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Introduction: Top-down control underlies our ability to attend relevant stimuli
while ignoring irrelevant, distracting stimuli and is a critical process for prioritizing
information in working memory (WM). Prior work has demonstrated that top-
down biasing signals modulate sensory-selective cortical areas during WM, and
that the large-scale organization of the brain reconfigures due to WM demands
alone; however, it is not yet understood how brain networks reconfigure between
the processing of relevant versus irrelevant information in the service of WM.

Methods: Here, we investigated the effects of task goals on brain network
organization while participants performed a WM task that required participants
to detect repetitions (e.g., 0-back or 1-back) and had varying levels of visual
interference (e.g., distracting, irrelevant stimuli). We quantified changes in
network modularity—a measure of brain sub-network segregation—that occurred
depending on overall WM task difficulty as well as trial-level task goals for each
stimulus during the task conditions (e.g., relevant or irrelevant).

Results: First, we replicated prior work and found that whole-brain modularity
was lower during the more demanding WM task conditions compared to a
baseline condition. Further, during the WM conditions with varying task goals,
brain modularity was selectively lower during goal-directed processing of task-
relevant stimuli to be remembered for WM performance compared to processing
of distracting, irrelevant stimuli. Follow-up analyses indicated that this effect
of task goals was most pronounced in default mode and visual sub-networks.
Finally, we examined the behavioral relevance of these changes in modularity and
found that individuals with lower modularity for relevant trials had faster WM task
performance.

Discussion: These results suggest that brain networks can dynamically
reconfigure to adopt a more integrated organization with greater communication
between sub-networks that supports the goal-directed processing of relevant
information and guides WM.

brain networks, modularity, working memory (WM), cognitive control, task goals
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Introduction

Goal-directed behavior is critical for guiding our actions
within the capacity limitations of the brain. Top-down modulation
enables us to focus on and prioritize relevant information in the
environment while ignoring interfering, distracting information.
Importantly, this prioritization positively influences the perception
and maintenance of information in working memory [WM;
(Gazzaley and Nobre, 2012)]. Top-down biasing signals based on
varying task goals have been shown to affect both the activity
and connectivity of sensory-selective cortical regions important
for stimulus processing during WM. For example, the magnitude
of evoked activity from sensory-selective regions increases when
attending to relevant information to be remembered compared to
ignoring irrelevant, distracting information (Gazzaley et al., 2005a;
Gazzaley, 2011). It is thought that these changes in the activity
of sensory-selective regions are guided by top-down modulatory
signals from prefrontal and parietal areas (Miller and D’Esposito,
2005; D’Esposito and Postle, 2015), supported by brain stimulation
work showing that the prefrontal cortex (PFC) is the primary
source of these modulatory signals for sensory region activity
(Desimone and Duncan, 1995; Miller et al.,, 2011; Zanto et al.,
2011; Lee and D’Esposito, 2012; Squire et al., 2013). In further
support of this, previous research has shown that the connectivity
of visual regions also varies depending on task goals—sensory-
selective regions are more functionally connected to frontoparietal
regions when attending relevant stimuli to be remembered for
WM and are more connected to regions of the “default mode”
network when processing irrelevant stimuli (Chadick and Gazzaley,
2011). This work suggests that sensory-selective visual regions are
differentially connected to brain sub-networks depending on task
goals during WM (e.g., relevant or irrelevant). In addition to the
connectivity between pairs of brain regions, effects of task goals on
complex behaviors, such as WM, likely emerge from even broader
interactions between distributed brain sub-networks (Buschman
and Kastner, 2015). However, the reorganization of large-scale
brain networks due to varying task goals in the service of WM
performance has not been thoroughly examined.

Organizational properties of large-scale brain networks can be
quantified with graph theoretical tools that model the brain as
a complex network comprised of individual regions (nodes) and
the connections between them (edges). Modular brain network
organization is critical for guiding behavior because it enables local
processing within sub-networks or “modules” for more specialized
functions and global processing between sub-networks for more
complex cognitive functions (Meunier et al, 2009, 2010). The
strength of modular network organization can be quantified with
a modularity metric, where networks that have many connections
within sub-networks and fewer connections between sub-networks
have a high modularity value.

Previous neuroimaging studies investigating large-scale brain
networks have revealed that the brain exhibits a modular
organization in terms of structural connections and functional
connections measured during task-free “resting” states (Sporns
and Betzel, 2016). More recently, there has been an effort to
examine how the brain’s modular organization changes during
task performance (i.e., state-based changes in brain modularity),
including during WM tasks with varying cognitive demands.
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Brain networks exhibit parametric decreases in modularity with
increasing WM load (e.g., detecting stimulus repetitions 0-back
compared to 1-back, and 1-back compared to 2-back) and,
importantly, the reconfiguration to a less modular state is related to
better task performance (Kitzbichler et al,, 2011; Braun et al., 2015;
Vatansever et al., 2015; Wen et al., 2015; Shine et al., 2016; Finc
et al,, 2017; Zippo et al,, 2018). As such, the brain adopts a more
integrated (less modular) state during more cognitively demanding
WM conditions to support more effortful and complex cognitive
processing. However, this work has largely focused on block designs
to detect modular network changes at a more global, task condition
level. How varying task goals, such as stimulus relevance, alter
brain modularity during WM performance has not yet been fully
investigated.

Here, we sought to build on this prior work to investigate
how modular brain organization changes with varying task goals
during WM performance. We first aimed to replicate prior work
by examining differences in brain modularity due to WM load
(e.g., detecting repetitions in a 1-back condition compared to a
baseline (0-back) condition). Next, we asked how brain modularity
changed on a trial-wise basis during the task conditions, depending
on stimulus goals (e.g., whether the trial-level stimuli were task-
relevant and to be remembered for WM performance or were task-
irrelevant, interfering distractors). We also conducted follow-up
analyses to identify which brain sub-networks contributed most to
the observed effects of stimulus goals. Finally, we assessed whether
network reconfiguration under varying task goals was related to
performance. In doing so, we aim to provide a more comprehensive
understanding of how modular brain organization reconfigures
based on task goals during WM performance.

Materials and methods

Participants

Seventy-five healthy young adults (49 females and 26 males;
age range = 18-38) who participated in six separate studies at
UC Berkeley were included in these analyses, three of which have
been published (Jacobs and D’Esposito, 2011; Lee and D’Esposito,
2012; Gallen et al., 2016b). Participants were screened to exclude
those with any history of neurologic or psychiatric disorders and,
for Study 3, for abnormal or infrequent menstrual cycles or use
of hormonal birth control. Here, we included participants with
a minimum of four blocks of each cognitive task condition (see
below). This resulted in 26 participants from Study 1 (Gallen
et al,, 2016b), 10 participants from Study 2 (Lee and D’Esposito,
2012), 11 participants from Study 3 (Jacobs and D’Esposito, 2011),
and 28 participants from unpublished data. Informed consent was
obtained from participants in accordance with the Committee for
the Protection of Human Subjects at the University of California,
Berkeley.

Working memory task

The cognitive task performed during fMRI scanning was a
working memory (WM) N-back task with face and scene stimuli
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FIGURE 1

Experimental design for the cognitive task. Each task condition
consisted of 20 sequentially presented stimuli (10 faces and 10
scenes). Colored lines under the stimuli are presented for illustrative
purposes and were not present during the task.

(Figure 1), in which participants were instructed to identify
repetitions 1-back from the current image (1-back condition) or
respond to the current image (0-back condition). The task consisted
of either 16 or 20 (N = 17 or 58 participants, respectively) total
blocks lasting approximately 2 min each (Chen et al, 2011).
Separate analyses using this task have been previously published
for data collected in Studies 1-3 (Jacobs and D’Esposito, 2011;
Lee and D’Esposito, 2012; Gallen et al,, 2016b), including a re-
analysis of data collected in Studies 1-3 (Cohen et al., 2014). Each
task block contained 20 consecutively presented face and scene
stimuli (10 of each, pseudo-randomly ordered to limit predictability
of the upcoming stimuli), presented for 600 ms, with a 2.4, 4.4,
or 6.4 s jittered delay (randomly ordered) between each stimulus
presentation. Participants responded to each stimulus with one of
two buttons using their right index or middle fingers.

Each block had one of four task conditions that varied both
task goals and WM demands. We refer to these conditions
as: “Categorize,; “Remember Scenes,” “Remember Faces,” and
“Remember Both.” In this study, we analyzed data from the
Categorize, Remember Scenes, and Remember Faces conditions.
In the Categorize condition, participants indicated whether the
current image was a face (index finger) or a scene (middle finger)
and did not need to remember the image (i.e., a 0-back condition).
As such, “Categorize” is a control condition that matches sensory
information without WM demands. In the Remember Scenes
(Ignore Faces) 1-back WM condition, participants were instructed
to selectively attend to and remember stimuli from the relevant
category (scenes) and respond to stimuli from the irrelevant
category (faces) as distractors. Conversely, in the Remember
Faces (Ignore Scenes) condition, participants were instructed to
selectively attend to and remember face stimuli and respond to
irrelevant scene stimuli as distractors. In these conditions with
varying stimulus relevance (Remember Scenes and Remember
Faces), participants indicated if the currently attended image
matched the previous image (i.e., 1-back) of the same category
(matches: index finger, non-matches: middle finger); participants
also responded to all irrelevant items with the non-match button.
Finally, there was a “Remember Both” condition that was not
analyzed in this study, in which participants were instructed to
attend to and remember both the face and scene stimuli. Depending
on the study, participants completed four or five blocks of each
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condition during the scanning session (pseudo-randomly ordered),
yielding a maximum of 40 or 50 face and scene stimuli for
each task condition.

MRI acquisition and preprocessing

Imaging data were collected on 3T Siemens Trio scanners at
the University of California, Berkeley Henry H. Wheeler, Jr. Brain
Imaging Center, or at the University of California, San Francisco
Neurosciences Imaging Center (Study 3 only). TI1-weighted
structural and T2*-weighted echo-planar images (EPIs) were
collected with a 12-channel head coil for all studies. Functional data
were collected using parallel imaging (GRAPPA) with acceleration
factor 2 in Study 3 and unpublished Studies 1 and 3, and two
participants in unpublished Study 2 (TE = 27 ms). GRAPPA was
not used in Study 1 (TE = 24 ms), Study 2 (TE = 32 ms), and
three participants in unpublished Study 2 (TE = 24 ms). All
studies used 18 5-mm axial slices with a 0.5-mm gap (descending
slices for Study 1 and three participants in unpublished Study 2;
interleaved slices for Studies 2, 3, and unpublished Studies 1, 3,
and two participants in unpublished Study 2). All studies collected
functional volumes with TR = 1,000 ms and a 3.5-mm? in-plane
resolution. Four or five 114-volume runs of each of the four task
conditions were collected, yielding a total of 30.4 or 38 min of task
data. A high-resolution axial MP-RAGE T1-weighted sequence was
used to acquire structural images for all studies (TR = 2,300 ms,
TE = 2.98 ms, FA = 9°, 1 mm® voxels).

Standard preprocessing of EPI data was carried out with AFNI
(Analysis of Functional NeuroImages) and FSL (FMRIB Software
Library). EPI volumes were slice-time, and motion corrected, co-
registered to the T1-weighted structural image, and warped to MNI
(Montreal Neurological Institute) template space using FSLUs non-
linear registration. Intensity spikes were removed and interpolated
with AFNI after slice-time and motion correction. Functional
data were resampled to 2-mm isotropic voxels, combining motion
correction and atlas transformation in a single interpolation. MNI-
warped functional data were spatially smoothed with a 6-mm full
width at half maximum Gaussian kernel and scaled so that each
voxel’s run mean was equal to 100.

Task-related functional connectivity
analyses

To quantify task-related functional

implemented a beta-series

connectivity, we
correlation approach (Gazzaley
et al,, 2004; Rissman et al,, 2004). As with prior work using this
task (Lee and D’Esposito, 2012; Cohen et al., 2014; Cohen and
D’Esposito, 2021), we focused on examining stimulus-evoked
responses (i.e., activity during the processing of task stimuli).
To estimate trial-wise evoked responses in the BOLD signal,
a voxel-wise regression was performed. Here, task-dependent
changes were modeled with independent regressors for correct
trials for each task condition (Categorize, Remember Scenes,
Remember Faces, Remember Both) and stimulus type (faces or
scenes). These regressors were created by convolving a canonical
double-gamma hemodynamic response function (HRF) with the
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onset times for each trial. We also included separate regressors
that modeled incorrect and missed trials, motion parameters, run
means, and linear trends (as “nuisance regressors” of no interest).
This resulted in a parameter estimate, or beta value, for each
voxel and trial of the task. Only correct trials for the Categorize,
Remember Scenes, Remember Faces conditions were included
in subsequent analyses. To interrogate large-scale brain network
properties, we next parcellated the brain into a set of 264 atlas
regions of interest [ROIs; (Power et al,, 2011)] each comprised of
81 voxels, representing the network nodes, and averaged the beta
values across all voxels within each ROI.

As we were interested in examining the effects of (1) task
conditions (e.g., 0-back vs. 1-back) as well as (2) trial-level task
goals for each stimulus, we sorted the beta values into their separate
task conditions (i.e., Categorize, Remember Scenes, Remember
Faces) and stimulus types (i.e., faces or scenes). First, we examined
effects of task condition collapsed across stimulus types (ie.,
0-back Categorize condition and 1-back Remember Faces and
Remember Scenes conditions). To do so, we concatenated all
beta values from both face and scene trials for a given task
condition to create 3 separate condition-level “beta-series” for each
atlas ROI: Categorize, Remember Scenes, and Remember Faces.
Second, we examined effects of stimulus goals (i.e., categorize,
irrelevant, or relevant) for trials within each task condition. To
do so, we concatenated beta values separately for face and scene
stimuli, depending on the task condition and stimulus goals.
This resulted in 6 beta-series for each ROI: categorized scenes
(Categorize condition), categorized faces (Categorize condition),
relevant scenes (Remember Scenes condition), irrelevant faces
(Remember Scenes condition), relevant faces (Remember Faces
condition), and irrelevant scenes (Remember Faces condition).

Finally, task-related
representing the network edges, were created for each participant

functional connectivity —matrices,
by correlating the beta-series between each pair of ROIs using
Pearson’s correlation coefficient and applying a Fisher z-transform.
Connectivity matrices were created separately for each of the
9 beta-series types described above (e.g., a separate matrix was
created for remember scenes, relevant scenes, and irrelevant faces).
The range of beta values for each of the stimulus goals and stimulus
types across participants were as follows: categorized scenes (35-
50), categorized faces (37-50), relevant scenes (32-50), irrelevant
faces (39-50), relevant faces (33-50), and irrelevant scenes (36-50).
ROIs were excluded from all analyses if they were missing EPI
coverage due to incomplete sampling of the whole brain during
fMRI scanning in 90% or more voxels from the original 81-voxel
atlas ROI across scanning runs in any participant. A total of 193
ROIs were included in the final network analyses.

Brain modularity analyses

The 193 x 193 connectivity matrices were binarized to create
adjacency matrices that indicate the presence or absence of a
connection, or network edge, between a pair of regions. Matrices
were binarized over a range of connection density thresholds,
where thresholding of the matrices was achieved by matching
the number of network connections across participants (here,
the top 2-10% of all possible connections in the network in 2%
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increments) (Gallen et al.,, 2016a; Baniqued et al., 2017, 2019). Each
of these thresholded matrices was used to create unweighted,
undirected whole-brain graphs (defined as a set of nodes, or ROIs,
and the edges, or task-related connections, between them) with
which network metrics were examined. Network metrics were
created separately for each connection threshold and are presented
here as the average across connection density thresholds.

First, we examined changes in whole-brain network
modularity, a global network measure that compares the number
of connections within to the number of connections between
sub-networks, or “modules,” across the entire brain network
(Newman, 2004; Newman and Girvan, 2004). Modularity will be
1 if all connections fall within sub-networks, and it will be 0 if
there are no more connections within sub-networks than would
be expected by chance. To do so, we assigned each atlas ROI to
a sub-network according to the sub-network partition identified
with these nodes, as described in Power et al. (2011). We then
quantified whole-brain network modularity for each participant
and beta-series type, resulting in 9 modularity values for each
participant.

After identifying global changes in network modularity due
to goals (e.g., relevant or irrelevant), we examined which sub-
networks contributed most to the observed whole-brain modularity
effects, which is the sum of contributions from each individual sub-
network. To do so, we quantified the modularity of each of the
sub-networks described in Power et al. (2011) and identified which
showed similar patterns to the whole-brain modularity effects.
Note that the coverage of our functional data did not include the
cerebellum, thus only permitting analysis of 13 of the 14 brain
sub-networks identified in Power et al. (2011). We also examined
the reliability of our whole-brain modularity findings by using a
spectral algorithm (Newman, 2006) to identify the most optimal
modular partition (i.e., maximal modularity) for each participant
and condition separately, rather than imposing the Power et al.
(2011) modular partition across all networks.

Statistical analysis

To examine effects of stimulus goals on task performance, we
conducted repeated-measures ANOVAs with within-subject factors
of stimulus goals (Categorize, Irrelevant, Relevant) and stimulus
type (Faces, Scenes), separately for accuracy (percent correct trials)
and response time (RT; average response time for correct trials).

To examine changes in whole-brain modular network
organization, we conducted two separate analyses, examining
(1) effects of task condition and (2) effects of stimulus goals on
whole-brain, global network modularity. First, the effect of task
condition on global modularity was assessed with a repeated
measures ANOVA with a within-subject factor of task condition
(Categorize, Remember Scenes, Remember Faces). Second, the
effect of stimulus goals on global modularity was assessed with a
repeated measures ANOVA with within-subject factors of stimulus
goals (Categorize, Irrelevant, Relevant) and stimulus type (Faces,
Scenes). We then conducted follow-up ANOVAs to identify which
sub-networks contributed most to the observed global modularity
stimulus goal effects. Finally, we quantified relationships between
task performance and goal-related changes in modularity using
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stimuli. Data are presented as mean + SEM.

Pearson’s correlations, focusing on RT of all relevant trials that
placed demands on WM in line with previous work (Kitzbichler
et al, 2011; Vatansever et al, 2015). For all analyses, we set a
significance threshold of p < 0.05.

Results

Task performance

Accuracy and response times (RT) were significantly influenced
by both stimulus goals and stimulus type (Figure 2). An
ANOVA with within-subject factors of stimulus goals (Categorize,
Irrelevant, Relevant) and stimulus type (Scenes, Faces) on accuracy
and RT showed main effects of goals [accuracy: F(2,148) = 71.59,
p < 0.001; RT: F(2,148) = 136.07, p < 0.001] and type [accuracy:
F(1,74) = 15.35, p < 0.001; RT: F(1,74) = 40.08, p < 0.001].
For accuracy, participants were less accurate for relevant stimuli
used for WM performance, compared to categorized and irrelevant
stimuli that only required a judgment on the sensory information
(e.g., a face or a scene). Participants were also less accurate for
categorized stimuli compared to irrelevant stimuli (Figure 2A).
For RT, participants were slower for relevant stimuli compared to
categorized and irrelevant stimuli (Figure 2B). Participants were
also overall more accurate and faster for face stimuli compared to
scene stimuli.

We also found a significant interaction between stimulus
goals and type for accuracy [F(2,148) = 7.12, p = 0.001] and
RT [F(2,148) = 49.90, p < 0.001], suggesting that the effects
of stimulus type depended on the stimulus goals. Follow-up
ANOVAs comparing face and scene stimuli for each condition
showed that participants were more accurate and faster for faces
than scenes when they were categorized or irrelevant [accuracy:
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F(1,74) = 23.98, p < 0.001; F(1,74) = 10.98, p = 0.001; RT:
F(1,74) = 115.96, p < 0.001; F(1,74) = 39.47, p < 0.001]; however,
we found no evidence for a difference in accuracy between faces
and scenes [F(1,74) = 0.17, p = 0.68] when they were relevant,
and participants were slower for faces than scenes when they were
relevant [F(1,74) = 16.10, p < 0.001].

Task-related reconfiguration of
whole-brain modular network
organization

We next investigated how whole-brain modularity changed
depending on the task condition and stimulus goals. First, we
examined changes in modularity for overall task conditions:
Categorize, Remember Scenes, and Remember Faces. We found
that whole-brain modularity differed between the task conditions
[F(2,148) = 5.73, p = 0.004], such that modularity was lower
for the 1-back conditions (Remember Scenes and Remember
Faces) compared to the 0-back (Categorize) condition (Figure 3A;
p = 0.007; p = 0.003), but was not significantly different between
the Remember Scenes and Remember Faces conditions (p = 0.72).
These findings suggest that modularity was lower during the
more demanding 1-back conditions compared to a baseline 0-back
condition.

Next, we examined how modular brain network organization
changed on a trial-wise basis during the task conditions, depending
on the stimulus goals (i.e., categorize, irrelevant, relevant). We
found a main effect of stimulus goals [Figure 3B; F(2,148) = 19.04,
p < 0.001], such that modularity was selectively lower during goal-
directed processing of relevant stimuli compared to irrelevant and
categorized stimuli (both p < 0.001), but was not significantly
different between processing irrelevant and categorized stimuli
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(p = 0.30). We did not detect either a significant main effect of
stimulus type [F(1,74) = 0.01, p = 0.92] or, importantly, a significant
interaction between stimulus goals and type [F(2,148) = 0.10,
p = 0.90], suggesting that the observed reductions in modularity
for relevant stimuli unlikely depended on whether they were faces
or scenes. These findings suggest that modularity was lower during
goal-directed processing of task-relevant stimuli, compared to
irrelevant or categorized stimuli.

We examined the robustness of our findings by confirming that
our results were similar using a spectral partitioning algorithm to
identify “optimal” sub-networks (sub-network partitions with the
maximum modularity) for each participant and condition rather
than using the Power et al. (2011) sub-network definitions. For
effects of task condition, modularity was lower for the 1-back
Remember Faces condition compared to the 0-back (Categorize)
condition at a “trend” level (p = 0.08), but was not statistically
different for the 1-back Remember Scenes condition compared to
the 0-back (Categorize) condition (p = 0.22). Modularity was not
significantly different between the 1-back conditions (p = 0.64). For
effects of stimulus goals, modularity was lower during processing
of relevant stimuli compared to irrelevant and categorized stimuli
(p = 0.001 and p = 0.006, respectively), but was not significantly
different between processing irrelevant and categorized stimuli
(p=0.70).

Further, we confirmed that reductions in modularity during the
processing of task-relevant stimuli were not related to potential
confounds. First, reductions in modularity were not related to
participant age [relevant-irrelevant: r(53) = —0.19, p = 0.17;
relevant-categorize: r(53) = —0.19, p = 0.16; note that participant-
specific age data was only available for 55 participants]. Second,
reductions in modularity were not related to participant in-scanner
motion, quantified as the Euclidean norm of motion parameters
using AFNI [relevant-irrelevant: #(73) = 0.06, p = 0.60; relevant-
categorize: r(73) = 0.12, p = 0.32].

Sub-network contributions to
goal-related modular network
reconfiguration

As whole-brain modularity is quantified as the sum of each sub-
network’s modularity values, we next sought to examine individual
sub-network contributions to the observed whole-brain modularity
findings. We conducted an ANOVA with within-subject factors of
stimulus goals (Categorize, Irrelevant, Relevant) and sub-network
(N = 13). For this analysis, the modularity values were averaged
for face and scene stimuli, as there was no main effect of stimulus
type or interaction between stimulus goals and type for whole-
brain modularity.

We found a significant interaction between stimulus goals
and sub-network [F(24,1776) = 6.75, p < 0.001], suggesting that
the effect of stimulus goals on modularity differed across sub-
networks. To further interrogate this interaction, we conducted
separate ANOVAs with a factor of stimulus goals (Categorize,
Irrelevant, Relevant) for each sub-network to identify those with
effects that mirrored the whole-brain modularity effects (i.e.,
reduced modularity for relevant stimuli compared to irrelevant
and categorized stimuli; Supplementary Table 1). We found a
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Differences in network modularity based on task condition and
stimulus goals. (A) Network modularity was lower during the
Remember Scenes and Remember Faces (1-back) conditions
compared to the Categorize (0-back) condition. (B) Within the
three task conditions, network modularity was selectively lower for
trials with relevant stimuli (red) compared to trials with irrelevant
(orange) or categorized (blue) stimuli. P-values are presented as the
average of face and scene stimuli in panel (B), as there was a main
effect of stimulus goals, but no interaction between stimulus goals
and stimulus type. Data are presented as mean + SEM.

***P < 0.001; **P < 0.01.

significant effect of stimulus goals for the default mode network
[DMN; F(2,148) = 12.38, p < 0.001] and visual [F(2,148) = 4.94,
p = 0.008] sub-network (Figures 4A, B, respectively). In both sub-
networks, modularity was reduced during processing of relevant
stimuli compared to irrelevant (DMN: p < 0.001; visual: p = 0.001)
and categorized stimuli (DMN: p < 0.001; visual p = 0.02), but
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was not significantly different between irrelevant and categorized
stimuli (DMN: p = 0.11; visual: p = 0.58).

Relationship between network
reorganization and task performance

Finally, we examined relationships between goal-related
changes in network modularity and task performance to assess the
cognitive relevance of such alterations in network organization. As
prior work investigating behavioral relationships with modularity
changes due to N-back demands has focused on RT (Kitzbichler
et al,, 2011; Vatansever et al.,, 2015), we similarly used RT for all
relevant stimuli (trials with high WM demands) as our behavioral
metric to index WM performance (quantified as the mean RT
across relevant face and scene stimuli).

We first examined how the reductions in whole-brain
modularity for relevant stimuli (compared to categorized and
irrelevant stimuli) were related to task performance. We found
that individuals with lower modularity for relevant stimuli
compared to irrelevant stimuli had faster WM task performance
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[Figure 5A; r(73) = 0.34, p = 0.003]. However, we did not
detect a significant relationship between task performance and the
change in modularity between relevant and categorized stimuli
[7(73) = 0.04, p = 0.72]. Moreover, we did not detect a significant
relationship between changes in task performance (relevant—
irrelevant RT) and changes in network modularity [(73) = 0.11,
p=0.36].

We examined similar relationships at the sub-network level.
We focused on modularity changes between relevant and irrelevant
stimuli within the DMN and visual sub-networks, as they showed
the most prominent effects of goal-related stimulus goals on
modularity. To do so, we quantified the change in modularity
between relevant and irrelevant stimuli for each sub-network
and averaged these values across (1) DMN and the visual sub-
networks and (2) all other sub-networks (N = 11). We found
that individuals with lower DMN and visual modularity for
relevant stimuli (compared to irrelevant stimuli) had faster task
performance [Figure 5B; r(73) = 0.33, p = 0.004]. Correlations
between changes in modularity and performance separately for
DMN and the visual sub-network showed a similar relationship
[7(73) = 0.23, p = 0.049; r(73) = 0.21, p = 0.068, respectively].
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Importantly, we did not detect a significant relationship between
changes in modularity and task performance for the remaining 11
sub-networks that did not show effects of stimulus goals similar to
the whole-brain modularity findings (average modularity across the
11 sub-networks); [r(73) = 0.16, p = 0.17].

Discussion

Results from this study suggest that task goals alter modular
brain network organization during WM performance. We first
showed that modularity was lower during more demanding 1-
back task conditions compared to a 0-back condition, replicating
prior results that brain modularity is lower for more cognitively
effortful tasks. Next, we demonstrated that whole-brain modularity
changes on a trial-wise basis during the 1-back task conditions,
depending on the stimulus goals: whether the stimuli were relevant
and to be remembered for WM performance, or whether they
were irrelevant distractors. Modularity was selectively reduced
during goal-directed processing of relevant compared to irrelevant
stimuli within the 1-back condition, and was also lower compared
to processing categorized stimuli in a separate 0-back condition.
Follow-up analyses at the sub-network level indicated that the
effects of stimulus goals were most pronounced in the DMN
and visual sub-network. Finally, we observed a relationship
between goal-related changes in modularity and task performance.
Those with lower modularity for relevant trials had faster task
performance on trials requiring WM, pointing to the behavioral
importance of network reorganization.

We first replicated prior work examining differences in
brain modularity depending on cognitive demands at the task
condition level. Network modularity was lower during the 1-back
task conditions with higher WM demands (Select Scenes and
Select Faces) compared to the less-demanding 0-back condition
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(Categorize). This finding is in line with a growing literature
showing brain modularity is influenced by WM load (Kitzbichler
et al., 2011; Braun et al, 2015; Vatansever et al., 2015; Wen
et al., 2015; Shine et al., 2016; Finc et al, 2017; Zippo et al,
2018), such that the brain adopts a more integrated (less modular)
network organization when more cognitive effort is required
to support behavior. The less demanding 0-back condition can
likely be performed in a more automated manner, as it involves
identifying the current stimulus as a face or a scene. At the brain
network level, this task can be performed with a more modular
organization with more segregated sub-networks, likely requiring
minimal communication between them. In the 1-back conditions,
however, participants needed to both maintain information in
WM and flexibly process whether stimuli are relevant or irrelevant
depending on the task goals. To perform these more effortful task
conditions, the brain likely adopts a more integrated, albeit more
costly, network organization to increase communication between
brain sub-networks. Recent work has also demonstrated that these
changes in brain modularity are not WM-specific: brain modularity
is lower during other types of tasks that require more cognitive
effort, such as visual target detection (Godwin et al, 2015) or
visual discrimination (Bola and Sabel, 2015) tasks, as well as during
attention tasks (Elton and Gao, 2015). Collectively, these findings
may also suggest that a more integrated brain network organization
underlies aspects of fluid intelligence (Cohen and D’Esposito,
2021).

We next provided new evidence that brain networks
dynamically reconfigure on a trial-wise basis during the 1-
back conditions, depending on the stimulus goals. Specifically,
network modularity was selectively reduced during processing
of relevant stimuli that were used to guide WM performance.
Moreover, modularity for trials with irrelevant stimuli in the
1-back conditions was similar to that of categorized stimuli
with no WM demands (i.e., 0-back trials). These observations
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show that lower modularity during the 1-back task conditions is
driven by selectively lower brain modularity during processing of
relevant stimuli. Further, our results suggest that the brain adopts
a more modular state, similar to less demanding task conditions,
during trials with irrelevant stimuli. More broadly, these findings
demonstrate that brain networks can dynamically reconfigure
when processing stimuli for WM performance by selectively
increasing communication between sub-networks (ie., lower
modularity). Other studies examining dynamic, time-varying
changes in functional connectivity have also demonstrated that
brain modularity fluctuates during task performance. For example,
ongoing dynamics in brain modularity can predict whether an
upcoming stimulus will be detected (Sadaghiani et al., 2015), and
the brain spends more time in a less modular network state during
more demanding WM task conditions (Shine et al., 2016). EEG
work has also shown that network segregation and integration
levels fluctuate on even finer temporal scales within a task trial
(Zippo et al., 2018).

Our whole-brain modularity findings also highlight how
different scales of analysis can provide distinct yet complimentary
information on how the brain adapts to varying task goals.
Early work found that the activity of stimulus-selective visual
cortical regions was increased for relevant trials and decreased for
irrelevant trials, compared to passively viewed stimuli (Gazzaley
et al, 2005a,b). Moreover, prior work found that the strong
connectivity between frontal and visual regions while processing
relevant stimuli was maintained even in the presence of distracting
information (Clapp et al, 2010). Here, we also find that brain
modularity is similar for irrelevant and categorized stimuli (which
may be similar to a passive view condition in previous studies),
but modularity is reduced for relevant stimuli compared to both
irrelevant and categorized trials. Our results therefore add to
prior work demonstrating increased brain region activity and
connectivity while processing relevant stimuli in WM, to show that
reconfiguration depending on task goals also occurs on a much
broader scale at the whole-brain network level.

Examining the individual sub-network contributions to the
whole-brain modularity findings, we found that lower modularity
for relevant stimuli was most pronounced in the DMN and visual
sub-network. These findings provide evidence that particular sub-
networks may drive the increased network integration observed
for relevant stimuli at the whole-brain level. Prior work examining
changes in brain modularity due to increasing N-back demands
also found similar contributions from the DMN (Stanley et al,
2014; Liang et al,, 2015). As with our global modularity findings,
we expand on this prior work to show that the DMN and
visual network adopt a more integrated, less modular organization
specifically during the processing of relevant stimuli used to guide
WM performance. These two sub-networks have also been shown
to underlie behaviorally relevant dynamic changes in modularity
that predict perception (Sadaghiani et al.,, 2015). More broadly,
these findings corroborate prior work highlighting the role of
the DMN for facilitating network integration during cognitively
demanding tasks, such as N-back tasks (Stanley et al., 2014; Braun
et al., 2015; Shine et al,, 2016). DMN regions are highly flexible in
their brain network communication and often integrate with other
brain sub-networks, especially when increased cognitive effort is
required (Fornito et al., 2012; Stanley et al., 2014; Vatansever et al.,
2015). The central location of the DMN in the brain may confer its
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ability to support communication with other sub-networks during
goal-directed behavior, perhaps to facilitate and monitor ongoing
cognitive performance (Finc et al., 2017).

Finally, our results point to the behavioral importance of
a less modular brain network organization depending on task
goals. Participants with lower modularity for relevant compared
to irrelevant stimuli had faster task performance on WM trials
(although note that changes in modularity were not related to
changes in behavioral performance). We further showed that
these correlations with behavior were more pronounced for
the modularity differences in the DMN and visual sub-network
compared to those that did not show changes between relevant
and irrelevant stimuli. These results expand on previous analyses
limited to averaging signals across a condition of trials in
an N-back task (Kitzbichler et al, 2011; Stanley et al,, 2014;
Vatansever et al,, 2015; Finc et al,, 2017) to add new evidence
demonstrating that dynamic reductions in brain modularity,
specifically during processing relevant information for WM, are
beneficial for performance. As cognitive effort increases, reductions
in modularity result in increased long-range connections that may
provide topological “short-cuts” between brain regions that are
intrinsically segregated in a more modular organization. These
long-range connections may provide top-down signals from PFC
to various bottom-up-driven regions that guide the processing of
relevant stimuli for WM. Although this less modular organization
is more energetically costly, the long-range integration between
distant brain regions may enable more efficient processing and thus
faster task performance for processing relevant stimuli for WM.

Conclusion

In conclusion, we provide evidence that the modular
organization of the brain flexibly reconfigures during WM
performance depending on ongoing task goals and stimulus
relevance. Modularity was lower specifically for trials with
relevant stimuli, and, importantly, individuals with less modular
organization for those task trials had better WM performance.
These findings suggest that increased integration between brain
sub-networks is essential for supporting complex cognitive
behaviors. Further, our observations support theories positing
that goal-directed behavior emerges from interactions between
distributed large-scale networks of the brain and can be differently
captured by examining brain sub-network interactions compared
to examining specific brain regions, region connections, or
even sub-networks in isolation (Buschman and Kastner, 2015).
Our findings underscore the importance of flexible modular
brain reorganization based on varying task goals and in
supporting complex goal-directed behaviors, such as WM. Further
characterization of how brain networks reconfigure during other
critical stages of WM function, such as maintenance and retrieval,
are important questions for future work.
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