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Brain-Computer Interfaces (BCIs) are devices designed for establishing

communication between the central nervous system and a computer. The

communication can occur through different sensory modalities, and most

commonly visual and auditory modalities are used. Here we propose that BCIs

can be expanded by the incorporation of olfaction and discuss the potential

applications of such olfactory BCIs. To substantiate this idea, we present results

from two olfactory tasks: one that required attentive perception of odors

without any overt report, and the second one where participants discriminated

consecutively presented odors. In these experiments, EEG recordings were

conducted in healthy participants while they performed the tasks guided by

computer-generated verbal instructions. We emphasize the importance of

relating EEG modulations to the breath cycle to improve the performance of an

olfactory-based BCI. Furthermore, theta-activity could be used for olfactory-BCI

decoding. In our experiments, we observed modulations of theta activity over

the frontal EEG leads approximately 2 s after the inhalation of an odor. Overall,

frontal theta rhythms and other types of EEG activity could be incorporated in

the olfactory-based BCIs which utilize odors either as inputs or outputs. These

BCIs could improve olfactory training required for conditions like anosmia and

hyposmia, and mild cognitive impairment.

KEYWORDS

olfaction, Brain-Computer Interface (BCI), neurofeedback, electroencephalography
(EEG), respiratory cycle

Introduction

This perspective article is motivated by our interest in an electroencephalography (EEG)-
based BCI that incorporates olfaction. Such a BCI could be used for rehabilitation of patients
with impaired olfactory function like patients affected by COVID-19 where one of the clinical
symptoms is a sudden deterioration of olfaction, with a greater impact on odor detection
threshold than on odor identification (Le Bon et al., 2021). EEG is potentially a useful tool for
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assessing olfactory processing in humans and adding this
information to a BCI control loop. Yet, chemosensory event-related
potentials (ERPs) are not as prominent as the commonly used
mismatch-negativity and P300 responses in the visual and auditory
domains, so it is challenging to analyze them. Analyzing odor-
induced changes in EEG rhythms is an alternative to using ERPs.
Thus, Schriever et al. (2017) analyzed the induced EEG-power
changes during the interval 200–2,000 ms after aroma onset in the
frequency band 2–6 Hz, and found that these EEG patterns were
informative to distinguish people with olfactory impairments from
healthy individuals. Those particular time-frequency parameters
were chosen based on the previous studies on the chemosensory
responses to trigeminal and olfactory nerve stimulation (Huart
et al., 2012).

When designing an olfactory-based BCI, it is important to
account for respiration, which is a critical component of olfactory
processing in animals (Adrian, 1942; Hobson, 1967; Fontanini
et al., 2003; Kepecs et al., 2006; Rojas-Líbano et al., 2014; Frederick
et al., 2016; Moberly et al., 2018) and in humans determines the
periods when odors are processed and memorized, and affects
functional brain connectivity, including effects on non-olfactory
areas (Fontanini and Bower, 2006; Arshamian et al., 2018; Corcoran
et al., 2018; Perl et al., 2019; Kluger and Gross, 2021; Kluger et al.,
2021). Although the respiratory cycle is critical for the analysis of
EEG activity in this context, respiratory sensors (Johnson et al.,
2006; Merritt et al., 2009; Karacocuk et al., 2019; De Fazio et al.,
2021) are often missing in the studies of olfactory processing, with
some notable exceptions (Haehner et al., 2011; Noguchi et al., 2011;
Wang et al., 2014; Zelano et al., 2016). Overall, notwithstanding the
progress made in the investigations of how cortical and subcortical
activity is related to the respiratory cycle (Kluger and Gross,
2021; Watanabe et al., 2023), more research is needed for better
understanding of how respiration and olfaction are integrated.

Olfactory training (OT), where several odors are actively sniffed
by a patient on a daily schedule, is an established approach
to olfactory rehabilitation (Hummel et al., 2009; Pekala et al.,
2016; Sorokowska et al., 2017; Addison et al., 2021). Adding
a BCI approach to OT could be a potentially useful tool to
improve rehabilitation (Placidi et al., 2015; Zhang et al., 2021;
Ninenko et al., 2022). In such a BCI system, neural patterns
occurring during processing of odors are decoded from brain
recordings and presented to the user as feedback based on an
appropriate sensory modality. Yet, it is critical for implementing
this type of BCI that neural responses to odors are well-understood
and properly decoded. Currently, it is not well-understood how
olfactory processing could be incorporated in the design of a BCIs.
In particular, it is not understood which brain signals should
be sampled and how they should be analyzed and translated
into commands that are transmitted to external devices that
assist patients with olfactory disabilities (Alonso-Valerdi et al.,
2015). This contrasts with the situation with the most successful
BCI implementations that rely on user interaction with visual,
auditory or somatosensory stimuli. Accordingly, we propose that
incorporating olfaction in BCIs should be explored as a potentially
powerful way to modulate brain activity.

Our research program on the olfactory BCIs is based on three
considerations. First, we suggest that BCIs that interact with an
olfactory environment could be useful for neural technologies
targeting emotions and relaxation. Second, we suggest that EEG

recordings are suitable for decoding olfaction-representing neural
activity, such as modulations of EEG rhythms and P300 responses
to odors and/or images that match these odors. Third, we reason
that the operation of different types of BCIs could be enhanced by
adding odors that enrich the sensory stimuli, for example, adding
odors to a virtual environment.

Theta activity and olfactory
processing

To substantiate our idea of an olfactory-based BCI, here
we present our results obtained in a study where theta
activity changes were detected in participants who perceived and
discriminated odors.

The involvement of theta oscillations in olfactory processing
has been extensively studied in animals (Bressler and Freeman,
1980; Buonviso et al., 2006; Kepecs et al., 2006; Kay et al., 2009;
Rojas-Líbano et al., 2014). In humans, theta oscillations have
been linked to odor processing (Jiang et al., 2017) and working
memory for odors (Yang et al., 2021). The involvement of beta and
gamma oscillations in olfactory processing has been demonstrated
in numerous studies in animals (Adrian, 1942; Rosero and Aylwin,
2011; Lockmann et al., 2018) and in humans, as well (Jung et al.,
2006; Iravani et al., 2020, 2021; Yang et al., 2022).

In our experiments, we observed changes in the frontal EEG
theta power when healthy participants inhaled different odorants
and perceived them (Figure 1A) and when they compared two
consecutively presented odors and reported whether or not they
were different (Figure 1B).

An experimental setup for an
olfactory-based BCI

In our experimental setup, participants were comfortably
seated in front of an Aroma Shooter§ diffuser (Aromajoin
Corporation, Kyoto, Japan) T mounted 20 cm from the participant’s
nose. The diffuser was equipped with six aroma cartridges, namely
caramel, grass, orange, pine, smoke, and mint scents (identification
numbers S-SW4, S-GN1, N-CT1, N-WD7, S-IM16, and N-HB21,
respectively). During the experiment, participants were asked to
keep their eyes open. Respiration was measured with a nasal
thermometric breath sensor TRSens (MKS, Moscow, Russia).

Electroencephalography data were collected using an NVX-36
amplifier (MKS, Moscow, Russia). Twenty two EEG channels were
recorded according to the international “10–20” system with the
sampling frequency of 250 Hz using Ag/AgCl electrodes lubricated
by an electrode gel. The ground lead was attached to the FCz site.
Two reference electrodes were placed on the left and right earlobes.
The electrode impedance was kept below 15 k� .

Thirteen healthy participants were recruited (six males and
seven females; 24.1 ± 5.8 years old, mean ± SD) who
performed tasks that required perceiving and discriminating odors.
Experiments were approved by the local Ethics Committee of
the Skolkovo Institute of Science and Technology, Moscow. The
participants gave informed consent to participate in the study. The
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FIGURE 1

Changes in Electroencephalography (EEG) spectra during the perception (left) and discrimination (right) tasks. Spectral plots represent the power
difference where average event-related spectral perturbations (ERSPs) for one condition were subtracted from the ERSPs for another condition.
Only statistically significantly different time-frequency regions defined by permutation analysis are shown. The black line represents the average
breath cycle. (A) Data for the attentive perception task. Here, ERSPs of the no-odor epochs were subtracted from the ERSPs of the odor epochs.
(B) Data for the discrimination task. ERSPs of the 1st aroma epochs were subtracted from the ERSPs of the 2nd aroma epochs. (C,D) Timings of
events in trials of attentive perception and discrimination conditions, respectively.

participants did not have a history of neurological diseases and
reported having no significant changes in the sense of smell in the
previous 6-months period. All participants were confirmed to be
normosmic using the sniffin’ sticks test with 12 items (SST-12).

The participants were native Russian speakers. Accordingly,
during the experimental trials, verbal commands were given in
Russian using computer audio.

Perception and discrimination tasks

During the first experimental condition, called attentive
perception, participants familiarized themselves with the set
of aromas. The condition consisted of 100 trials where their
respiration was guided by the commands “Exhale” and “Inhale.”
The command “Exhale” was given prior to odor delivery, and the
command “Inhale” was issued after an odor was sprayed by the
Aroma Shooter§ diffuser using a 0.5 s long spray (Figure 1C). The
participants were explained that no odor would be delivered in
some trials, and half of the trials were odorless. The participants
were instructed to pay attention to their olfactory perceptions,
but they were not required to name or discriminate the odors
being presented. The participants were not given any information
regarding the names of the odors.

During the second experimental condition, called
discrimination, participants were required to discriminate
odors. This condition included 40–60 trials (median 50 trials),
each consisting of the following sequence of steps: (1) an auditory
command “New pair”; (2) the commands “Exhale” and “Inhale”
followed by a 0.5 s long spray of the first odorant from the diffuser;
(3) a 5 s period for the odor to dissipate; (4) the commands “Exhale”
and “Inhale” followed by a 0.5 s spray of the second odorant; (5)
the command “Confirm match” after which the participant pressed
“1” or “0” on the keyboard to report that the first and the second
odorants were identical or different, respectively (Figure 1D). The
number of trials with the identical odorants in the pair was equal
to the number of trials with different odorants.

Analyses of EEG responses

EEG data were split into 4 s long epochs for processing.
Each epoch started 1 s before the beginning of the inhale and
ended 3 s after it. The beginning of the inhale was determined
based on the measurements from the breath sensor. Each epoch
was z-score standardized prior to the time-frequency analysis.
Time-frequency analysis of the epochs was performed using the
Morlet continuous wavelet transform (CWT) with the initial
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FIGURE 2

Analyses of changes in theta power. (A,B,E) Average power in statistically significantly different time-frequency regions defined by permutation
analysis. Each point represents the average power in an epoch (A,B) or difference in average theta powers between epochs corresponding to the
2nd and 1st aromas in pair in the discrimination task (E). Different pairs of boxplots divided by conditions [pure air and aroma, (A); 1st and 2nd
aromas in pair, (B)] and single boxplot (E) correspond to different participants. (C,D) Averaged for each participant theta power in perception (C) and
discrimination (D) tasks in different conditions. Data points of the same participants are connected by gray lines. ns: 5.00e–02 < p ≤ 1.00e + 00;
∗1.00e–02 < p ≤ 5.00e–02; ∗∗1.00e–03 < p ≤ 1.00e–02; ∗∗∗1.00e–04 < p ≤ 1.00e–03; ∗∗∗∗p ≤ 1.00e–04.

spread of the Gaussian wavelet set at 2.5/πω0 (where ω0 is
the central frequency of the wavelet). CWT was applied to a
single epoch in the 1–40 Hz frequency band. To calculate event-
related spectral perturbations (ERSPs), average time-frequency
maps were calculated for the absolute values of the signal.
Cluster-level statistical permutation test (Maris and Oostenveld,
2007) with Kruskal-Wallis H-statistic as the test statistic was
applied to all collected epochs to compare time-frequency maps
for odor and no-odor trials of the Random condition and the
first and second odorants of the Matrix condition. For the
detected statistically significant clusters, average power across
all electrodes was calculated for each epoch. Verification of
distribution normality was carried out using D’Agostino-Pearson
test, non-parametric tests were used in case of deviations from
normality. We compared the sets of average cluster powers for each
participant using Mann-Whitney-Wilcoxon test with Bonferroni
correction (Figures 2A, B), and also compared averaged across
trials cluster powers for each participant using t-test for paired
samples (Figures 2C, D).

A cluster-level statistical permutation test was applied to
compare CWT time-frequency maps of the odor and no-odor
trials for the attentive-perception exercise. We found a significant

increase in the frontal theta-range activity during the odor
presentation trials as compared to the no-odor trials (cluster-
level statistical permutation test, p-value = 0.03). This increase
occurred during the interval from 1.5 to 2.5 s relative to the inhale
onset (Figure 1A). We calculated and averaged across trials mean
power in the statistically significant theta-range cluster and found
a statistically significant difference in the mean theta power when
the odor and no-odor trials were compared. A 10.5% increase
in the theta power was observed in odor trials on average (no
deviations from normality; t-test paired samples, p-value = 5.615e–
06, t-statistic = –7.691; Figure 2C).

We compared CWT time-frequency maps for the first and
second odors epochs of the discrimination condition. We found
a significant increase in the frontal theta activity and besides
the changes in the theta activity, we found a slight decrease
in beta power during the second odor (cluster-level statistical
permutation test, p-value = 0.1, Figure 1B). The calculated and
averaged across trials mean power in the theta-range cluster
was statistically significantly higher during the second odor (no
deviations from normality; t-test paired samples, p-value = 2.340e–
03; t-statistic = –3.843; Figure 2D) with a 14.2% increase
on average.
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Discussion

Here we proposed developing an olfactory-based BCI. As the
first step toward such a system, we constructed an experimental
setup where subjects perceived and discriminated consecutively
presented odors while their EEG activity was sampled. Under these
experimental conditions, we found a significant increase in the
frontal theta power during the period when healthy participants
inhaled odorants as compared to inhaling air without any odorants
for all participants (Figures 1A, 2A, C). We also found a significant
increase in the theta power when the participants compared two
consecutively presented odorants and reported whether or not they
were different (Figures 1B, 2B, D, E). These EEG changes are
suitable for decoding characteristics of olfactory processing using
a BCI.

The correlations of the theta power with, firstly, the
presence/absence of aroma and, secondly, cognitive load provide
the opportunity to use the theta power as an objective EEG-based
metric for a machine learning model used in a BCI. The model can
be adjusted to give an objective score to estimate the threshold of
perception of a smell and the level of focus to an olfactory task. We
suppose that changes in theta power during the odor perception
throughout the long-term olfactory rehabilitation process may also
be a monitored metric to control rate and degree of olfactory
system recovery.

These results could be extended to building an olfactory-
based BCI where frontal theta-power changes related to perceived
odors are converted into an output signal (e.g., visual feedback).
Thus, there may be a BCI-based training of olfactory system
where the participant’s task will be to focus on perceived aromas
and produce the most significant visual feedback (for example,
circle with size or/and transparency defined by the power of theta
response during the odor perception). Conversely, frontal theta-
power could be converted into an olfactory neurofeedback where
odor type and intensity represent changes in the EEG so that, for
example, the bigger the theta power during the odor perception
the smaller amount of aroma will be sprayed in the next iteration.
Such BCIs could be useful for rehabilitation of people with
olfactory disabilities. Additionally, rehabilitation of age-related
mild cognitive impairment is also a potential field of application.
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