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Recent studies suggest that attention is rhythmic. Whether that rhythmicity can

be explained by the phase of ongoing neural oscillations, however, is still debated.

We contemplate that a step toward untangling the relationship between attention

and phase stems from employing simple behavioral tasks that isolate attention

from other cognitive functions (perception/decision-making) and by localized

monitoring of neural activity with high spatiotemporal resolution over the brain

regions associated with the attentional network. In this study, we investigated

whether the phase of electroencephalography (EEG) oscillations predicts alerting

attention. We isolated the alerting mechanism of attention using the Psychomotor

Vigilance Task, which does not involve a perceptual component, and collected

high resolution EEG using novel high-density dry EEG arrays at the frontal region

of the scalp. We identified that alerting attention alone is su�cient to induce a

phase-dependent modulation of behavior at EEG frequencies of 3, 6, and 8 Hz

throughout the frontal region, and we quantified the phase that predicts the high

and low attention states in our cohort. Our findings disambiguate the relationship

between EEG phase and alerting attention.

KEYWORDS

rhythmic attention, phase-dependent behavior, theta oscillations, high density

electroencephalography, gel-free electroencephalography, biomedical applications

of MXene

1. Introduction

At any given time, the brain receives vast amounts of environmental stimuli. To

compensate for its capacity limit, the brain has evolved mechanisms to direct its

cognitive resources. Among these resources, attention is fundamental to selecting and

filtering information (VanRullen, 2018). However, sustaining attention for long periods is

challenging, and lapses in attention can have severe consequences. Unfocused surgeons

make medical errors, inattentive security guards overlook theft, and distracted pilots can

cause accidents (Clayton et al., 2015). It is therefore imperative to understand the neural

mechanisms of attention in order to better diagnose non-normative attention issues, and

ultimately reverse or prevent them.
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Attention has historically been perceived as operating at a

constant level over time. Under this conceptualization, deploying

attention to one stimulus would result in a quasi-constant level of

vigilance to that stimulus. Contrary to this view, evidence supports

the notion that sustained attention rapidly cycles between “high”

and “low” states (Walsh, 1952; Lansing et al., 1959; Callaway,

1962; Dustman and Beck, 1965; Lakatos et al., 2008; Busch et al.,

2009; Mathewson et al., 2009; Fiebelkorn et al., 2013, 2018;

Helfrich et al., 2018; VanRullen, 2018). “High” refers to states

where attention is more efficient, leading to optimal behavioral

performance, while “low” refers to states where attention is

less efficient and behavioral performance is sub-optimal or in a

transitory mode. This rhythmic cycling of attention has been linked

to similarly rhythmic neural activity in the brain (VanRullen, 2016,

2018). Results from multiple independent electroencephalography

(EEG) studies involving attention suggest that a relationship exists

between attention performance and moment-to-moment neural

activity in the θ and α frequency ranges (5–15 Hz) (Busch et al.,

2009; Busch and VanRullen, 2010; Drewes and VanRullen, 2011;

Dugue et al., 2011; Chakravarthi and VanRullen, 2012; Dugué et al.,

2015; McLelland et al., 2016; Sherman et al., 2016; Plöchl et al.,

2021). Additional studies investigating the mechanisms of visuo-

spatial attention invasively with stereoencephalography (sEEG) and

electrocorticography (ECoG) also identified periodic fluctuations

of behavior whose origin could be traced to the instantaneous phase

of ongoing neural oscillations (Fiebelkorn et al., 2018; Helfrich

et al., 2018).

Despite substantial evidence suggesting that attention is

periodically modulated by ongoing neural oscillations, whether

attention (and cognition in general) is intrinsically rhythmic is still

unclear (Keitel et al., 2022). The range of frequencies that have

been observed to modulate attention are broad (5-15 Hz), and have

been shown to depend on task and stimulus characteristics (Ho

et al., 2017; Ronconi et al., 2017; Chen et al., 2020; Merholz et al.,

2022). Additionally, relationships between attention and phase have

been observed in a wide range of brain regions (i.e. frontocentral,

occipital, and parietal areas), despite the attentional network having

been structurally associated with the frontal and parietal regions

of the brain (Fan et al., 2005; Buschman and Kastner, 2015). The

limited number of replication studies that have been published,

and the inability to replicate previous results also cast doubt to the

notion of phase-dependent attention. For instance, van der Werf

et al. (2021) was unable to replicate the results of Helfrich et al.

(2018) and Vigué-Guix et al. (2020) was unable to replicate the

results of Callaway (1962). Furthermore, evaluation of 23 studies

that tested rhythicities in cognition summarized by Keitel et al.

(2022), resulted in a split picture with 11 studies reporting evidence

of rhythicities while 12 studies reported null or inconclusive

findings.

We contemplate that a step toward disentangling the

relationship between attention and phase comes from using simple

behavioral tasks that separate attention from other higher order

cognitive functions (such as decision-making and/or perception)

and also by the use of hardware that enables high spatiotemporal

resolution over the brain regions associated with the attention

network. Traditional EEG used in many studies (Busch et al.,

2009; Busch and VanRullen, 2010; Drewes and VanRullen, 2011;

Dugue et al., 2011; Chakravarthi and VanRullen, 2012; Dugué et al.,

2015; McLelland et al., 2016; Sherman et al., 2016) has typically

been limited to low density montages. Studies adopting invasive

sEEG (Helfrich et al., 2018) and ECoG (Fiebelkorn et al., 2018;

Helfrich et al., 2018) mapping have the advantage of attaining

excellent spatiotemporal resolution, but are similarly limited by

the nature of the tasks (e.g., involving visuospatial attention and

perception working concurrently). Furthermore, interpretation of

their outcomes is complicated by the underlying neurological

abnormalities in the participants (most commonly epilepsy).

In this study, we hypothesized that the phasic information

of neural oscillations is related to the capacity to maintain a

state of alert arousal, or alerting attention (Fan et al., 2002). To

test this hypothesis, we investigated whether the instantaneous

phase of ongoing neural oscillations predicts alertness in healthy

participants. We focused on alerting attention due to its

fundamental nature; it is a required precursor to more complex

attention functions, such as orienting and conflict resolution

(Galvao-Carmona et al., 2014). We isolated alerting attention

using a classic Psychomotor Vigilance Task (PVT) (Dinges and

Powell, 1985), in a paradigm similar to that used by Callaway

(1962) and Vigué-Guix et al. (2020) to eliminate perception from

a potential confounding factor, and attained high spatiotemporal

resolution recording of brain activity by using custom high-density

dry EEG arrays that have recently been developed and validated

(Driscoll et al., 2021). The EEG arrays utilize Ti3C2Tx MXene

(Alhabeb et al., 2017; Mathis et al., 2020), a 2D nanomaterial

with excellent electromagnetic properties, to enable gel-free EEG

recording with very high sensor density and low skin-electrode

impedance (Murphy et al., 2020; Driscoll et al., 2021). Contrary to

Callaway (1962) and Vigué-Guix et al. (2020), we recorded high-

density EEG from bifrontal sites [F3 and F4 (Jurcak et al., 2007)]

based on prior evidence suggesting that the attention network is

structurally located in this region (Fan et al., 2005; Buschman and

Kastner, 2015).

We hypothesized that the participant response time - which

is a proxy for alertness - could be predicted by the phase of EEG

oscillations and we performed follow-up exploratory analyses (i) to

investigate whether this effect was lateralized, (ii) to identify which

phase corresponds to high and low alerting attention states. We

conducted our analyses at within- as well as between-subject level,

to ensure that individual response profiles - which are important

for informing personalized therapeutic interventions - would not

be obscured by averaging techniques.

2. Materials and methods

2.1. Participants

We recorded EEG data from 36 healthy participants who gave

written informed consent in accordance with the Institutional

Review Board of Drexel University (protocol No. 1904007140).

After stringent exclusions for quality control described in Section

2.5, we retained 15 subjects for analyses (20.26 years ± 1.28, mean

± SD; 5 female). Each participant was fitted with two 4x4 arrays

(16 electrodes/array, diameter: 3mm, height: 5mm, pitch: 6mm,

area: 21x21 mm2 per array) centered approximately at the F3 and

F4 locations of the international 10-20 EEG system (Jurcak et al.,
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2007), which were located by measuring 12 mm anterior and 3

mm left and right of the CZ position. Adjustments were made to

place the array below the hairline if necessary. Participants were

included in the study if they (i) had no history of neurological or

psychiatric illness in the past two years, (ii) had not abused drugs

or alcohol within the past year, (iii) were not currently taking any

psychoaffective medications. Participants were compensated $25

per hour for their time.

2.2. Fabrication of the high-density dry EEG
arrays

Dry EEG arrays were fabricated following previously

published protocols (Driscoll et al., 2021). Briefly, a nonwoven,

hydroentangled cellulose-polyester blend substrate was patterned

with a CO2 laser into the desired electrode array geometry

(Supplementary Figure S1). Next, we infused the cellulose-

polyester substrate with a Ti3C2Tx MXene dispersion at 20 mg/mL

obtained from Murata Manufacturing Co. (Kyoto, Japan). The ink

quickly wicked into the absorbent substrate, coating all the fibers

to form a conductive composite. To fabricate 3D mini-pillars, we

deposited Ti3C2Tx-infused cellulose aerogels cut to shape onto

the electrode locations. The arrays were then thoroughly dried

in a vacuum oven for 1 h at 70◦C and 60 mmHg. The resulting

structure is a rough, micro-porous conductive composite, with

Ti3C2Tx flakes coating the individual fibers in the textile matrix

and foam. The arrays were encapsulated in ∼ 1 mm-thick layer of

polydimethylsiloxane, followed by degassing and curing. To expose

the electrode contacts, the mini-pillars were trimmed to a uniform

height of 5 mm using a vibratome (Leica Biosystems).

2.3. Behavioral task

PVT presentation was performed using PsychoPy 3 v2021.1.4

(Peirce et al., 2019). Participants were comfortably seated∼120 cm

away from a 27 inch screen (LG 27GL850, specs here) mounted on

a wall in front of them. Refresh rate was set to 144 Hz. Participants

were given a keyboard placed on their lap. Room illumination was

measured using Dr. meter LX1330B (specs can be found here)

to be: (1) 107 lux when facing the monitor at a distance of 120

cm from it and (2) 815 lux when at the same position but facing

toward the ceiling. On each trial, a fixation cross (luminance 350

cd/m2) appeared at the center of the screen (background luminance

155.76 cd/m2). After a variable delay (2–11 s), a supra-threshold

target stimulus (a red dot, luminance 121.12 cd/m2) replaced the

fixation cross at the center of the screen. The target remained for 2

seconds or until a response was recorded. The target could appear

at any point during the delay interval. Participants were instructed

to respond to the appearance of the target by pressing the space bar

as fast as they could. Participants performed two 10-minute blocks

(approx. 85 trials per block), separated by the performance of two

other tasks [Attention Network Task (Galvao-Carmona et al., 2014)

and N-back (Kirchner, 1958)]. The experimenters monitored the

participants via a camera to ensure they maintained fixation and

remained alert and engaged with the task.

2.4. EEG and behavioral data acquisition

EEG and behavioral data were acquired using the Intan RHD

system (Intan RHD2000, Intan Technogies) and digitized at a

rate of 2 kHz. EEG was bandpass-filtered online at 0.1–1,000

Hz with the built-in analog filter. The right and left mastoids

were used as ground and reference, respectively. Behavioral data

were time-synced with the EEG via a TTL pulse sent to the

Intan at the time a behavioral event occurred (Fixation, Target,

or Response). The event type was encoded by the duration of

the TTL pulse.

Since triggering the behavioral events is subject to hardware lag,

we also placed a photodiode at the screen where behavioral cues

appeared (Fixation, Cue) to monitor the exact time that the stimuli

appeared at the screen. The voltage changes of the photodiode

signifying the appearance of the fixation cross or the target were

also fed into the same EEG recording amplifier. To quantify the

time lag between the appearance of the target on the screen and

time it took for TTL pulse to encode that event in the EEG

recording amplifier, we computed the time difference between t0:

the time that a voltage change that signified the appearance of the

target on the screen was detected by the photodiode, and t1: the

time that a TTL pulse was sent to the amplifier to encode the same

behavioral event. We performed this procedure for 351 trials while

subjects S3 and S4 performed the behavioral task.We identified that

the time lag between the appearance of the target on the screen t0
and the time that the appearance was encoded by the TTL t1 was

1t = 18.64± 5.31 ms (mean± SD, see Supplementary Figure S2).

2.5. EEG and behavioral data preprocessing

EEG data were imported in MATLAB R2021b (Mathworks,

Natick, Massachusetts) using a custom script and were populated

in an EEGLab (Delorme and Makeig, 2004) compatible structure.

Bad channels were detected and excluded from the analysis

using EEGLab “clean_artifacts” function recursively until no bad

channels were returned. Blinks were identified using Blinker

(Kleifges et al., 2017) with the default parameters (stdThreshold

= 1.5 and pAVRThreshold = 3) and EMG was detected via visual

inspection of the EEG timeseries of each participant. Trials for

which a blink or EMG occurred near the vicinity of the target

(blink: 0.5 sec before or 1.5 sec after the target, EMG: 0.25 sec

before or 0.5 sec after the target) were excluded from further

analysis. We note that the choice of using a stricter criterion to

exclude trials contaminated by blinks as compared to EMG was

based on the fact that blinks contain information in the frequency

range 1-20 Hz, which is within the range of interest for our

study (2–32 Hz), while EMG contains information in frequencies

> 30 Hz (Chen et al., 2019), which is mostly outside the range

of interest.

We eliminated response time outliers by z-scoring the response

times within participants and excluded any trials whose response

time had a z-score >3. Participants with <40 trials after

preprocessing were excluded from further analysis to ensure all

participants had enough trials to obtain a uniform number of

response time samples across phase.
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FIGURE 1

Behavioral experiment and high-density EEG array design. (A) Schematic of the PVT. At the beginning of each trial, a fixation cross appears at the

center of the screen. After a variable delay (2–11 s), a red dot (the target) fixation cross at the center of the screen and remains there for 2 s or until a

button-press response is recorded. The trial then restarts. (B) Schematic of the custom high-density array design used to record EEG during the PVT

at F3 and F4 locations.

Additionally, we linearly detrended the response times of each

participant across trials to account for any progressive increase in

response times caused by fatigue (Bjørklund, 1992; Langner et al.,

2010). As a control analysis, we also reran all analyses without

linearly detrending the response times.

2.6. Phase-behavior analysis

To test whether the ongoing neural oscillatory activity in the

brain significantly predicted response time, we used methodology

similar to Helfrich et al. (2018). Only valid trials were used

(participant responded after target onset within a 2 s window). We

bandpass-filtered the EEG signals aggregated over all experimental

blocks (separately for each electrode) in 17 logarithmically spaced

bins from 2 to 32 Hz using zero-phase filtering in EEGlab

(pop_eegfiltnew with default parameters) to minimize phase-

distortion and avoid edge artifacts (Supplementary Figure S3A).

After filtering, we applied a Hilbert transform to extract

the instantaneous phase angles (Supplementary Figure S3B), then

binned them at target onset into 50 equally distributed bins, whose

centers are contained in the set,

S = {−
49π

50
+

π

25
n | n = 0, 1, 2, . . . , 49}, (1)

and computed the average response time for each frequency band

and for each electrode across all trials within a 90 degree window,

Ws = [s−
π

4
, s+

π

4
], (2)

where s ∈ S is the center of each phase bin

(Supplementary Figure S3C). We then calculated the Kullback-

Leibler divergence (KL divergence) of the observed distribution

Q against the uniform distribution P (Supplementary Figure S3D)

using the formula,

DKL(P, Q) =
∑

x∈S

P(x) log
P(x)

Q(x)
, (3)

to quantify how strongly the observed distribution deviated from

uniformity.

Statistical significance of non-uniformity was quantified as

follows: for each frequency band of each electrode of each subject,

we shuffled the observed phase bin - response time pairs 1,000

times and computed the KL divergence DKL(P, Qperm) of each

shuffled distribution Qperm against the uniform distribution P

using Equation 3 (Supplementary Figures S3C–F). This allowed us

to obtain a surrogate distribution of KL divergence values, Dsurr ,

for each frequency band of each electrode of each participant.

The KL divergence of the observed phase bin - response time

pairs was placed in the surrogate distribution and z-scored

(Supplementary Figure S3G) using the formula,

z =
DKL(P, Q)− µ(Dsurr)

σ (Dsurr)
, (4)

where µ(Dsurr) and σ (Dsurr) are the mean and the standard

deviation of Dsurr , respectively. This procedure was performed

across all electrodes and frequency bands for each participant

(Supplementary Figure S3H). A z-score > 2 (p < 0.05) was

considered significant.
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2.7. Identification of the frequency band(s)
with the strongest phase-behavior e�ect
within and across subjects

In order to identify the frequency band(s) whose phase could

predict response response time irrespective of electrode location,

within each participant we averaged the KL divergence values

DKL(P, Q) that were obtained, separately for each frequency band,

across electrodes, after zeroing out any non-significant values, since

they did not represent any phase dependentmodulation of behavior

(Supplementary Figure S4A, top). This procedure resulted in one

KL divergence value for each frequency band of each participant

(Supplementary Figure S4A, bottom).

We then performed a permutation test in which we scrambled

the observed KL divergence values DKL(P, Q) across frequency

bands and electrodes 10,000 times (Supplementary Figure S4B,

top). Each time, we computed the mean KL divergence value

across all electrodes of that subject, separately for each frequency

band (Supplementary Figure S4B, bottom). This procedure

generated a surrogate distribution of KL divergence values for

each frequency band, within which the observed mean KL

divergence value of the same frequency band could be z-scored

(Supplementary Figure S4C, top). We then z-scored the observed

KL divergence value for each frequency band against the surrogate

distribution of KL divergences for that same frequency band

(Supplementary Figure S4C, bottom). If the observed z-score was

> 2 (p < 0.05) that frequency band was considered significant.

To identify the frequency band that showed the strongest

phase-dependent modulation of behavior across participants, we

repeated the same procedure but averaged the observed KL

divergence values across the electrodes of all participants, separately

for each frequency band. Correction for multiple comparisons was

performed using False Discovery Rate (Benjamini and Hochberg,

1995) across all comparisons performed within this section.

2.8. Identification of electrode array that
show the strongest phase-behavior e�ect
within and across subjects

To identify which array showed the strongest phase-dependent

modulation of response times for each participant, we averaged

the normalized KL divergence values across all frequencies and

electrodes within each array of each participant, after zeroing out

non-significant values. We then obtained a surrogate distribution

of normalized KL divergence values by shuffling the normalized

KL divergence values across frequencies and channels 10,000 times.

Each time, we computed the average KL divergence across all

frequencies and channels within each array. We then z-scored the

observed normalized KL divergence value for each array against

the surrogate normalized KL divergence values of the same array.

If the observed z-score was > 2, p < 0.05, we considered that array

significant.

We repeated the same procedure to identify which array

showed a higher density of electrodes-frequency band pairs whose

phase can predict response time in our cohort, but instead of

averaging within participants, we averaged the normalized KL

divergence values of each electrode array across all frequencies and

participants.

2.9. Identification of the phase that predicts
fast vs. slow response time

To identify the phase that predicts a fast or a slow response

across our cohort, we aggregated the response time - phase

angle pairs for each frequency band and electrode across the

three groups of participants that we identified to show significant

phase-dependent modulation of response times: (i) θ band (8/15

participants), (ii) α band (5/15 participants), (iii) β band (2/15)

participants. For each group, we then performed the procedure

described in Section 2.6 to identify significant electrode locations

- frequency band pairs whose phase could predict response times.

We also tested whether the phases that correspond to a fast vs.

a slow response time were antiphase, separately for the group of θ

band participants at frequencies 2.7–3.2 Hz, 5.3–6.2 Hz, and for the

group of α band participants at frequencies 7.4–8.6 Hz. To do so,

for each group, we sorted the phase bins based on their associated

response times as follows,

RT(θ0) < RT(θ1) < RT(θ2) < · · · < RT(θ49), (5)

where RT(θi) corresponds to the response time associated with the

phase bin θi. We then formed the vector of the absolute differences

between the phase bins associated with the fastest Vs. slowest

response times v, with entries,

vi = |θi − θ49−i|, where i = 0, 1, 2, . . . , 24. (6)

We then tested whether v was centered around π rad by

performing a V-test using the function “circ_vtest” available in the

CircStat toolbox for MATLAB (Berens, 2009).

3. Results

We recruited 36 total subjects and after stringent exclusions for

quality control, we retained 15 subjects for the subsequent analyses.

The mean number of trials for each participant was 76.7 ± 23.7

(mean± SD, see Supplementary Table S1). We recorded EEGwhile

participants performed the PVT task (Dinges and Powell, 1985)

(Figure 1A) with two 4x4 square grid dry EEG arrays (contact: 3mm

diameter, pitch: 6mm, area: 21x21 mm2 per array) at the F3 and

F4 locations, as specified by the international 10–20 system (Jurcak

et al., 2007) (Figure 1B, Supplementary Figure S1).

3.1. The phase of EEG predicts alertness

In order to investigate the relationship between instantaneous

EEG phase and response time, we computed the timecourse of the

instantaneous phase of each trial within narrow logarithmically

spaced frequency bands spanning 2–32 Hz (Figure 2A). Within

each narrow band we sorted the response times into 50
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equidistant bins representing the instantaneous EEG phase at

target presentation and computed the average response time

within each bin (±45o). We then quantified how strongly the

observed response times were modulated by the phase of EEG

activity by comparing their distribution to the uniform distribution

using the KL divergence in a permutation test (Figures 2B, C,

Supplementary Figure S3). This approach allowed us to identify

the frequency band whose phase predicted response time, as

well as whether the observed phase-dependent modulation of

response time occurred preferentially at particular electrodes

(Figure 2D).

We found evidence of phase-dependent modulation

of behavior at the frontal region of the brain in 14/15

participants. Interestingly, the frequency band whose phase

predicted response time differed across participants, and

for some participants, multiple frequency bands exhibited

a phase behavior relationship (Supplementary Figure S5).

These finding suggest that cortical oscillations in the frontal

region of the brain, as measured by EEG, are behaviorally

relevant and predict participant alertness at the single subject

level.

3.2. θ-phase shows the strongest
behavioral relevance across subjects

Having identified multiple frequency band by electrode

combinations whose phase predicted response time, we

were interested in identifying in which frequency band the

phase showed the strongest modulation of response time

irrespective of sensor location within each participant. To do

so, we computed the average normalized KL divergence at each

frequency band across channels within each participant and

z-scored the observed values against a surrogate distribution

obtained using a permutation test for the same participant (see

Methods 2.7, Supplementary Figure S4). In 8/15 participants,

we observed a significant phase dependent modulation in the

θ band (2.5–7 Hz, example participant in Figure 3A), while in

5/15 participants we observed a significant phase-dependent

modulation in the α band (8–14 Hz, example participant

in Figure 3B), and in 2 participants, we found a significant

phase-dependent modulation in the low β band (15–20 Hz,

example participant in Figure 3C). In one participant we did

not find any phase-dependent behavioral modulation. We

note that for 1 participant, phase-dependent modulation of

response times occurred in both the α and θ bands (Figure 4A,

Supplementary Figure S6).

To identify the frequency bands whose phase reliably predicted

response time across participants, we pooled the normalized KL

divergence values across the electrode channels of all participants,

separately for each frequency band, and repeated the same

statistical procedure. Across participants, we identified significant

spectral peaks indicative of phase-dependent modulation of

response time at frequencies 3 (p < 0.0006), 6 (p < 10−10),

and 8 (p < 10−8) Hz (Figure 4B). We note that the spectral

peak at 8 Hz was not significant when response times were not

detrended to account for fatigue (see Supplementary Figure S7).

This suggests that alerting attention alone is sufficient to

induce a phase-dependent modulation of behavior in the θ

band.

3.3. Weak evidence for lateralization of
phase-behavior relationships

We next explored whether phase-behavior relationships

lateralized to the either the right or left array. Within subjects,

we computed the average normalized KL divergence across

the electrodes and frequencies within each array. We then

used a permutation test (see Methods in 2.8) to determine

whether the density of identified phase-response time relationships

was preferentially distributed to one of the arrays. Within

subjects, we observed lateralized effects in 4/15 subjects, 2/15

right-lateralized and 2/15 left-lateralized (Figure 4C). We also

investigated whether any lateralization effects were present across

subjects in our cohort, after aggregating the data across each

array and all subjects. We did not identify lateralization across

the cohort (p = 0.47 for right hemisphere and p = 0.67

for left hemisphere, Figure 4D). This finding suggests that the

phase of EEG across the entire frontal region is relevant to

alertness.

3.4. Identifying the phase of EEG that
predicts fast vs. slow response times

Next, we investigated which phase of the EEG cycle (i.e., peak,

trough, and in-between) was predictive of response time speed (i.e.,

fast Vs. slow) in each of the 3 spectral peaks that showed behavioral

relevance (3, 6, and 8 Hz). To do so, we pooled the response

time - phase pairs for each frequency band across the participant

subgroup that showed phase-dependent modulation of behavior

at that frequency and repeated the analysis outlined in Methods

2.6. For the group of θ band responders, we identified multiple

electrode channels whose distribution of response times over phase

were significantly non-uniform (p < 0.05) at frequencies of 3 Hz,

and 6 Hz, which aligns well with our cohort level results (see

Results 3.2 and Figure 5A). For the group of α band responders,

we identified a significant phase dependent modulation of behavior

at 8 Hz for few electrodes (Figure 5B). We then averaged the

distributions of response time over phase across electrodes for

frequencies 3 Hz and 6 Hz for the θ band responders and for

frequency 8 Hz for the α responders. We identified that the phase

that predicts the fastest response time for the θ band responders at

frequency 3 Hz is centered at−2.73± π
4 rad (Figure 5C) and at 6 Hz

is centered at 0.71± π
4 rad (Figure 5D). For the α band responders,

at frequency 8 Hz the fastest response is centered at 0.96 ± π
4 rad,

although the effect was less pronounced (Figure 5E). In all cases, the

phase that predicts a slow response time was qualitatively located

∼ π rad from the phase that predicts a fast response time. We

identified this antiphase effect to be significant using a V-test for

θ band participants at frequencies ∼3 (V = 10.19, p < 0.002) and
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FIGURE 2

The phase of ongoing neural oscillations predicts response times. (A) Distribution of response times as a function of phase across 50 bins (± 45o) in

the 5.3-6.2 Hz band (single electrode). (B) Surrogate distribution of KL divergences (gray bars) obtained by randomly shu	ing the response time -

phase bin pairs and the KL divergence calculated by comparing the observed response time distribution over phase against a uniform distribution

(green line) after normalization (single electrode). (C) Normalized KL divergence (z-score) obtained by comparing the observed response time over

phase distributions against a uniform distribution across all frequency bands from 2-32 Hz. The frequencies whose normalized KL divergence

(z-score) exceed 2 were considered significantly non-uniformly distributed response times over phase distributions (single electrode). (D)

Normalized KL divergence of the observed distributions of response time over phase compared to the surrogate distribution across all electrodes

and frequency bands. Non-significant values were set to zero. Elements whose normalized KL divergence is greater than 2 correspond to electrode

location - frequency band pairs whose phase significantly predicts the participants response time (all electrodes, representative single participant).

Note that the orange arrow connecting the curve of (C) and region in (D) denotes that the two contain the same information.

∼ 6Hz (V = 9.84, p < 0.003). The effect was not significant for the

α band participants at frequencies 7.4-8.6 Hz (V = 3.26, p > 0.17).

4. Discussion

In this study, we demonstrate that alerting attention alone is

sufficient to induce a phase-dependent modulation of behavior that

can be predicted by frontal EEG. In agreement with some previous

studies (VanRullen, 2016, 2018), we identified θ oscillations to be

the strongest and most consistent predictors of alerting attention.

This effect was not lateralized to the right or the left hemisphere

as has been the case in some other studies (Busch and VanRullen,

2010; Song et al., 2014; Fiebelkorn et al., 2018; Helfrich et al.,

2018). We also observed that the instantaneous phases that predict

fast and slow response times across our cohort in the θ band are

antiphase with each other, further strengthening the relationship

between EEG oscillations and alerting attention performance. Since

we evoked these phase-behavior relationships using the PVT, which

does not involve perceptual judgements, our results support the θ

phase-dependency theory of alerting attention specifically.

Our findings are consistent with recent evidence suggesting

that the nature of sustained attention in humans and non-human

primates is rhythmic and depends causally on endogenously

generated neuronal oscillations that manifest in the EEG as θ

(3–8 Hz) (Busch et al., 2009; Chakravarthi and VanRullen, 2012;

Fiebelkorn et al., 2013, 2018; Dugué et al., 2015; McLelland et al.,

2016; Helfrich et al., 2018) or α band (8-14 Hz) activity (Callaway,

1962; Busch and VanRullen, 2010; Drewes and VanRullen, 2011;

Dugue et al., 2011; McLelland et al., 2016; Sherman et al., 2016).

It contrasts, however, multiple recent works that failed to identify
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FIGURE 3

Representative phase-dependent modulation of response at the subject level. (A–C) Show a phase-dependent modulation of response times for

three participants at di�erent frequency bands. Top: subject-level colormap of the normalized KL divergence at each frequency band by electrode

pair (non-significant values were set to 0). Bottom: average normalized KL divergence across channels showing a phase dependent modulation in

the θ , α, and β bands for the participants S13, S01, and S15, shown in columns (A–C), respectively. Black rows in the subject-level colormap

correspond to high impedance channels.

FIGURE 4

Phase-behavior e�ects are strongest in the θ band across the frontal region. (A) Venn diagram of the phase-behavior distribution across frequency

bands in our cohort. (B) Z-scores obtained by comparing the observed distribution of response times over phase to the uniform distribution using a

permutation test across our cohort. Spectral peaks that were significant after correcting for multiple comparisons are marked with an asterisk. (C)

Distribution of the lateralization of phase-behavior e�ects within subjects. (D) Lateralization e�ects at the cohort level. ns: not significant.

phase behavior relationships or showed inconclusive findings

(Benwell et al., 2017; Ronconi et al., 2017; Rassili and Ordin,

2020; de Graaf and Duecker, 2021; Lin et al., 2021; Michail et al.,

2021; Michel et al., 2021; Morrow and Samaha, 2021; Sheldon and

Mathewson, 2021; Sun et al., 2021; van Es et al., 2021; London et al.,

2022), even when the studies were replicating previous findings

(Vigué-Guix et al., 2020; van der Werf et al., 2021).

There is a variety of reasons that could result in inability to

identify phase-behavior relationships, such as inadequate statistical

power, low signal fidelity, or use of sub-optimal methodologies

to detect effects when their magnitude is small (Keitel et al.,

2022). We believe that in our work we were able to detect a

relationship between EEG phase and attention mainly due to

the following reasons. First, we used a simple behavioral task
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FIGURE 5

Which phase predicts a fast or slow response time? (A) Colormap of normalized KL divergence values obtained by comparing the distributions of

response time over phase for all frequency bands and electrodes across all participants showing a phase-dependent modulation of response times in

the θ band. In this group, the phase-dependent modulation of behavior at frequencies ∼3 Hz, and ∼6 Hz, can be observed on most channels. (B)

Colormap of the normalized KL divergence values obtained by comparing the distributions of response time over phase for all frequency bands and

electrodes for all participants who showed a phase-dependent modulation of response times in the α band. In this group a non-uniform distribution

of response times over phase can be found only on few electrodes. (C, D) Distribution of normalized response times over phase for participants with

a phase-dependent modulation of response times in the θ band at the frequency range ∼3 Hz (C) and ∼6 Hz (D). (E) Distribution of normalized

response times over phase for participants with a phase-dependent modulation of response time in the α band (∼8 Hz). (C–E) Show the mean ± SD

of distributions across channels.

(Dinges and Powell, 1985). Second, we ensured high signal fidelity

at the regions of interest using MXtrode EEG (Driscoll et al.,

2021) and enforced strict quality control for subjects included in

our study. Third, we used methods that are able to accurately

detect phase-behavior relationship whenever they are present (see

Supplementary Figure S8 and Zoefel et al., 2019).

The PVT used in this study does not rely on saccades,

perceptual components, or other higher order attentional functions

such as orienting or conflict resolution. To the best of our

knowledge, at least one of these functions was explicitly engaged by

the tasks used in other works, with the exception of Callaway (1962)

and its replication study by Vigué-Guix et al. (2020). Although

the behavioral paradigm used by Callaway (1962) and Vigué-Guix

et al. (2020) would be sufficient to disentangle alerting attention

from higher order cognitive functions, we encourage the reader to

interpret their results in the context of attentional processes with

caution. The attention network has been structurally associated

with the frontal and parietal brain circuits (Fan et al., 2005;

Buschman and Kastner, 2015), therefore, it is possible that their

findings, which come from occipital electrodes reflect rhythimities

in visual processing, in the study of Callaway (1962) and the

absence of those in the case of Vigué-Guix et al. (2020). PVT

performance is thought to specifically reflect the alerting function

of attention, which is necessary to perform most - if not all -

more complex attention functions. Because alerting to a stimulus

necessarily precedes most other attention functions, it may be

commonly activated in complex attention tasks. As such, our

ability to specifically isolate the phase-behavior relationships in

the EEG with the alerting function, suggests that alerting function

alone is sufficient to explain θ predictive power in some other

studies involving more complex attention tasks. Moreover, we

demonstrated that it is possible to identify these signals non-

invasively with high-density dry EEG montages placed over the

frontal lobes.

Another major implication of this study is the finding that

alerting attention might be concurrently modulated by multiple

independent rhythms. We conducted analyses at the single-

subject and group levels and identified multiple frequencies related

to alerting attention (Supplementary Figure S5). Although our

within-subject analyses revealed variability in the most behaviorally

sensitive frequencies at the individual level, phase-dependent

modulation of behavior was most frequently observed in the
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θ band (3-8 Hz), which is consistent with prior studies that

performed analyses at the group level rather than within each

subject. Across subjects, we identified a periodic modulation

of behavior by the θ band (3 and 6 Hz) and low α band

(8 Hz) activity, although the α band effect was not present

when response times were not linearly detrended to account

for fatigue (Supplementary Figure S7). Interestingly, the identified

spectral peaks were well-separated. VanRullen (2018) proposed

that the attentional sampling rhythm in humans is likely at 8

Hz, and further suggested that findings from studies identifying

periodicities at lower frequencies such as 3–4Hz (Landau and Fries,

2012; Fiebelkorn et al., 2013, 2018; Dugue and VanRullen, 2014;

Song et al., 2014; Huang et al., 2015; Helfrich et al., 2018) could

be a result of divided attention between two locations, focusing at

either object during alternate cycles, with the result that periodicity

measured at any one location would actually be one half of the

8 Hz intrinsic rhythm of attention. However, our results suggest

otherwise. In our task, participants were instructed to fixate at a

single location and detect a perceptually suprathreshold stimulus

but we still observed two spectral peaks, one at 3 Hz and one at 6

Hz. This suggests that neural oscillations at both frequencies might

modulate alerting attention and could possibly serve different

functional roles in that context. A similar notion where many

simultaneous rhythms periodically modulate a cognitive function

at independent rates has been suggested for perception (VanRullen,

2016).

Rhythmicity is likely an intrinsic characteristic of alertness.

Previous studies have demonstrated that phase-behavior

relationships can be observed in the absence of external rhythms

or can be entrained (Busch and VanRullen, 2010; Landau and

Fries, 2012; Fiebelkorn et al., 2013). For instance, endogenously

generated sampling behaviors such as eye movements in primates

(Otero-Millan et al., 2008; Bosman et al., 2009; Hogendoorn, 2016;

Wutz et al., 2016) and whisking in rodents (Fanselow and Nicolelis,

1999; Berg and Kleinfeld, 2003) have been attributed to intrinsic

neural activity, while external stimuli have also been shown to

induce phase behavior relationships in visual attention (Lakatos

et al., 2008; Gray et al., 2015). In our study, we removed external

oscillatory stimuli from the surrounding environment during

data collection and jittered the variable delay of our behavioral

task, making entrainment of neural oscillations unlikely to occur.

Additionally, the absence of a pre-stimulus cue prior to the target

presentation in our behavioral task suggests that the neural state

at the time of stimulus onset could impact behavioral outcomes,

which implies that rhythmicity is an intrinsic characteristic of the

neural mechanism of alerting attention.

Given our results, it is critical to further distinguish the basis

of links between fundamental brain frequencies and cognitive

processes, and in particular to further evaluate the role of

neural processes in attention and perception. Studies investigating

attention using different behavioral tasks and electrophysiology

such as MEG/EEG (Busch et al., 2009; Busch and VanRullen, 2010;

Drewes and VanRullen, 2011; Dugue et al., 2011; Chakravarthi

and VanRullen, 2012; Dugué et al., 2015; McLelland et al., 2016;

Sherman et al., 2016; Fiebelkorn et al., 2018; Harris et al., 2018;

Helfrich et al., 2018; Hauswald et al., 2020; Balestrieri et al., 2021;

Ho et al., 2021; Plöchl et al., 2021; Zazio et al., 2021) have suggested

that neural oscillations throughout the 5-15 Hz range could be

relevant to attention. However, when the results of 9 independent

EEG studies involving attention and perception working together

were meta-analyzed (VanRullen, 2016), two well separated spectral

peaks at frequencies 7 Hz (Busch et al., 2009; Busch and VanRullen,

2010; Chakravarthi and VanRullen, 2012; Dugué et al., 2015;

McLelland et al., 2016) and 11 Hz (Drewes and VanRullen, 2011;

Dugue et al., 2011; McLelland et al., 2016; Sherman et al., 2016)

emerged as the frequencies whose phase was relevant for predicting

behavioral outcomes. The peak at 7 Hz was mostly observed in

frontal electrodes, and the 11 Hz peak was mostly observed in

occipital electrodes. These results suggest that frontal circuits are

potentially engaged during attention-linkedmechanisms regulating

trial-wise behavior, whereas occipital signals represent visuo-

perceptual tracking and decoding of stimuli. In this study, we took

a focused approach in which electrodes were located in frontal sites

only to maximize sampling with our custom high-density arrays

(centered on F3 and F4). In close agreement with prior studies, we

found the strongest phase behavior relationships at 6 Hz, followed

by a weaker peak at 8 Hz in few subjects. Conspicuously when

compared to prior studies, our behavioral task (Dinges and Powell,

1985) does not involve perception of a near-threshold stimulus,

but rather, a supra-threshold one. Therefore, we speculate that

neural oscillations in the α band, close to the 11 Hz spectral peak

might be most strongly involved in cued detection in perception

or visual processing, while the neural oscillations at frequencies 7

Hz might reflect cognitive processes more closely related to alerting

attention specifically (VanRullen, 2016, 2018). A similar notion of θ

band subserving attention while α band subserving perception was

proposed by Michel et al. (2021). This notion is further supported

by the fact that the attentional control network has been structurally

associated with the frontoparietal region of the brain (Posner and

Petersen, 1990; Fan et al., 2002, 2005; Buschman and Kastner,

2015), consistent with our recording locations.

Since the oscillatory phase of distinct frequencies predicted

alertness at the individual and group level, one could hypothesize

that individual variability in the frequency that modulates alertness

might also predict better or worse overall efficiency of alerting

attention across subjects. Therefore, we investigated whether the

dominant spectral peak frequency that modulated attention within

each participant correlated with their average response time across

trials. We did not identify evidence to support that notion within

our cohort. Due to our small cohort size (N = 15) we cannot rule

out that our study was underpowered to detect such a relationship

(data not shown). Since the mean response time across participants

varies, we consider that it is likely that one or more cognitive

variables influence the tonic levels of alertness of each participant

(Degutis, 2010). Another candidate could be the participant overall

fatigue levels, which manifest as a progressive increase in the

response time over the course of the task (Bjørklund, 1992; Langner

et al., 2010).

This work contributes to a growing literature (Fiebelkorn

et al., 2013; VanRullen, 2016, 2018; Helfrich et al., 2018) suggesting

the feasibility of phase-guided neuromodulation approaches. The

ability to track intrinsic rhythms of basic cognitive functions

like alerting attention that gatekeep more sophisticated attention

processes could improve the effectiveness of non-invasive

closed-loop neuromodulation. Such approaches have been

hampered by the limitations of existing hardware that can reliably
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track brain oscillatory activity non invasively with adequate

spatiotemporal precision [with exceptions, see Callaway (1962)

and Vigué-Guix et al. (2020)], as well as by a lack of compatibility

of those technologies with safe and effective non-invasive

neuromodulation, such as transcranial magnetic stimulation

(TMS) (Tremblay et al., 2019). Recently developed, dry EEG arrays,

such as the MXtrodes, could address those limitations through

their customizability in terms of footprint, density, coverage,

compatibility with neuroimaging modalities, and highly reliable

signal quality (Murphy et al., 2020; Driscoll et al., 2021). We believe

that integrating these arrays with existing TMS protocols that have

been proven very effective but have not closed the loop yet (Cole

et al., 2020) or with EEG/TMS technologies such as in Zrenner

et al. (2018, 2020) informed by EEG phase, could further improve

outcomes for patients affected by attention-related disorders, such

as schizophrenia (Carter et al., 2010), depression (Keller et al.,

2019), and generalized anxiety disorders (Yiend et al., 2014) where

attentional issues are present (Tremblay et al., 2019).

Some limitations apply to the current study.We found evidence

that the phase of neural oscillations can predict response times

during the PVT. However, we did not evaluate rhythmicity in

our behavioral data, such as oscillations of response times as a

function of the fixation-target interval (jitter interval). In fact, due

to the jitter varying between 2-11 seconds, spectral decompositions

of that signal were limited to resolving oscillations of 0.5 Hz or

lower, which were out of the scope of our hypothesis (2-32 Hz).

While rhythmicities in similar behavioral data have been validated

in previous studies (Fiebelkorn et al., 2013, 2018; Helfrich et al.,

2018), future studies using a jitter interval between 0.5 and 1.7 s

could explore behavioral periodicities using methodologies similar

to the ones used by Fiebelkorn et al. (2013). While consistent with

frontocentral mechanisms of attention (Posner and Petersen, 1990;

Fan et al., 2002, 2005; Busch et al., 2009; Busch and VanRullen,

2010; Chakravarthi and VanRullen, 2012; Dugué et al., 2015;

McLelland et al., 2016), we only monitored at F3 and F4 with high-

density bifrontal arrays. Full scalp montages could facilitate source

reconstruction and otherwise test the spatial extent of attention-

related signals (Michel and He, 2019). The results of the present

study are also limited by the small cohort size that met our stringent

exclusion criteria. While these exclusions improve confidence in

our findings, future studies in larger cohorts could examine the

generalizability of our results and support additional confound

mitigation (Zoefel and Heil, 2013).

5. Conclusions

Our results suggest that alerting attention to perceptually

suprathreshold stimuli, a fundamental aspect of cognition, is

sufficient to elicit observable phase-dependent modulation of

behavior that can be predicted by the phase of ongoing brain

rhythms, particularly in the θ band in frontal regions of the

brain. It is possible to identify these signals using high-density,

dry EEG, at sub-second timescales in single subjects. Due to the

absence of a pre-stimulus cue in our behavioral task, our findings

indicate that internal, endogenously generated rhythms modulate

the allocation of cognitive resources toward environmental stimuli.

The behavioral relevance of multiple well-separated low-frequency

rhythms suggests that different rhythms may serve different roles

in the resource allocation process. The inter-subject variability of

the neuronal rhythms whose phase predicts alertness suggests that

brain rhythms might reflect differences in the overall efficiency of

alertness across subjects.

This work has potential clinical relevance for neurological and

psychiatric disorders that can be traced back to abnormal brain

rhythms or can benefit from targeted neuromodulation during

specific cycles of neuronal activity identified in single subjects

(Zrenner et al., 2018, 2020). Closed-loop EEG-TMS interventions

have been shown to produce favorable outcomes in patients

suffering from disorders such as major depressive disorder and

autism-spectrum disorder (Tremblay et al., 2019) and effective

open-loop intervention protocols are rapidly emerging (Cole et al.,

2020). Integrating those paradigms with non-invasive hardware

that enables more accurate tracking of underlying brain rhythms

and that can be customized to patient-specific anatomical and

functional targets, could further improve therapeutic effectiveness

and overall outcomes.
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