the

“export” icon.

2.3.6. Behavioral clustering
AlphaTracker allows the analysis of both individual and

social behavior. Here, using videos of two interacting mice, we

demonstrate the ability of AlphaTracker to track animals in both

scenarios. We consider clips with 15 frames (500 ms) as the unit

for mouse behavior because previous research has shown that fast

mouse pose dynamics can be grouped into meaningful blocks

lasting 200–900 ms sub-second timescale (Wiltschko et al., 2015).

For computing social features, we first rotate and move the poses

such that the body of the referencemouse at themiddle frame of the

clip lies on the positive x axis. Figure 7 illustrates the definition of

several features.

1. The success of behavioral clustering depends on the weights

assigned to each feature. Users can assign higher weights to

features of interest. Users either use the GUI as described

in the “tracking section” or set the parameters in the

./BehavioralClustering/setting.py. Definitions of the features are

listed below.

• body_length, body length of the reference mouse.

• body_change_sin, change in body direction of the reference

mouse between adjacent frames.

• left_ear, distance between the snout and the left ear

keypoints of the reference mouse.

• left_ear_cos, angle between the snout-left ear vector and the

body vector(cos) of the reference mouse.

• left_ear_sin, angle between the snout-left ear

vector and the body vector(sin) of the reference

mouse.

• right_ear, distance between the snout and the right ear

keypoints of the reference mouse.

• right_ear_cos, angle between the snout-right ear vector and

the body vector(cos) of the reference mouse.

• right_ear_sin, angle between the snout-right ear vector and

the body vector(sin) of the reference mouse.

• displace_rho, displacement between adjacent frames of the

reference mouse.

• displace_sin, direction of displacement between adjacent

frames(sin) of the reference mouse.

• displace_cos, direction of displacement between adjacent

frames(cos) of the reference mouse.

• body_length_TO, body length of the non-reference mouse.

• body_change_sin_TO, change in body direction between

adjacent frames of the non-reference mouse.

• left_ear_TO, distance between the snout and the left ear

keypoints of the non-reference mouse.
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FIGURE 7

Features for clustering individual and social behavior. Individual behavioral clustering depends on both static features in individual frames and
dynamic features across frames. Social behavioral clustering also depends on additional social features. The definition of example features is
depicted in the diagram. Common features include distances between keypoints and the angle between two vectors. (Blue, green: skeleton of
mouse poses. Red: distances between two points or angles between two vectors. Gray: reference coordinates).

• left_ear_cos_TO, angle between the snout-left ear vector

and the body vector (cos) of the non-reference mouse.

• left_ear_sin_TO, angle between the snout-left ear vector

and the body vector (sin) of the non-reference mouse.

• right_ear_TO, distance between the snout and the right ear

keypoints of the non-reference mouse.

• right_ear_cos_TO, angle between the snout-right ear vector

and the body vector(cos) of the non-reference mouse.

• right_ear_sin_TO, angle between the snout-right ear vector

and the body vector(sin) of the non-reference mouse.

• displace_rho_TO, displacement between adjacent frames of

the non-reference mouse.

• displace_sin_TO, direction of displacement between

adjacent frames(sin) of the non-reference mouse.

• displace_cos_TO, direction of displacement between

adjacent frames(cos) of the non-reference mouse.

• two_body_sin, angle between two body vectors(sin).

• two_body_cos, angle between two body vectors(cos).

• two_head_sin, angle between two head vectors(sin).

• two_head_cos, angle between two head vectors(cos).

• TM_nose_RM_tail_rho, distance between the tail base of

the reference mouse and the snout of the non-reference

mouse.

• TM_nose_RM_tail_sin, direction of the tail base of the

reference mouse—the snout of the non-reference mouse

vector(sin).

• TM_nose_RM_tail_cos, direction of the tail base of the

reference mouse—the snout of the non-reference mouse

vector (cos).

• RM_nose_TM_tail_rho, distance between the snout of the

reference mouse and the tail base of the non-reference

mouse.

• RM_nose_TM_tail_sin, direction of the snout of the

reference mouse—the tail base of the non-reference mouse

vector(sin).

• RM_nose_TM_tail_cos, direction of the snout of the

reference mouse—the tail base of the non-reference mouse

vector(cos).

• nose_nose_rho, distance between the two snouts.

• nose_nose_sin, direction of the snout-snout vector(sin).

• nose_nose_cos, direction of the snout-snout vector(cos).

2. (Optional) Users can define new features for clustering. We

provide five intermediate variables to facilitate the computation

of new features. Each variable is a NumPy array with

the shape of (number_of_clip, number_of_frames_in_one_clip,

number_of_key_point, 3):

• pose_clips, keypoints of the reference mouse.

• pose_clips_align, keypoints of the target mouse aligned to

its middle frame.

• poseTheOther_clips, keypoints of the non-reference mouse.
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• poseTheOther_clips_alignSelf, keypoints of the non-

reference mouse aligned to itself in the middle

frame.

• poseTheOther_clips_alignToOther, keypoints of the non-

reference mouse aligned to the reference mouse in the

middle frame.

Each new feature should be defined in ./fft_utils.py:

1. new Feature = np.ones

(pose_clips.shape[1])

2. if ’newFeatureName’ in

feature_clips_dict:

3. feature_clips_dict[’newFeatureName’].

append(newFeature)

4. else:

5. feature_clips_dict[’newFeatureName’] =

[newFeature]

Next, the weight and normalization method of the new

feature should be defined in ./utils_file/setting.py:

1. self.cluster_arg = [

2. ’thred’:30,

3. ’name’:’all_twoMice’,

4. ’evaluation_metric’:’Adjusted Rand

index’,

5. ’features_arg’:[

6. # add the setting of the new feature here

7. ’feat_key’:’newFeatureName’,’weight’:

4,’norm’:’zscore_all’,

8. #......(original features).....

9. ’feat_key’:’body_length’,’weight’:1,

’norm’:’zscore_all’, ] ]

3. Specify the settings for behavioral clustering. If

you are clustering individual behavior, change the

distance threshold to be larger than the cage diameter,

and set the weight for social behavior features

to 0.

• imgdir, path to frames generated by the tracking model.

Alternatively, you can set a directory of interest

here and generate frames from videos by running

./BehavioralCluster/0_video2image.py.

• tracked_json, path to the corresponding tracking

results.

• videodir, path to the original videos (required if you do not

have the generated frames).

• start_frame, a list of starting frames for each video.

• end_frame, a list of finishing frames for each video. A

number larger than the total frame number will be treated

as the ending frame of the video.

• mice_num, number of animals in each frame.

• joint_num, number of keypoints per animal.

• three, threshold for defining clusters based on the

dendrogram. Users can set this threshold to any

number on their first trial, redefine this variable

based on the generated dendrogram, and rerun the

clustering script.

• video_name_suffix, suffix for the generated videos with raw

videos, aligned images, feature distribution, and UMAP

shown together.

• result_folder, the result folder for saving important

intermediate results for inspection.

4. Run behavioral clustering with the following commands:

1. cd ./BehavioralClustering/

2. python fft_main_sep_twoMiceInteract.py

5. Inspect clustering results by generating the following plots with

./BehavioralClustering/Evaluation/Analysis.ipynb. Detailed

instructions are included in this Jupyter Notebook. This Jupyter

Notebook will generate the following plots to help determine

the clustering quality with the chosen features and feature

weights. Users should try different clustering thresholds and

check the dendrogram and feature heatmaps in order to identify

the optimal threshold to use.

• Dendrogram. The dendrogram is based on a linkage

matrix calculated by the clustering algorithm.

The branches of the dendrogram below the user-

defined threshold are colored to indicate their

cluster assignment.

• Timeline. The timeline plot displays the cluster

assignments for each clip, with their color matching

the cluster assignment as in the dendrogram.

• Feature heatmap. The feature heatmap visualizes the

relative strength of each feature in the cluster.

• UMAP. The UMAP shows the topological structure of all

the clips in the feature space. Each dot represents one

cluster, colored by their cluster assignment.

• Mutual information plots. The mutual information

plot quantifies the mutual information between each

feature and the cluster assignment. Note: Larger mutual

information suggests the feature is a strong marker of the

cluster.

• Similarity matrix between clusters. Note: Clusters with a

high similarity score are hard to differentiate.

• Representative skeleton for each skeleton. Cluster skeletons

visualize the representative pose and its temporal evolution

for each cluster.

6. Besides these analysis plots, users can also inspect generated

videos saved at self.gen_video_folder as specified in setting.py

with feature and cluster assignment.

7. Once the optimal threshold is identified, users should set

the threshold in the setting.py and rerun the algorithm.

This will save the correct cluster information for the

clustering UI.

2.3.7. Clustering UI
We provide a Clustering UI for inspecting the clustering results

(Figure 8).

1. Open the clustering UI following the same instruction as the

tracking UI. Choose cluster.html. Upload the JSON file that
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FIGURE 8

The UI for AlphaTracker provides the ability to inspect and correct clustering errors. Area I is a navigation bar with options for navigation (1, 2), help
(3), undoing/redoing actions (6, 7), result export (4), and starting new sessions (5). Area II displays the video (1) and the dendrogram (2) of clustering
results, along with frame navigation (3). Double-clicking a node in the dendrogram highlights all corresponding frames in the timeline in cyan.
Double-clicking a node in the dendrogramwould highlight all the frames belonging to that cluster in the timeline. Right-clicking allows for cluster
and clip manipulation (move, rename, delete). Merging of clusters is available in region 4, with the ability to record rationale in region 5. Area III
contains a playback control panel with options to play/pause video (1), display time, frame, and clip information (2, 3, 8), control playback speed (4,
5), choose video (6), and set the level to expand/collapse in the dendrogram (7). Area IV displays the progress bar (1) and cluster assignments for each
clip encoded by color (2). Detailed instructions for using the UI can be found on GitHub.

contains the clip information (clips_info.json) generated in the

behavioral clustering step. Import the original video and specify

the frame rate. Upload the JSON file that contains the cluster

structure (e.g., Z_all_twoMice.json).

2. Play the video and inspect the cluster assignment for each clip.

Users can examine the dendrogram by expanding and collapsing

the tree structure. The branches of the dendrogram can be

merged and moved to modify the cluster assignment. A detailed

explanation is provided in our GitHub manual.

2.3.8. Tracking with Google Colab
In addition to the desktop version, we also provide a Colab

notebook for training and tracking. Users looking for a quick test

of AlphaTracker can open this notebook https://colab.research.

google.com/drive/1wYBAj3kjLMe6uir3TJVfWRAJNHtjCaPG

and simply run through all blocks following the instructions.

If users would like to train their own model, we provide

another notebook https://colab.research.google.com/drive/

1bGUo3eMWIfzXiFWCvNrNiTOzhSsTsVHV.

1. Open the Colab notebook and save a copy to your personal

Google Drive.

2. Click Runtime and then change the runtime type to “GPU.”

Run the “Install” section to connect to your Google Drive. Your

Google Drive will now be mounted at /content/drive/MyDrive.

Run the next block to download AlphaTracker and finish

installation.

3. Upload your annotated training datasets to Google Drive

and set variables such as “image_root_list,” “json_file_path,”

“number_of_animals,” “number_of_poses,” “video_path” in the

“Setting” section.

4. Run the training code block if you would like to train the model

with your own datasets.

5. Run the tracking code block to perform training on the videos

you listed in setting.py or the default demo video. Once this step

is complete, in order to inspect the tracking results, you can go

to the result folder as specified in setting.py.

3. Results

3.1. Anticipated tracking results

To quantify AlphaTracker’s performance and compare it to

SLEAP and DeepLabCut, we conducted experiments using a

mouse dataset where. Trained human annotators labeled the

bounding box and four keypoints (snout, left ear, right ear, and

tail base) for each mouse in each frame. Our customization of the

DeepLabCut default model includes the following modifications:

enabling automatic computation of the PAF graph, utilization of

the box tracker, and setting the maximum number of iterations to
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TABLE 1 AlphaTracker demonstrated superior performance in tracking both two mice in a home cage and four mice in an operant chamber.

Two mice home cage Four mice operant chamber

MOTA MOTP mAP MOTA MOTP mAP

AlphaTracker 82.2 86.2 87.2 84.0 87.2 85.6

DeepLabCut 40.6 77.6 14.1 71.4 86.5 68.0

SLEAP 73.6 76.7 26.8 77.9 86.5 83.9

AlphaTracker, DeepLabCut, and SLEAP were evaluated on two datasets: two mice in a home cage and four mice in an operant chamber. Each model was trained on 600 annotated frames and

evaluated on 200 frames with human-labeled ground truth. The evaluation results show that AlphaTracker outperforms DeepLabCut and SLEAP in both datasets, achieving higher keypoint

detection accuracy (mAP) and tracking consistency (MOTA and MOTP).

FIGURE 9

AlphaTracker surpasses the performance of both DeepLabCut and SLEAP in tracking two mice in a home cage. (A–C) Show the Average Precision
(AP), Multi-Object Tracking Precision (MOTP), and Multi-Object Tracking Accuracy (MOTA) metrics for di�erent keypoints of AlphaTracker results. The
metrics were evaluated for di�erent amounts of training frames (25, 50, 100, 200, 300, and 600 frames) using a 200-frame evaluation dataset.
Di�erent colors represent di�erent keypoints including snouts (blue), ears (yellow) and tailbases (green) and the total metrics (red). (D–F) Show the
evaluation results for AlphaTracker (red), SLEAP (green), and DeepLabCut (blue), with connected dots representing the total metric and the
unconnected dots representing the metric for individual body parts.

100,000. Our customization of the SLEAP default model includes

several modifications to improve its tracking performance. Firstly,

we used the bottom-up model and set the tracker mode as “flow”.

Secondly, we implemented culling with an IoU threshold of 0.8.

Thirdly, we utilized the instance similarity method and the greedy

matching method. Fourthly, we set the elapsed window to 5

and used a robust quantile of similarity scores of 0.95. Fifthly,

we applied post-tracking break connection to improve tracking

continuity. Finally, we adjusted the minimum and maximum

rotation angles to -180 and 180 degrees, respectively. We used

the standard CLEAR MOT metrics [Average Precision (AP),

Multiple Object Tracking Accuracy (MOTA), and Multiple Object

Tracking Precision (MOTP)] (Bernardin and Stiefelhagen, 2008),

and evaluated the performance using the open-source Poseval tool

(Pishchulin et al., 2015) AP assesses the accuracy of object detection

by computing precision and recall values. MOTA evaluates three

types of errors: missed objects in a sequence, false positives, and

mismatches. MOTP calculates the average total position error for

matched object-hypothesis pairs across all frames. The evaluation

was performed using the open-source Poseval tool (Pishchulin

et al., 2015). To adapt the MOT metrics for mouse tracking, we

modified the threshold for distinguishing matched keypoints from

mismatched keypoints to be 5% of the bounding box’s diagonal.

We evaluated AlphaTracker’s performance on a dataset with

two mice interacting in a home cage, recorded at a resolution

of 1,920 × 1,080 p. Results shown in Table 1 indicate that

AlphaTracker outperformed SLEAP and DeepLabCut in terms of

mAP, MOTA, and MOTP when trained with 600 frames and tested

on 200 held-out frames (Supplementary Video 1). Furthermore,

AlphaTracker demonstrate consistent performance across all four

keypoints, while SLEAP and DeepLabCut showed significant

variance, as shown in Figure 9. Furthermore, AlphaTracker showed

high performance with only 50 frames of training data, achieving an

mAP higher than 0.7 (Figure 9).
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FIGURE 10

AlphaTracker identifies clusters for both individual and social behavior. Hierarchical clustering was performed on 15-frame clips (500 ms duration)
generated from videos of interacting dyads. The dendrogram of the clustering results is shown in (A) for individual behavior and (C) for social
behavior. Each leaf on the dendrogram represents a single clip, and their relative distance reflects their similarity in the feature space. The di�erent
colors and numbers indicate the assigned cluster for each individual clip. Example skeletons in (B, D) provide a visual representation of the typical
movement in each cluster. The pose of the reference mouse is displayed in red, while the non-reference mouse’s pose is displayed in green. The
movement in a 15-frame clip is illustrated by plotting a skeleton representation, with colors ranging from dark to light to denote each individual
frame. The skeletons have been rotated to align the pose of the reference mouse in the central frame with the negative x-axis direction.

Moreover, we evaluated AlphaTracker’s performance

in tracking multiple identical-looking animals using four

C57/BL6 mice in a metal operant chamber scenario.

Our evaluation (Supplementary Video 2) showed that

AlphaTracker outperformed SLEAP and DeepLabCut in all

metrics (Table 1, Supplementary Video 2). We also tested

AlphaTracker on mice with head implants, a common scenario in

neuroscience research, and demonstrated its robust performance

(Supplementary Video 3). This highlights AlphaTracker’s potential

for studying naturalistic social group dynamics in common

neuroscience settings.

It’s worth mentioning that the four mice operant chamber

dataset was collected with low-quality webcams at a resolution of

540 p. AlphaTracker demonstrated robust performance in tracking

animals in these videos (Table 1), making it an attractive solution

for large-scale animal behavior studies as it enables the monitoring

of multiple cages using low-cost webcams, greatly reducing the

overall cost.

3.2. Anticipated behavioral clustering
results

The behavioral clustering component of AlphaTracker enables

the clustering of both individual behavior and social interaction

in an unsupervised manner. Here, we analyze a total of 4,661

clips for individual behavioral clustering and 2,356 clips for

social behavioral clustering collected from four videos (Figure 10,

Supplementary Videos 4, 5). Our algorithm can capture the

following individual behaviors: walking, digging, sniffing, rearing,

turning, face grooming, and body grooming, and social behaviors:

following, chasing, anogenital sniffing, face sniffing, and social

rearing.

To evaluate the importance of each feature in clustering, we

calculate the mutual information between features and cluster

assignment (Figure 11), with the expectation that higher mutual

information indicates that the feature may represent a unique

characterization of a given cluster. For example, distances between

two mice are a strong indicator of social clusters, while related to

the head such as head length and nose-left ear distance stand out

among other individual features, indicating the salience of the head

in of many behaviors like rearing, digging and turning (Figure 11).

The identified behavioral clusters allow users to visualize the

temporal dynamics of animal behavior. This opens up the

opportunity for associative analysis between changes in behavior

motifs with experimental factors like optogenetic stimulus, drug

administration, environmental changes, and manipulation in a

social hierarchy.

To validate the performance of our behavioral clustering

algorithm, we compared its output to the ground 488 truth of

human annotation. A human scorer was trained to categorically

annotate behaviors. We used the Adjusted Rand Index (ARI)

to measure the similarity of the class assignment between the

algorithm and human scorer. ARI scores range from -1 to 1,
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FIGURE 11

Behavioral clusters can be di�erentiated by unique combinations of features. (A, C) Illustrate the heatmaps of averaged feature values utilized for
individual and social behavioral clusters, respectively. M1 refers to the reference mouse and M2 refers to the non-reference mouse in the dyad. (B, D)
Show the mutual information between cluster assignment and each feature for individual and social behavioral clusters, respectively. A higher mutual
information score indicates that the feature plays a crucial role in distinguishing specific clusters.

with negative values indicating independent labels, positive values

indicating close agreement with ground truth labels, and values

close to zero indicating random label assignments.

We evaluated the algorithm’s performance on datasets of

different sizes. The small dataset consisted of five videos, including

two videos with human-annotated ground truth, with a total of

1345 clips. The large dataset included two additional videos, with

a total of 3034 clips. The results presented in Table 2 suggest that

both datasets perform significantly better as compared to randomly

assigning clips to each cluster. Moreover, the performance of the

model further improved when given a larger clustering dataset,

likely due to better coverage of the continuous input space.

3.3. Timing

Installation time for AlphaTracker is highly dependent on

the installation method selected and users’ Internet speed. We

estimate that it will take a user between 10–30 minutes to download

and install the package, pre-trained model, demo data, and all

dependencies on Linux. OnWindows, installationmay take about 2

minutes less sinceWindows does not support YOLO training when

using the C-based darknet toolbox.

The training time for AlphaTracker (including YOLO and

pose estimation) is highly dependent on hardware performance,

dataset, and hyper-parameter settings. Using our default settings

and example data (about 6000 images), it takes approximately 2

hours to train the YOLO detector and the pose estimation model.

The tracking time for AlphaTracker (including detection, pose

estimation, and tracking) is also highly dependent on hardware

performance, dataset, and hyperparameter settings. Using our

default settings and demo video (about 7 minutes), tracking takes

approximately 2 hours.

The time required for behavior clustering varies according

to the features selected. Using keypoint-based features takes

approximately 10 minutes. When using the UI to inspect the

results, the main time cost is spent on loading data, which typically

takes about 1–2 minutes.

These time estimates are for a server with 72 Intel(R) Xeon(R)

Gold 6150 CPU @ 2.70GHz, and 393 GB of RAM, running an

Ubuntu 18.04.5 LTS system, using a 2080-Ti GPU. CPU times or

Windows times are also noted where appropriate.

4. Discussion

In this paper, we introduce AlphaTracker, a robust machine-

learning pipeline that accurately tracks and estimates the poses

of multiple unmarked animals. AlphaTracker also includes a

feature for discovering behavioral patterns through unsupervised
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TABLE 2 The results of AlphaTracker’s clustering algorithm are consistent

with human judgement.

Large
dataset
(3,034
clips)

Small
dataset
(1,345
clips)

Random
assignment

Adjusted rand index 0.201186 0.186533 0.003451

The accuracy of AlphaTracker’s clustering algorithm was evaluated by comparing its output

with human annotations for individual clips (500 ms). The annotations included individual

behaviors: walking, digging, sniffing, rearing, turning, face grooming, and body grooming,

and nine social behaviors: following, chasing, anogenital sniffing, face sniffing, and social

rearing. The similarity of the class assignments was measured using the Adjusted Rand Index

(ARI). AlphaTracker showed significantly higher ARI compared to random assignment,

demonstrating its consistency with human judgement. Additionally, using a relatively small

dataset of 1,345 clips, AlphaTracker was able to accurately capture most of the cluster

assignments, further highlighting its efficiency and effectiveness.

clustering and a user-friendly interface for visualizing and

proofreading results. Our pipeline is available on GitHub for

educational use and is user-friendly for non-programmers. Users

can model and analyze animal behaviors in a matter of hours with

a GPU. Our aim is to provide the research community with a

powerful tool for high-throughput behavioral analysis.

Traditional multi-animal tracking approaches require

heuristics to resolve animal identities, such as artificial colored

markers (EthoVision, Noldus) and bleach-marking with fur

patterns (Ohayon et al., 2013). These methods require performing

procedures on animals that could affect their natural behavior.

Animal tracking has benefited greatly from advances in pose

estimation, such as DeepLabCut, a software package that can

reliably track human-defined unique keypoints (Mathis and

Mathis, 2020). A recent algorithm, Moseq, has made progress

on automated behavioral identification by using a depth camera

and unsupervised learning theory (Wiltschko et al., 2015). And,

SimBA presents an open-source package with a graphical interface

and workflow that uses pose-estimation to create supervised

machine learning (Nilsson et al., 2020). However, these tools

have not been effective in tracking multiple identical animals.

In recent years, other tools for multiple animal tracking have

emerged. As an example, SLEAP is a full-featured general-purpose

multi-animal pose tracking framework tested on a diverse array of

datasets representative of common social behavioral monitoring

setups and designed for flexibility (Pereira et al., 2020b). Our

model outperforms these tools in keypoint detection accuracy

and multi-animal identification consistency which is critical for

studying social behavior.

Our AlphaTracker model has two main limitations. Firstly,

it was designed for tracking mice from a top view, and its

adaptation to other animals and environments requires expert

tuning and adaptation. To make this process easier, we have

created a tutorial on annotating new data and model training.

Typically, 200 annotated frames yield satisfactory performance in

new settings. The second limitation is the hardware requirement

for a GPU for model training. To overcome this, we offer a Google

Colab version of AlphaTracker. However, the free Colab version

may time out during long training sessions, and requires packages

to be reinstalled and connection to Google Drive for file storage

each time it is used.

Users may also encounter challenges that are common to all

models of this kind. Firstly, keypoint detection accuracy may be

affected by occlusions or animals temporarily leaving the frame.

To address this, we have provided a curation UI for users to

correct misidentification and mislabeling. Secondly, the clustering

algorithm does not work well for heterogeneous videos, such as

those with different imaging angles, animal sizes and scaling factors.

In these cases, the algorithm will produce clusters specific to each

condition, rather than uniform behavior patterns.

We envision AlphaTracker greatly facilitating systems

neuroscience research, as it premiered in Padilla-Coreano et al.

(2022). In that paper, AlphaTracker played a key role in furthering

research studying the role of the medial prefrontal cortex in

regulating social hierarchy. Besides this paper, there has been a

recent increase in the study of the neural mechanisms behind

behaviors such as social dominance, mating behavior, and maternal

behavior. To fully understand these behaviors, it is important to

have reliable and efficient methods of tracking social interactions

and quantifying behavioral patterns with minimal bias. Human

annotation performed by multiple researchers suffers from

biases in subjective behavior annotation and intensive labor.

AlphaTracker which is designed for reducing biases and elevating

efficiency holds great potential in accelerating this field.
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