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Introduction: Virtual environments are increasingly being used for training. It is
not fully understood what elements of virtual environments have the most impact
and how the virtual training is integrated by the brain on the sought-after skill
transference to the real environment. In virtual training, we analyzed how the
task level of abstraction modulates the brain activity and the subsequent ability
to execute it in the real environment and how this learning generalizes to other
tasks. The training of a task under a low level of abstraction should lead to a
higher transfer of skills in similar tasks, but the generalization of learning would
be compromised, whereas a higher level of abstraction facilitates generalization
of learning to di�erent tasks but compromising specific e�ectiveness.

Methods: A total of 25 participants were trained and subsequently evaluated on
a cognitive and a motor task following four training regimes, considering real vs.
virtual training and low vs. high task abstraction. Performance scores, cognitive
load, and electroencephalography signals were recorded. Transfer of knowledge
was assessed by comparing performance scores in the virtual vs. real environment.

Results: The performance to transfer the trained skills showed higher scores in
the same task under low abstraction, but the ability to generalize the trained skills
was manifested by higher scores under high level of abstraction in agreement with
our hypothesis. Spatiotemporal analysis of the electroencephalography revealed
higher initial demands of brain resources which decreased as skills were acquired.

Discussion: Our results suggest that task abstraction during virtual training
influences how skills are assimilated at the brain level and modulates its
manifestation at the behavioral level. We expect this research to provide
supporting evidence to improve the design of virtual training tasks.
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1. Introduction

A virtual environment (VE) has been defined as a computer-
generated environment used to simulate the real environment
(RE) (Gupta et al., 2008). The development of VEs have increased
in the last years in different areas, such as security (Passos
et al., 2016), health (Kalyvioti and Mikropoulos, 2014), education
(Popovici et al., 2005), rehabilitation (Orihuela-Espina et al., 2013)
and entertainment (Macedonia, 2000), among others. VEs have
gained popularity for task training because they provide a relaxed,
non-threatening environment that allow users to learn from
their mistakes without irreversible consequences (Bertram et al.,
2015). In addition, these training environments help designers
to incorporate feedback mechanisms for enhancing the user
experience (Gupta et al., 2008).

Training in VEs relies on the assumption that acquired skills
and/or knowledge can be transferred to the RE. Indeed, the training
from VEs is useful, insofar as it is possible to transfer the acquired
knowledge toward its counterpart in the RE (Bossard et al., 2008).
This perspective has been named as the transfer of knowledge.
Broadly speaking, transfer of knowledge is a process by which
knowledge constructed in a particular context (source task) can
be used in a different context (target task) after being mobilized,
recombined, and/or adapted (Bossard et al., 2008). In using VEs
for training, however, it is necessary to understand how the transfer
occurs and what factors enable themobilization of knowledge when
a new knowledge is constructed by abstraction and the learner is
confronted with variable situations. Many success cases have been
reported of using VEs as training tools (Rouiller and Goldstein,
1993; Webber et al., 2001; Popovici et al., 2005; Yang et al., 2007;
Kiper et al., 2014), yet some studies were unable to show any
transfer (Bossard et al., 2008; Khan et al., 2015). This previous
evidence supports the fact that the transfer of knowledge from VE
to RE is possible, but, there are unresolved issues.

Studies have been conducted to evaluate the learning of tasks
from VEs through its contents and training mechanisms (Todorov
et al., 1997; Rose et al., 2000; Bossard et al., 2008; Girvan and
Savage, 2019). In addition, the selection of educational content
in the design of VEs remains an important but nontrivial step
for successful training and learning tasks. On the transfer of
knowledge, Subedi (2004) discussed that it is relatively easy to learn
a task, and the transfer rate is usually high under the training
of tasks that are procedural in nature which include the steps
of the operation sequence, and the sequence of steps is repeated
every time the task is performed. However, it is insufficient and
unlikely to adapt such skills and knowledge when the learner
is confronted with a new environment and changing conditions.
From this perspective, in the learning task domain, abstraction has
become an important research subject that helps to understand how
knowledge is constructed and generalized.

Abstraction involves a structured process of initial concept
formulation and generalization of ideas from concepts which
lack a perceivable referent. Abstract concepts do not refer to
physical objects that can be directly experienced by the senses
(Kiefer and Harpaintner, 2020). Therefore, their semantic content
is less obvious compared to concrete concepts and consequently
harder to understand, process, acquire, and remember, which

entail the act of generalizing something by taking out only
important points from detailed characteristics of a problem. Hence,
the construction of knowledge and its generalization imposes
challenges in cognitive psychology, so that, future researches
are addressed to systematically investigate experience-dependent
plasticity of abstract concepts at the functional and neural levels as
a function of training or expertise.

Research on learning of abstract and concrete concepts has
a long history. Theoretical considerations are based on the view
that abstract concepts require amodal symbolic (Mahon and
Caramazza, 2009) or verbal representations (Paivio, 1986). Such
views are also present in current theoretical considerations. Paivio,
on his influential Dual Coding Theory (DCT) (Paivio, 1986),
suggests ways in which the cortical representations of various tasks
and contexts are activated via the connecting pathways, assuming
that abstract concepts are stored in a verbal-symbolic code, while
concrete concepts rely on both a visual imaginary and verbal-
symbolic code. The basis of this theory has been essential to explain
findings in early studies that have investigated differences in the
processing between abstract and concrete concepts at a behavioral
and neural level. Based on this theory, abstract concepts have been
treated as a homogeneous conceptual category defined by a referent
with a lack of unique physical features (Kiefer and Harpaintner,
2020). For instance, it has been suggested that concrete words are
remembered better (Marschark and Paivio, 1977) and recognized
faster than abstract words (James, 1975). On the other hand, the
model of lexical processing developed by Alfonso Caramazza and
colleagues (Caramazza and Hillis, 1991; Caramazza, 1997) points
that sensory or motor information are transformed into a common
amodal representation format, detached from modality-specific
information (Kiefer and Harpaintner, 2020). The activation of
sensory and motor systems during conceptual processing serves
to ground "abstract" and "symbolic" representations in the rich
sensory and motor content that mediates our physical interaction
with the world (Mahon and Caramazza, 2008). Some works
based on amodal theories are semantic network models (Quillian,
1969; Collins and Loftus, 1975) or connectionist network models
(Caramazza et al., 1990; McClelland and Rogers, 2003; Rogers et al.,
2004).

With the arrival of neuroimaging recordings, different patterns
of neural activation supporting abstract and concrete concepts have
been observed. Consistent with the DCT theory, neuroimaging
techniques such as positron emission tomography (PET) or
functional magnetic resonance imaging (fMRI) have revealed
lateralized responses; in the left hemisphere in presence of abstract
concepts and in the right hemisphere in presence of concrete
concepts (Binder et al., 2005). The evidence is still growing. Some
studies have shown left hemisphere activity for both concepts
(Sabsevitz et al., 2005) with greater activity within language regions
for abstract concepts and greater activity within the visual network
for concrete concepts (Desai et al., 2011; Sakreida et al., 2013).
Others studies with activity within the sensory-motor system for
abstract and concrete concepts (Pexman et al., 2007), sometimes
complemented by activation in the left hemisphere language
regions (Desai et al., 2011) or greater right hemisphere activation in
presence of abstract words (Kiehl et al., 1999). Electrophysiological
activity detected by electroencephalography (EEG) signals has
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also reflected the existence of different physiological response of
encoding and retrieving in abstract vs. concrete concepts (Welcome
et al., 2011; Bechtold et al., 2019), elucidating that abstract elements
may relate to more attention to internal processing of the task
(Harmony et al., 1996) and concrete elements to reduce response
time during elements association relative to abstracts elements
(Bastiaansen et al., 2005). In the analysis of the brain regions
modulated by task demands, these above studies have provided
evidence of how abstract concepts can activate specific subregions
in the brain and contribute to decision-making and mobilizing
knowledge (O’reilly et al., 2002; Koechlin et al., 2003; Christoff
et al., 2009; Dixon and Christoff, 2014). Beyond examination
of the transient effect of the level of abstraction in cortical or
subcortical regions in the brain, it remains necessary to analyze the
representations and associations during learning as a process that
occurs in response to the demand of tasks.

Analyzing these aspects could clarify the mechanisms and
interventions to guide the knowledge acquisition at cognitive and
behavioral level. To find these answers in this active topic of
research, the EEG signal has been particularly useful in studying
the cognitive functions of the brain (Ray and Cole, 1985; Halgren
and Marinkovic, 1995; Mikropoulos, 2001), providing noninvasive
access to the brain electrical activity with higher temporal
resolution than other functional neuroimaging approaches.

From theory-driven approaches frequently used for
investigating the knowledge linked to concrete and abstract
concepts, this research aims to study the relationship between
the level of task abstraction and the progress of observable
performance, following a period of training in a set of two
tasks (cognitive and motor) implemented on computer screens
simulating virtual environments, elucidating whether the level
of abstraction is, in part, responsible for the process of transfer
of knowledge acquired from a VE to the RE. We hypothesized
that the level of task abstraction in the VE modulates the
cognitive integration of the training; either by allowing high
performance in the RE execution, with limited generalization
capacity, or by compromising specific performance according to
a greater generalization. To support (or refute) such an approach,
we contribute with new evidence about how the level of task
abstraction impacts the transfer of knowledge from a VE to the RE.
This research has implications in the HCI area, where it remains
necessary of providing methodologies to neuroergonomically
guide the development of VEs for training.

2. Materials and methods

2.1. Task definition and characterization of
levels of task abstraction

Aided by an expert psychologist (VRM), one cognitive task
and one motor task were designed with three levels of abstraction
to each of them (see Figure 1). The middle level of abstraction
was used during the piloting of the experiment to validate the
tasks implemented in the virtual environments, the training times,
and verify the abstraction modulation (panel on the middle). The
other two levels of abstraction, low and high, were used during
experimentation. After piloting, elements of the middle level of

abstraction were rescued to modulate the low and high levels
of abstraction. For the cognitive task, the principle of a logical
sequence was followed. The geometrical patterns that integrated
the sequence, their rotations, as well as the colors were included
in the task regardless of the level of abstraction. For the motor task,
skills regarding fractionation of fingers contributing to visuospatial
processing were evaluated. The challenge time remained equal
across levels of abstraction.

The cognitive task, modulated into two levels of abstraction,
consisted of solving logical sequences of geometrical shapes using
the given information to find the two missing intermediate steps.
The focus on the construction of logical sequences has been linked
to the content perception according to the internal structure that
has been represented by every logical sequence, either concrete
objects or abstract elements. The low level of abstraction was based
in the tangram game and consisted of a five-step sequence following
a pattern of movements over seven geometric pieces with different
colors and sizes to create a figure representing a concrete object
at the end of the sequence (top-left). The high level of abstraction
consisted of a five-step sequence following a pattern of rotations in
circles with seven characteristics represented through colors (top-
right). To modulate the level of abstraction, the task under the
low abstraction followed a pattern of movements in the geometric
shapes which carried to represent a concrete object. On other
hand, the task under the high abstraction, representation of a
concrete object, was abstracted by only dropping off a pattern of
movements and geometric shapes. Importantly, regardless of the
level of abstraction, the task complexity remained constant; the
task space consisted of variations in two parameters: number of
geometric shapes and spins. We had seven geometric shapes and
four possible rotations (90◦ rotations for each geometrical shape):
7× 4 for a total of 28 possible combinations.

The motor task, modulated into two levels of abstraction
involved fractionated finger movements following a random letter
sequence. This task aimed tomaster themotor skills contributing to
visuospatial processing either by typing letters from the constructed
representation of a piano for the low level of abstraction or by
detecting motions on the screen and react and tap for the high level
of abstraction. The low level of abstraction of the task consisted of
a piano keyboard representation on the screen, and by typing on
the computer keyboard, a sequence of letters appeared one by one
on the screen at every instant of time (bottom-left). The task did
not demand the association between the keyboard keys and real
piano keys. The high level of abstraction was inspired in theWhack-
A-Mole game and consisted of hitting a target by typing on the
computer keyboard the letter where the target appeared (bottom-
right). Again, task difficulty was kept constant across abstraction
levels; the task space consisted of 18 letters distributed equal to
the number of keyboard keys and the sequence of keystrokes
was randomized.

2.2. Virtual and real training

Virtual training occurs in a virtual environment controlled with
regular input interfaces to a desktop computer. Real training occurs
in a physical environment where interaction occurs directly with
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FIGURE 1

Tasks implemented in the virtual environments. (Top) Cognitive task, (down) Motor task. The middle level of abstraction (middle) was used for
piloting and as a baseline reference for the low (left) and high (right) levels of abstraction but was not used during experimentation.

the depicted instruments and devices. The implementation of these
tasks under the different levels of abstraction was presented in a
virtual environment rendered on a screen and the interaction with
the environment occurs through the computer input devices, e.g.,
a computer keyboard (see Figure 2). On the other hand, in the
real training, the tasks were presented in the physical environment,
and interaction occurs by direct physical manipulation of the
physical objects involved, e.g., an (electronic) musical keyboard.
Supported by physical components, real scenarios were constructed
of these two tasks with their appropriate abstract items. To carry
out equivalent trainings, the virtual environments (VEs) were
implemented as closely resembling the real scenarios of these tasks
as possible.

2.3. Experimental design and setup

Twenty five participants, 20 female and 5 male, between 18
and 23 years of age recruited from BLINDED FOR REVIEW,
participated in the study. The experiment was explained to
the participants, and they gave their informed consent before
participation. Following consent to participate, using simple
randomization, subjects were randomly assigned to real (RT) or
virtual (VT) training, and either high (HA) or low (LA) level of task
abstraction training. This was a between-subjects bi-factor design
of four training schemes or treatments (T); RT −HA (N = 6),
RT − LA (N = 6), VT −HA (N = 6), and VT − LA (N = 7). Data
were recorded longitudinally (pre-post). The response variable was
the transfer of knowledge of the participants at the completion of
the training, and the level of task abstraction was the factor whose
effect on the transfer of knowledge level has been investigated.

The inclusion criteria for the participants were age range,
ability to understand instructions, no record of psychological or
psychiatric disorders, and no previous serious training in VEs (in

any task, but they may be otherwise regular computer gamers)
or piano playing. Furthermore, participants were selected with
same profile and study level to avoid potential bias in abstraction
skills (e.g., stronger mathematical training). We made no gender
distinction. Exclusion criteria only accounted for participation in
piloting. Regarding the elimination criteria, participants who did
not complete the trial were discarded.

For experimental sessions, the participants were asked to
refrain from drinking alcohol, smoking, and drinking coffee during
the 24 h period preceding the experiments and to keep a regular
schedule and go to sleep at their usual bedtime the night before
the experiments. Figure 3 schematically depicts the hypothesis
and experimental design. All groups received the same amount
of training; one 20 min session for 3 consecutive days. On the
fourth session (post-training), regardless of the training treatment
received, the subjects executed the trained tasks in the real scenario
for 10 min, and to verify the possible associations related to
the abstraction of the trained task, they performed for 10 more
minutes the task with the opposite level of abstraction to the
trained. The execution of the task was fixed in 10 min, both
for the same abstraction and the opposite abstraction, taken as
a necessary action from the exhausting training that participants
expressed had performed. Nevertheless, this determination was not
an impediment to evaluate the training using the corresponding
criteria. Blinding participants to treatment was not possible as the
participants had to explicitly carry out the training.

A pilot was carried out using the middle level of abstraction
of the cognitive and motor task, to ensure the competences of
the participants along the training sessions and consequently to
modulate parameters in the task and training sessions. The intrinsic
elements of the task as well as the number of sessions and the
training times were adjusted by the piloting. Volunteers who
participated in the pilot were not eligible for the main study. All
participants had the same time for training, however consequently,
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FIGURE 2

Training in the virtual (top) and real (bottom) environments.

FIGURE 3

(Left) Schematic representation of the hypothesis: when the level of abstraction in a task is low, a high transfer of knowledge is reached but it
compromises the mobilization of knowledge toward other task. When the level of abstraction in a task is high, the transfer of knowledge occurs in a
moderate way but the skills to face other task are improved. (Right) Representation of the experimental design: on the top, cohort size, assessment
tools, and procedure are indicated. On the lower part, the training path followed by the groups is illustrated.
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they performed a different number of sequences, which later was
normalized in the range of 0–100 for each of them (see Section 2.4).

2.4. Performance assessment

Whether virtual or real training and high or low abstraction of
the cognitive and motor task, the performance of each participant
was assessed using hit scores. For the cognitive task, a hit was
scored when two missing patterns were correctly identified in
the intermediate boxes of every logical sequence trial. The time
limit was fixed for the entire session. For the motor task, in the
piano game, every hit was scored by typing the correct letter
shown one by one on the screen, and in the Whack-A-Mole
game, by knocking the mole on the head as it appeared. The
time limit for responding to the target, either the letter or the
mole, was fixed considering the reaction time as the challenge
when performing this task. The recording of the scores was carried
out along the four longitudinal sessions (3x training according
to treatment + 1 final assessment on the RE). Scores obtained
from the first session day were considered as the baseline of the
participant. The next two sessions in subsequent days covered the
training period. Finally, the fourth session was divided into two
stages: in the first stage, the trained task was executed in the RE
by the participant and in the second part, the opposite level of
abstraction to the trained task was executed in the RE by the
participant. To calculate the performance of each participant, the
number of successes (correct exercises solved) was divided by the
total number of exercises done by session. Even though the time
assigned to each treatment was the same, each participant solved
a different number of exercises. Therefore, the values obtained
from the division were normalized in the range of 0–100 in
all cases.

2.5. Mental workload assessment

The perceived workload by the participants was assessed using
the NASA TLX questionnaire (Aeronautics and Administration,
2018). The evaluated experimental factors were type of training
(virtual vs. real), task nature (cognitive vs. motor), and level of
abstraction (low vs. high). This questionnaire was applied in two
steps: weighting and rating (see Figure 3). Both parts were applied
on the first day of training and when executing in RE the trained
task. During the first part (pre-session), subjects evaluated the
contribution of each factor to the workload of the task. The
factors are six scales that were combined pair-wise. The weights
provide diagnostic information about the nature of the workload
imposed by the task. During the rating part (post-session), the
subjects assigned numerical rating in each scale divided into 20
equal intervals (e.g., low/high). This rating assigned for each scale
reflect the magnitude of the task. The overall workload score
for each subject was computed by multiplying each rating by
the weight given to that factor by that subject. The sum of the
weighted ratings for the task was divided by 15 (the sum of
the weights).

2.6. Electroencephalography: recording,
processing, and analysis

EEG signals were registered on the first day of training, and later
when executing the trained task in the RE. EEG was recorded using
an Emotiv EPOC R© kit (Emotiv, San Francisco, USA) at 14 channels
from positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4 of the 10/20 system (Jurcak et al., 2007). Data were
recorded at 128 Hz. Figure 4 shows an exemplary raw signal from
a participant.

Preprocessing was applied to EEG signals to reduce the noise of
the signal of interest. A band pass filter between 2 Hz and 50 Hz
was applied that should comfortably cover the interval generally
associated with cognitive activity (Lan et al., 2005), while excluding
the line noise. Blinking, eyemovements, and generic discontinuities
were alleviated with ICA (Independent Component Analysis) using
EEGLAB toolbox R©. The automatic ADJUST algorithm (Mognon
et al., 2011) identified the independent components affected by
some artifact by combining stereotyped artifact-specific spatial and
temporal features. Affected components were removed from the
data. In Figure 5, left, the components detected by ICA are shown,
and in Figure 5, right, one of the components, for which its spatial
and spectral characteristics is related to a typical blink (Jung et al.,
2000), is shown.

EEG analysis consisted of the segmentation of continuous
periods of similar activity as identified by an automatic constraint
clustering algorithm over time, frequency, and topographical
space (del Rocío Hernández-Castañón, 2017). This analysis was
implemented in MATLAB (R2017b, Mathworks, USA), but in brief
(del Rocío Hernández-Castañón, 2017):

1. Time, Frequency, and Topography (TFT) projections of the EEG
were generated using the short-time Fourier transform (STFT).

2. The spatial activity corresponding to channels across time and
frequency was rearranged in preparation for clustering.

3. Segmentation of TFT-epochs was obtained from neuronal
activity signature using the constrained clustering technique.
Hierarchical cluster analysis (HCA) was chosen because of the
quality of clustering it generates (Jain and Dubes, 1988). The
constraints were defined according to the knowledge of the
phenomenon which was based on the similarity and adjacency
principles of the cognitive sub-processes.

The analysis of brain activity was elaborated over the
identification of automatically segmented TFT-epochs assumed to
represent different cognitive subprocesses. The assessment of brain
status was done using the entropy function from Moddemeijer’s
library.

2.7. Statistical analysis

Statistical analysis was carried out to establish whether
there was a significant effect on the transfer of knowledge,
as a consequence of the level of task abstraction or the
type of training. We have performed separate analyses, by
type of training (virtual vs. real, regardless the abstraction
level) and by level of abstraction (low vs. high, regardless the
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FIGURE 4

Raw EEG signal from one participant. It was segmented in epochs of recovery and performance during the task training.

FIGURE 5

(Left) Topographic maps using independent components analysis (ICA). The spatial topography of each component represents its distribution in the
di�erent electrodes. This contribution is shown in scale of colors that reflect the energy in each brain area. (Right) Independent component detected
as a potential artifact by the automatic algorithms, ADJUST Mognon et al. (2011) implemented in EEGLAB. Top is shown the spectral contribution of
component in the brain topography and down is shown the associated power spectrum.

training). In both cases, a fixed effects general linear model
was used.

Power analysis carried out before experimental data collection
aimed for customary 95% statistical power with 5% significance
level and assumed effect size (Cohen’s d = 0.4). The required
sample size for such power was N = 27 per treatment.
By the end of the pre-scheduled recruitment period, we only
succeeded to enroll 40 participants meeting the inclusion criteria,
without payment for participation to avoid bias (Camerer and
Hogarth, 1999). Recruitment effectiveness was low due to a variety

of factors; absence of monetary incentive coupled to limited
advertisement and an unanticipated short recruiting period due to
our overestimation of our capacity to recruit. However, changing or
enlarging the pre-established recruitment period is a discouraged
practice by the CONSORT standard (Moher et al., 2012). Hence,
unfortunately, we were unable to reach the targeted sample size.
Moreover, some participants did not complete their randomly
assigned treatments over the four sessions due to the high time
demands from the volunteers, leading to a larger than anticipated
drop out rate. In total, 15 participants were excluded for further
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TABLE 1 Cohort demographics.

RT −HA RT − LA VT −HA VT − LA

(n = 6) (n = 6) (n = 6) (n = 7)

Male/Female 1/5 2/4 0/6 2/5

Age (mean) 18.7±0.8 18.8±0.8 19.2±1.9 19.4±1.5

Baseline

score

Cognitive 24.6±15.6 45.4±22.0 14.3±12.5 16.1±23.3

Motor 92.2±3.2 84.6±5.3 69.2±7.1 65.5±10.1

Count is indicated for sex. Mean and standard deviation is indicated for age and score.

analysis. Consequently, a second posterior power analysis was
further carried out to estimate the residual statistical power with
the acquired sample, and with N = 25, the margin of error was
evaluated at 19% from the 95% statistical power. This circumstance
does not invalidate the results since we are compliant with the
standard as stated, but reduces the statistical power of the study
as reported.

One-tailed Mann–Whitney U analysis was carried out over
the scores to evaluate the performance of the participants by type
of training and level of abstraction, as well as, to compare the
assessment of the mental workload measured by the NASA-TLX
in the same experimental factors, and to compare the differences
in the electrophysiological response (defined by the entropy) of the
brain recorded by the EEG signal.

Statistical analysis was conducted using SPSS version 24.0 (IBM
Corporation, USA).

3. Results

Table 1 summarizes the demographic data from the four
training treatments: RT − HA, RT − LA, VT −HA, and VT − LA,
as well as the baseline score in the cognitive and motor task
per group.

3.1. Analysis of performance

The performance of the received virtual (intervention) vs. real
(control) groups as well as the effect of the level of abstraction in
the transfer and mobilization of knowledge were compared using
scores recorded in each session of training, when executing the
trained task and when executing a task with the opposite level of
abstraction of the trained task. The analysis was made for both the
cognitive and motor tasks.

3.1.1. Assessment of the transfer of knowledge by
type of training

Figure 6 illustrates the results on the transfer of knowledge as
assessed by the normalized score structured by the experimental
factors that contrast type of training: virtual (intervention) vs. real
(control). According to this factor, virtual training over the real
training led to higher scores when comparing the performance
of the participants during their first session of training against
their performance during the post-training (execution in the RE
the trained task). This occurred both in the cognitive (left) and

motor (right) tasks, although differences did not reach significance
(performance scores in the cognitive task, VT : 17.9 ± 39.6 vs.
RT : 9.2 ± 16.6, U = 65, p = 0.25; performance scores in the
motor task, VT : 15.9 ± 17.6 vs. RT : 3.9 ± 4.5, U = 25, p < 0.05).
Even though participants trained in the real environment started
the training with higher scores over participants trained in the
virtual training, the performance along the training sessions and
when executing the trained task was better in the virtual training.
Therefore, a better achieved performance of the treatment was not
preceded by a higher score in the first session training. Concerning
the transfer of knowledge, the evidence suggests that the learning
of the task was better achieved in the VT than the RT with the
improvement scores from the first (session 1) to the fourth sessions
(execution in the RE) of both the cognitive and motor tasks.

3.1.2. Assessment of the mobilization of
knowledge by level of abstraction

With regard to the level of abstraction: low (LA) vs. high (HA)
(see Figure 7), performance in both levels are accompanied by an
increase in the score. Notwithstanding, this was more pronounced
in the case of low level of abstraction. This occurred in both the
cognitive (left) and motor (right) tasks (performance scores in
cognitive task,HA: 3.1±26.6 vs. LA: 23.6±31.5,U = 38, p < 0.05;
performance scores inmotor task,HA: 6.7±16.6 vs. LA: 13.3±11.4,
U = 52, p = 0.08). As hypothesized, the effect of the level of
abstraction during training was observed to induce behavioral and
cognitive changes on the transfer of knowledge. The improvement
of the scores in the trained task under high abstraction was lower
than under low abstraction of the cognitive and motor tasks.
However, when the complementary level of abstraction of the
trained task was executed, higher scores are achieved by those who
received the training under high abstraction in comparison to those
who received the training under low abstraction. This suggests a
better mobilization of knowledge under the high abstraction. In this
sense, the transfer of knowledge as proxied by the exhibited skills is
larger under the higher level of abstraction.

3.2. Analysis of mental workload

The results regarding the assessment of the mental workload
contrast the change of workload that participants obtained in the
first training session against the execution of the trained task
(session 1 − Execution), comparing the type of training: virtual
(VT) vs. real (RT); and level of abstraction: high (HA) vs. low (LA).
The analysis was made for the cognitive and motor tasks.

3.2.1. Assessment of the mental workload by type
of training

According to the type of training (see Figure 8), the group
undergoing virtual training exhibited a moderate decrease in the
use of cognitive resources by the end of the training of the cognitive
(left) and motor (right) tasks (workload variability in the cognitive
task,VT:−3.1±6.0 vs. RT: 2.8±12.5,U = 19.5, p < 0.05; workload
variability in the motor task, VT: −0.9 ± 12.8 vs. RT: −2.6 ± 12.1,
U = 67.5, p = 0.29). The principles of cognitive load theory
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FIGURE 6

Performance scores (mean and standard deviations) across longitudinal sessions by type of training of the cognitive (left) and motor (right) task. The
e�ect on the behavioral performance due to the virtual (VT) vs. real (RT) training was compared.

FIGURE 7

Performance scores (mean and standard deviations) across longitudinal sessions by level of abstraction of the cognitive (left) and motor (right) tasks.
The corresponding e�ect of the high (HA) vs. low (LA) level of abstraction on the mobilization of knowledge was compared.

indicate that cognitive load can arise from the following threemajor
sources: intrinsic, extraneous, and germane (Chen et al., 2011). Our
findings are in agreement with such sources. They show a more
evident decrease of workload in the virtual vs. real training from
the first session of training to the post-training. Such result is likely
to reflect a better effective instructional virtual design against its
real counterpart. This is supported by the intrinsic component of
the cognitive load which is linked to the learning material.

3.2.2. Assessment of the mental workload by level
of abstraction

In the case of the level of abstraction (see Figure 9), the training
with high abstraction was accompanied by decrements in the
mental resources in the cognitive (left) and the motor (right)
tasks. In contrast, training with low abstraction was accompanied
by an increment in the mental workload resources at the end of
the training period for the cognitive and motor tasks (workload
variability in the cognitive task, HA: −5.4 ± 8.9 vs. LA: 4.5 ± 8.5,
U = 12.5, p < 0.05; workload variability in the motor task, HA:
−4.3 ± 16.1 vs. LA: 0.7 ± 7.1, U = 38.5, p < 0.05). Concerning
to the high vs. low abstraction, our argument, supported by the

cognitive load theory (Chen et al., 2011), points toward the germane
component that suggests an increase of cognitive load over the
investment of effort in the schema construction of knowledge
which is accompanied with a decrease of the extraneous cognitive
load during the process of construction. Altogether, this leads us
to the hypothesis that the decrease of the mental resource in the
high level of abstraction would be associated with the effective
assimilation of the information.

3.3. Analysis of brain activity (EEG)

The longitudinal EEG recordings correspond to the learning
process. As with other learning processes, it is expected that
the brain activity becomes more efficient as knowledge becomes
integrated at cortical level (Draganski et al., 2004). If this is the
case, then this should be reflected in the segmented EEG recordings
as a compression of the brain activity toward the earlier part of
the recordings as the skill is integrated at brain level. Also, in line
with the literature (Mestres-Missé et al., 2014), we expect higher
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FIGURE 8

Mental workload (mean and standard deviations) in the first session of training and the execution of the trained task by type of training: virtual (VT) vs.
real (RT) in the cognitive (left) and motor (right) tasks.

FIGURE 9

Mental workload (mean and standard deviations) in the first session of training and the execution of the trained task by abstraction level: high (HA) vs.
low (LA) in the cognitive (left) and motor (right) tasks.

activity associated to training under high abstraction as compared
to training under low abstraction.

Figure 10 shows the segmented TFT-epochs proxy of cognitive
subprocesses corresponding to the first session of training
(Figure 10, left) and the execution of the trained task (Figure 10,
right) of the cognitive task in the VE under low (top) and high
(bottom) levels of abstraction. Also, each segmentation was divided
into early and late stages with the objective of analyzing the
behavior of the brain during the same session. Segmentations
have shown a distinctive pattern in the early stage of the 1st
session of training and the executing of the trained task, the

appearance of TFT epochs and ergo cognitive subprocesses in time
and frequency were more notorious to compare with the late stage
of the same segmentations.

Tables 2 and 3 summarize the entropy associated to the

segmentations of activity patterns in the EEG of exemplary
participants in their respective training schemes. Entropy was
found to be smaller in late stage than the in early stage, both in the
training and execution of the trained task. Regarding the level of

abstraction, particularly, low abstraction with training from VE of
the cognitive task increased its entropy from the early stage of the
task of training to the early stage of the execution of the trained task
and the same way with the late stage of both sessions. While high
abstraction, in general, exhibited a decrease from the early stage of
the task of training to the early stage of the execution of the trained
task and the same way with the late stage of both sessions.

The decrease of TFT-epochs and consequently the associated
cognitive subprocesses along the 1st session of training and the
execution of the trained task is supported by entropy measurement
that shows a decrease of values from the 1st day of training to
the execution of the trained task which suggests, according to the
literature, a better integration of knowledge.

4. Discussion

Virtual environments (VEs) have shown potential for modeling
real environments (REs), presenting tasks in new ways during
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FIGURE 10

Comparison of representative patterns of TFT-epochs/cognitive subprocesses from physiological (EEG) measure and qualitative (mental workload)
assessment. Top: subject trained with low level of task abstraction from VE. (Left) First session of training and (right) execution of trained task. In the
mental workload assessment, the subject obtained the first session of training = 87.0 and when executing in RE the trained task = 84.3. Bottom:
subject trained with high level of task abstraction from VE. (left) First session of training and (right) execution from RE of the trained task. In the
mental workload assessment, the subject obtained the first session of training = 66.7 and when executing in RE the trained task = 65.3. Each color on
the bar plots represents a cluster by HCA, which is assumed to represent a di�erent cognitive subprocess.

TABLE 2 Entropy of brain activity temporal segments in the cognitive task (a one-tailed Mann–Whitney U analysis was applied).

Low abstraction High abstraction

Early Late Early Late

Virtual environment

1st. Day of training 1.04± 0.53 0.35± 0.29 ∗ 1.04± 0.38 0.39± 0.23 ∗∗∗

Execution of trained task 1.07± 0.38 0.39± 0.27 ∗∗ 0.61± 0.22 0.12± 0.10 ∗∗

Real environment

1st. Day of training 1.45± 0.42 0.85± 0.39 ∗ 0.93± 0.28 0.29± 0.21 ∗

Execution of trained task 1.09± 0.37 0.51± 0.38 ∗ 0.82± 0.15 0.27± 0.24 ∗∗

*p ≤ 0.05, **p ≤ 0.01, and ***p≤ 0.001.

training and with the expectation of the transferring of the gained
skills to the REs. However, not because they are technologically
viable or thanks to their acceptance, it means they are or are
not educationally relevant. The study of the performance and
usefulness of VE in the task training remains an open research
problem in fields such as human–computer interaction and
cognitive neurosciences. There is still work to do to understand
how the knowledge acquisition happens, at the behavioral and
neurophysiological levels, and what task designs, mechanisms, or
combinations of them facilitate the so-called transfer of knowledge
from the VE training to the RE. Some mechanisms incorporated to
VE, such as feedback, repetition, and motivation (Todorov et al.,

1997; Rose et al., 2000; Bossard et al., 2008; Gupta et al., 2008;
Girvan and Savage, 2019), have received thorough attention as they
have been identified as critical for improving the user’s performance
in the training of tasks and their presence and emphasis in the
training are expected to maximize the transfer of knowledge from
VE. However, our knowledge of the transfer phenomenon still have
severe limitations; among the most important one is the adaptation
of acquired skills to tasks other than the one trained and of acquired
knowledge to new environments and changing conditions in sit.

Several lines of research have investigated how abstract and
concrete information is communicated within the cognitive system
and processes that represent and generalize that information
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TABLE 3 Entropy of brain activity temporal segments in themotor task (a one-tailed Mann–Whitney U analysis was applied).

Low abstraction High abstraction

Early Late Early Late

Virtual environment

1st. Day of training 1.66± 0.17 0.85± 0.21 ∗∗∗ 0.92± 0.43 0.42± 0.27 ∗

Execution of trained task 1.13± 0.39 0.40± 0.26 ∗∗ 0.86± 0.46 0.29± 0.36 ∗

Real environment

1st. Day of training 1.08± 0.59 0.54± 0.40 p = 0.11 1.43± 0.64 0.65± 0.50 p = 0.23

Execution of trained task 1.07± 0.61 0.52± 0.39 p = 0.07 1.05± 0.51 0.39± 0.51 p = 0.13

*p ≤ 0.05, **p ≤ 0.01, and ***p≤ 0.001.

(Kiefer and Harpaintner, 2020). Literature shows that, compared
to abstract concepts, concrete concepts are easier to investigate
because their semantic content can be more clearly characterized
(Barsalou andWiemer-Hastings, 2005) and therefore, more quickly
recognized, better remembered, andmore resilient to brain damage
(Binder et al., 2005). In contrast, abstract concepts have imposed
challenges for all classes of theories because they are more
complex, ambiguous, and apply to rather heterogeneous situations
(Barsalou andWiemer-Hastings, 2005; Hoffman et al., 2013). These
views are also present in recent studies. Studies, such as Dove
(2016) and Kiefer and Harpaintner (2020), have manifested the
still-unresolved issues that lay underneath the representation of
abstract concepts. Future research is encouraged to complement
these results by investigating the dependency of abstract concept
processing on different contexts, situational factors, task sets,
habitual preferences, and differential attentional foci at hand,
analogously to what has already been done in the case of concrete
concepts (Popp et al., 2019; Kiefer and Harpaintner, 2020).

According to the previous idea, the influence of task abstraction
presentation in training from VE on the transfer of knowledge
and the mobilizing of knowledge toward other tasks has been
evaluated here. Our hypothesis was that training with low level
of abstraction would be associated with higher rates of transfer of
knowledge in the trained task, but that would compromise on the
ability to generalize the acquired knowledge to untrained tasks. In
contrast, training under high level of abstraction would result in
low rates of transfer of knowledge but shall be accompanied by
greater ability to generalize to untrained tasks. Our interest in this
research was motivated by the investigation of the influence of the
abstraction presented in a task such training was carried out from
a VE, in terms of studying the behavioral and neurophysiological
effects on the transfer of knowledge and the generalization of
knowledge toward other conditions of the training task. The results
obtained from the scores and the physiological measurements have
provided evidence for explaining the skills acquisition as well as the
demand of brain resources associated with the phenomenon of the
transfer of knowledge (knowledge construction from the training
environment to the real environment). Increasing performance
scores have shown that virtual training leads to reasonable
mastering of the task. Furthermore, virtual training also leads to
better post-training scores than real training. Likewise, according
to the level of abstraction, the execution of the trained task under a
low level of abstraction resulted in better performance scores than

the execution under a high level of abstraction, further showing
the same trend along the training sessions. However, participants
trained using a higher level of abstraction achieved a better
performance score when executing the task under the opposite
level of abstraction just exactly as hypothesized. This evidenced
that training under low abstraction helps to achieve a better
performance in the training sessions as well as on the transfer of
knowledge as long as the same concreteness was associated with the
trained task. But importantly, the performance was compromised
when attempting to reuse the knowledge when facing a higher
abstraction of the trained task. This contrasts with the results
achieved by those trained under a high level of abstraction. These
results are supported by other studies that state that abstraction
plays an important role in the representation of knowledge and
its generalization. From the point of view of psychology, abstract
concepts take longer to process lexical decision than concrete
ones (Schwanenflugel, 2013), because the abstract referents cannot
be experienced through sensation/perception (Nedjadrasul, 2017)
and thus refer to a broad range of situations or constellations
(Hoffman et al., 2013), and display a high degree of conceptual
flexibility (Kiefer and Harpaintner, 2020). We believe that our
results are in line with this literature. Associations experienced by
participants using low abstraction allowed them to better apply
what was learned in the analogous situation when challenged with
the real scenario. However, these associations might have not been
enough to mobilize the learning and thus the participants failed
to recognize the complementary task and align the underlying
structures toward other situations, i.e., failed to generalize. This, in
contrast, was better achieved by the participants who trained under
high abstraction who showed a better conceptual flexibility even
though the mastering of the task was slower.

Regarding the mental workload experienced by the
participants, post-training results indicated a slight workload
reduction when participants were exposed to the high level of
abstraction as well as virtual training. In turn, real training under
the low level of abstraction exhibited, in general, a slightly higher
cognitive workload. The workload ratings by the NASA-TLX have
evidenced the experience of the participants facing out to the
treatment, elucidating in the group trained with low abstraction
a post-training mental overloaded factor which, according to
the result of the performance score, is associated with a low
task demand (Hart and Staveland, 1988), since participants were
able to recognize and align easier the underlying structure of
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the low abstraction scheme and carry that construction toward
its analogous task post-training in the real environment. On the
contrary, the mastering of the task with the high level of abstraction
was slower, presumably because of the heterogeneity of the abstract
concepts (Harpaintner et al., 2020), resulting apparently in a
workload mitigation by a continuous engagement to achieve the
task (Hart and Staveland, 1988).

On the other hand, the segmented patterns in the EEG
exhibited a bigger demand of brain resources at the beginning
of training leading to reducted post-training, being more salient
for the high abstraction of both the cognitive and motor tasks
(see Tables 2, 3). This codification in the brain was assessed by
the entropy quantified from the EEG signal, contrasting the early
and late cortical responses during both the first training session
as well as the post-training session. According to recent studies
in neuroscience, this links to thermodynamic- and information-
based models. Collell et al. (Collell and Fauquet, 2015) state that
the measure of entropy is related to the energy expended within
the brain and the organization of its information. That is, by
encoding the new information in the brain, the energy expenditure
is reduced in subsequent attempts on the same task. The activated
neural paths could be more easily retrieved in future (Friston,
2010). Therefore, the patterns of neural activation segmented from
EEG and quantified using entropy could suggest an association
between the minimization of brain entropy post-training and
the efficiency in adapting to task demands. It is likely that the
increased efficiency in the use of brain resources does precede
the improvement in behavioral performance (University, 2018).
Notwithstanding, our experiment does not permit us to speculate
further on this matter.

According to our results, the level of abstraction impacts
the utilization of mental resources differently during tasks
learning. While abstract structures (high abstraction) might be
highly heterogeneous due to the semantic variability (Kiefer and
Harpaintner, 2020), which in the present study was observed with
a moderate acquisition of the knowledge during the training.
Concrete structures (low abstraction), more likely to elicit a
smaller set of possible associates (Welcome et al., 2011), showed
a better training acquisition and transfer of knowledge to face the
same concreteness to the trained task. Nevertheless, mobilizing of
knowledge was improved with high abstraction training against low
abstraction training where mobilization was easily affected due to
mental representations acquired with this higher abstraction which
allow to generalize elements to other circumstances. This evidence
satisfies our departing hypothesis. Outlier values were traced back
to issues in calibration of the task, particularly, the cognitive and
motor tasks in real environment, which became less challenging for
participants along the training as well as the recruitment was below
the intended range, resulting in a small sample size.

The success of VE for training where real training is difficult
remains subtly challenged by some apparently contradictory
evidence regarding transfer of knowledge. We hypothesized that
the level of task abstraction may influence the mobilization of
knowledge and, therefore, explain such apparent contradiction.

5. Conclusion

Our findings in task performance have been consistent
with performance scores and both estimates the brain resource
consumption. The performance scores improved along the training
and execution of the trained task. The segmentation cases showed
higher variations of TFT-epochs/cognitive subprocesses in time and
frequency, during the early stage, both initial and execution of
training, but these variations decreased in the late stages. This result
was supported by the decrease in mental workload score from the
first day of training to the execution of the trained task. According
to cognitive load theory (Chen et al., 2011), the phenomenon that
occurs is linked to the brain becoming more efficient. Altogether,
this evidence strongly supports our hypothesis, even though more
experiments might be needed. Implications of this research may
impact the way that VEs are developed for training purposes, as well
as collaterally, impact the neuroscientific understanding of how we
develop abstract skills.

There are several promising avenues for future research.
From the point of view of human–computer interaction, with
the definition of strategies to facilitate training conditions and
enhance the potential transference of knowledge to adapt the
acquired knowledge and skills as guidelines to perform and learn
under changing situations or new environments. We ought to
exploit the capabilities that virtual environments can provide
through an interactive and more controlled experience while
performing the training tasks. With the increasing availability of
neuroimaging records, concomitant behavioral and brain activity
monitoring facilitate observing how virtual features are impacting
brain response and subsequently supporting performance. For
instance, increasing the number of channels of EEG combined
with source detection analysis (e.g., LORETA) would elucidate
with finer spatiotemporal granularity aspects of processes of
skills acquisition in a task under abstraction schemes. Finally,
it would be interesting to systematically study and explain
different patterns of neural activation and plasticity underlying
processing of abstract schemes as a function of training or
skills acquisitions.
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