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Editorial on the Research Topic

Updates on memory modulation in health and disease

One of the most intriguing questions in the memory field is howmemory systems can be

modulated in their nature and strength. By sculpting the contribution of different neuronal

populations and target structures in the brain, neurotransmitters and neuromodulators are

key players of high-order cognitive functions. So, which factors can modulate the memory

process? The main objective of this issue is to approach this multifactorial question from

a multidisciplinary perspective. Articles in this issue highlight general properties that make

neuromodulatory systems crucial players in the behavioral neuroscience field and explain

how different neuropathological conditions can alter these systems.

The long-term stabilization of information in the brain requires the reorganization of

pre-existing networks. Hippocampal interneurons play a pivotal role in this matter, by

controlling the size of the neural ensemble encoding new memories (Stefanelli et al., 2016).

Indeed, it has been shown that inhibition of parvalbumin (Karunakaran et al., 2016; Xia

et al., 2017), and somatostatin (Adler et al., 2019; Morales et al., 2021) interneurons in the

hippocampus alters encoding of contextual memories. It is thought that neuromodulation

shapes memory strength by configuringmicrocircuits and target structures that are recruited

by an encoded event. Critically, hippocampal interneurons highly express acetylcholine

(ACh) receptors (Morales et al., 2008; Son and Winzer-Serhan, 2008), suggesting a

role of this neurotransmission system in the modulation of the hippocampal inhibitory

activity. However, how Ach signaling mediates memory formation by modulating the

excitatory/inhibitory balance in the hippocampus remains unclear. In this Issue, Goral

et al. have provided evidence suggesting that the loss of GABA co-transmission from

Ach-activatable interneurons alters spatial and contextual fear memories.

Spatial memory deficits are one of the most common cognitive symptoms in

neurodegenerative disorders that selectively affect the medial-temporal lobe (MTL), such as

Alzheimer’s disease (AD) (Visser et al., 2002; Berron et al., 2020). Interestingly, AD disease

leads to a bulk of neuromodulatory changes that impact over several neurotransmitter

systems (Fahnestock et al., 2002; Rissman et al., 2007; Dinamarca et al., 2012; Revett

et al., 2013; Kandimalla and Reddy, 2017; Wang et al., 2019; Chen et al., 2022). The

hippocampal formation (HPC), one of the most affected MTL structures in AD, presents

neurons tuned to fire at particular places in the environment (i.e., place cells) that are crucial
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for encoding spatial information (O’Keefe and Dostrovsky,

1971). Decoding accuracy and stability of hippocampal spatial

representations is modulated by Ach (Sun et al., 2021) andNMDAR

activity (Tonegawa et al., 1996; Cabral et al., 2014). Remapping, the

process by which spatial hippocampal information stored in place

cells is modified (Muller and Kubie, 1987; O’Keefe and Burgess,

1996; Leutgeb et al., 2005; Colgin et al., 2010), is thought to be an

essential mechanism by which hippocampal formation maintains

updated internal representations of changing environments.

Hippocampal alteration in AD might lead to remapping

impairments and potentially to the typical symptomatology

of this disease. In this regard, the article by Silva and Martinez

reviewed evidence pointing out the mapping and remapping

disruption in the HPC as a possible circuit mechanism involved

in deficits observed in AD. Moreover, they discuss how tau

mediated changes in NMDA and AMPA receptors function in

hippocampus-entorhinal cortex (HP-EC) region could contribute

to these deficits.

Memories are susceptible to near-learning experiences that can

change the internal state of an individual and influence memory

strength (Moncada et al., 2011; Tyng et al., 2017; Tarder-Stoll

et al., 2020). Neuromodulators are key players for experience-

dependent changes in memory strength. For example, exercise and

environmental enrichment, are interventions that are known to

increase several neuromodulatory systems such as BDNF levels

and lead to an increase in memory performance (Grech et al.,

2018; Xu et al., 2021). Brain-Derived Neurotrophic Factor (BDNF)

has been implicated in the formation and stabilization of the

synapses (Cohen-Cory et al., 2010), and postulated as a marker

of the occurrence/progression of many mnemonic symptoms that

are common to different neuropathological conditions (Miranda

et al., 2019). In addition, BDNF is also a key neuromodulator of

the nociceptive response (Thompson et al., 1999; Pezet et al., 2002).

This evidence suggests possible connections between nociceptive

and memory systems. Indeed, a recent study elucidates the

interaction between the concentration of this neurotrophic factor

and tDCS-dependent alleviation of cognitive impairment observed

in fibromyalgia (Dos Santos et al., 2018), a disease characterized

by chronic neuropathic pain (Wood, 2007). In this issue, Caumo

et al. describe a positive relationship between levels of BDNF

and severity of cognitive impairment in subjects that responded

to the conditioned pain modulation test, which is not seen

in non-responders. These results open the possibility of the

involvement of BDNF in moderating the effect of chronic pain on

cognitive functions.

One of the most important questions in the study of memory

is how individuals learn to avoid real or perceived dangers.

Memories resulting from these experiences are of clinical interest

as maladaptive memories are thought to be at the core of

anxiety-related disorders observed in humans (Gazarini et al.,

2023). To tackle this challenge, several animal models that mimic

aspects of human aversive memories have been developed over

the years. In this regard, fear conditioning has been the most

widely used procedure to study the processing of emotional

memories in rodents (LeDoux, 2000). However, due to the great

complexity of rodent models, it is vitally important to study these

processes using other animal models. Here, Pribadi and Chalasani

review studies in invertebrates like Aplysia californica, Drosophila

melanogaster, and Caenorhabditis elegans showing mechanisms

underlying learning and memory processes conserved across these

species. This review pays particular attention to predator-induced

fear in these three organisms opening potential applications to

more naturalistic trials.

In sum, this issue addresses the role of neuromodulatory

transmission in shaping microcircuit memory encoding and

explains how pathological conditions can impact memory function

influencing several neurotransmitter systems, and crucially, how

different animal models can help to understand these processes.

Also, it discusses the development of naturalistic invertebrate

animal models for studying learning and memory processes in

maladaptive-memory formation.
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