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Hypothalamic orexins as possible
therapeutic agents in threat and
spatial memory disorders
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Orexin-A and orexin-B, neuropeptides produced exclusively in the lateral

hypothalamus, have been implicated in various functions, including memory.

Their levels are elevated in certain pathological states, such as PTSD, and lowered

in other states, e.g., memory deficits. Recent developments have shown the

possibilities of using orexins to modulate memory. Their administration can

improve the results of test animals in paradigms such as passive avoidance (PA),

cued fear conditioning (CFC), and the Morris water maze (MWM), with differences

between the orexin used and the route of drug administration. Blocking orexin

receptors in different brain structures produces opposing effects of memory

impairments in given paradigms. Therefore, influencing the orexinergic balance

of the brain becomes a viable way to ameliorate memory deficits, shift PTSD-

induced recall of stressful memories to an extinction path, or regulate other

memory processes.
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1. Introduction

Orexins are neuropeptides that were isolated from the central nervous system in
1998 by two separate groups of scientists. de Lecea et al. (1998) identified the mRNA
encoding precursor of orexin peptides, prepro-orexin, and at the same time, Sakurai
et al. (1998) identified them while searching for peptide ligands for G-protein-coupled
receptors. There are two splice variants of orexins: A (OX-A), which consists of 33 amino
acids with two intrachain disulphide bonds; and B (OX-B), which has a linear 28 amino-
acidic structure. Their synthesis is limited to the lateral hypothalamus/perifornical area
(LH/PFA) of the interbrain (Peyron et al., 1998; Date et al., 1999; Nambu et al., 1999).
They bind to two orphan G-protein-coupled receptors: OX1R, which has a ten times
greater affinity to Orexin-A than to Orexin-B, and OX2R, which has a similar affinity to
both peptides. Their occurrence is to some extent complementary: OX1R is abundant in
the locus coeruleus (LC), laterodorsal tegmental nucleus (LDT), and pedunculopontine
tegmental nucleus (PPT), and OX2R is mainly expressed in the tuberomammillary nucleus
(TMN), nucleus accumbens (NAc), and septal nuclei. In structures like the hippocampus
or amygdala, both types of receptors are expressed generally, with one more dominant
than the other (Marcus et al., 2001). Because of this vast occurrence of orexin receptors
and extensive projections of orexinergic neurons throughout the neuroaxis, they regulate
numerous physiological processes: feeding and energy homeostasis (Edwards et al., 1999;
Volkoff et al., 1999; Yamada et al., 2000), reward system (Leinninger et al., 2011; Sakurai
and Mieda, 2011; Yokobori et al., 2011), and addiction (Rao et al., 2013; Baimel et al.,
2015), sleep and wake cycles (Carter et al., 2009; Tsujino and Sakurai, 2013) and,
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finally, learning and memory (Jaeger et al., 2002). Memory is the
capacity that allows us to connect experiences and learn (Camina
and Güell, 2017). It is the foundation of personality, the uniqueness
of an individual, and the internal trace of our lives. Memory
disorders directly affect our sense of security, as well as our comfort
and that of our loved ones. It feels necessary to look for way to
counteract these disorders.

Encoding is the initial phase of learning during which perceived
stimuli create memory traces in the brain. A trace consists of
those neurons that fire together in the first instance response to
novel stimuli. Sometimes it is used interchangeably with engram,
although the second term is rather defined as a more stabilized
conglomerate of neurons that stores a certain episode in the long-
term memory (Liu et al., 2012). After an initial trace is created, the
neurons that the trace consists of may undergo various physical
and biochemical changes, such as new protein synthesis, plastic
events including new spikes, synapses or dendrite formation, long-
term potentiation (LTP) or long-term depression (LTD), which
are long-lasting increases or decreases in the signal transmission
strength between two neurons, and wave oscillations between
numerous structures, which form a stable engram of a particular
memory. This is called the consolidation phase and the significant
part of these processes occur during sleep (Teyler and DiScenna,
1986; Alvarez and Squire, 1994; McClelland, 1995; Bero et al.,
2014). When a memory is consolidated and stable, it can be
actively or passively recalled in a retrieval phase by changes in
protein synthesis in the hippocampus (Lopez et al., 2015) and
activation of some of the engram neurons, which subsequently
stimulate the remaining neurons of a recalled memory engram
in a way dependant on the used paradigm (Barros et al., 2000,
2001). All these phases rely heavily on interconnections between
subcortical structures, such as the hippocampus, amygdala, or
locus coeruleus, and cortical areas that store memories long-
term, as the hippocampus mediates the sorting of positive and
negative engrams and takes part in replays of cortex-based
consolidated engrams of older memories during recollection
(Shpokayte et al., 2022).

Owing to obvious limitations in assessing memory processes
in animal models, there are two common approaches in research
that evaluate either a threat or spatial memory, both of which form
an episodic memory–consciously recollected memories related to
personally experienced events (Ploran and Wheeler, 2017) and
essential for survival in any environment. The first one forms
after a certain number of repetitions of used paradigms utilizing
unconditioned aversive stimuli (e.g., mild electric shock) paired
with neutral contextual or auditory stimuli to condition an aversive
response to the neutral stimulus (therefore creating a conditioned
stimulus) in a measurable time. The latter emerges from navigating
a given space with distal cues, e.g., to locate a preferred place
(such as a platform in a pool, a box with a reward, or a previously
unexplored maze arm).

Various medical conditions such as Alzheimer’s, Parkinson’s,
dementia, post-traumatic stress disorder (PTSD), narcolepsy,
anxiety, or major depressive disorder (MDD) affect, inter alia,
these two types of memory. One of the promising courses
of research in recent years refers to the role of orexins in
memory processes, as many studies suggest a high level of
control is exerted by the lateral hypothalamus/perifornical area
over numerous memory-related structures (Flores et al., 2015).

The aim of this Review is to systematize these data and
to indicate directions for further studies in this field, as the
manipulations of the orexin system may provide new clinical
approaches in treating numerous diseases or preventing memory
loss and lay the foundations for future studies concerning the
mechanisms behind memory.

2. Fear memory

Memories related to threatening stimuli and situations that
cause anxiety, stress, and fear are referred to as fear memory.
With numerous diseases like PTSD, generalized anxiety disorder,
or obsessive-compulsive disorder, there is a continuous need to
elucidate their pathogenesis and the neural physiology behind
their symptoms while keeping in mind that the fearlike state
that the animal models try to avert might be entirely different
to what humans call fear (LeDoux, 2014). To systematize data
from different studies, three time periods were differentiated,
which were used for the administration of drugs to examine
different memory processes. To influence an encoding phase,
researchers administered drugs 1 h (Soya et al., 2017), 30 min
(Telegdy and Adamik, 2002; Palotai et al., 2014), or immediately
(Sears et al., 2013) before training. To study the consolidation
phase, drugs were administered immediately after training (Jaeger
et al., 2002; Sears et al., 2013; Flores et al., 2014; Ardeshiri
et al., 2017; Mavanji et al., 2017). The retrieval phase requires
drug administration 30 min (Telegdy and Adamik, 2002; Palotai
et al., 2014) or immediately before test trials (Jaeger et al., 2002;
Ardeshiri et al., 2017; Figure 1). Furthermore, researchers used a
different approach to analyze the impact of orexin. The first was
administering the peptides themselves, either to healthy animals
or individuals with receptor deficiency, mimicking pathological
states of various diseases. The other approach administered orexin
receptor antagonists, impairing their functioning during crucial
memory formation moments (Table 1).

2.1. Encoding

The first neural processes that appear in these paradigms, i.e.,
recognition of threats and creating fear responses, mainly involve
the hippocampus, amygdala, and medial prefrontal cortex–areas
that seem to be enveloped by orexinergic neurons. The lateral
hypothalamus/perifornical area directly innervates hippocampal
formation, with CA1, CA2, and the dentate gyrus (DG) expressing
mainly OX1R, CA3 mainly expressing OX2R (Trivedi et al., 1998;
Lu et al., 2000; Hervieu et al., 2001; Marcus et al., 2001; Akbari et al.,
2011), and the basolateral amygdala with orexinergic fibers acting
through both OX1 and OX2 receptors which, in turn, modulate
central nucleus output (Bisetti et al., 2006).

In addition to its direct innervation, the LH/PFA region sends
orexinergic neurons to the locus coeruleus, a nucleus involved
in stress and fear responses. Activation of orexin neurons in
the LC has been observed in response to aversive stimuli, such
as shock, and this activation, in turn, affects the amygdala
via LC-noradrenaline fibers (Chen and Sara, 2007; Sara, 2009;
Soya et al., 2017).
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FIGURE 1

The time points of drug administration used for specific memory phase examination. Encoding: 1 h, 30 min, or immediately before training
session/sessions. Consolidation: immediately after training session/sessions. Retrieval: 15 min or immediately before the test session.

The hippocampus plays a role in integrating contextual cues
and receives input from the collaterals of sensory pathways through
the ventral tegmental area (VTA). Meanwhile, the amygdala
processes early aversive memory traces, and the medial prefrontal
cortex facilitates memory encoding (Izquierdo et al., 2016). The
wide distribution of orexins in the brain suggests that they
may contribute to associative learning and, in collaboration
with other neurotransmitters, participate in the selection of
new memory traces for further consolidation and the formation
of stable engrams.

To further support the involvement of orexin receptors in
fear conditioning, experiments utilizing intracerebroventricular
infusion of an OX1R antagonist called SB-334867 have shown that
blocking these receptors immediately before training impairs fear
response. This finding was reported by Sears et al. (2013) in the
context of Pavlovian fear conditioning. The same authors showed
that blocking OX2R with specific antagonist TCS-OX2-29 before
training did not affect learning. In another study, an improvement
in encoding was observed after OX-B ICV infusion before training,
which was completely abolished by ICV infusion of the orexin
receptor blocker EMPA (Palotai et al., 2014). Therefore, it might
be noted that the elevated concentration of OX-B can facilitate
memory encoding mainly through OX2 receptors, but it is not
sufficient to sustain even a base level of learning in the case of
an OX1 receptor block. On a similar basis, OX1 receptors located
in the hippocampus, amygdala, and locus coeruleus are pivotal
for the creation of memory traces strong enough to undergo later
consolidation and long-term memory formation.

2.2. Consolidation

Jaeger et al. (2002) investigated the role of orexins in fear
memory for the first time, using a T-maze active avoidance
paradigm. They administered orexin-A intracerebroventricularly,
which improved the results of 12-month-old SAMP8 mice in this
paradigm in a dose-dependent manner. In 4-month-old mice,
only the highest dose resulted in a better score; however, the
SAMP8 strain develops memory impairments at approximately

6 months of age, which would mean that the second case showed
improvement in clinically healthy individuals. Additionally, they
tested the impact of OX-A ICV infusion on CD-1 mice in a passive
avoidance paradigm. Both experiments showed that the peptide
improves memory retention when administered immediately after
training but not 24 h later. Considering that ICV administration
mostly targets the hippocampus, the results are consistent with
the notion that fear memory consolidation is a hippocampus-
dependent process susceptible to loss over time. In another study,
researchers managed to restore consolidation to base levels in
mice with a genetic loss of orexins by injecting OX-A into
the CA1 region, using a two-step active avoidance paradigm,
further corroborating hippocampus involvement in this process
(Mavanji et al., 2017). Subsequently, blocking the OX1 receptor
with selective antagonist SB-334867 immediately after training
impaired consolidation in contextual fear conditioning (Flores
et al., 2014) and passive avoidance (Ardeshiri et al., 2017). In the
first experiment, the drug was injected intraperitoneally, and in the
second, directly into the basolateral amygdala. On the other hand,
Sears et al. (2013) noted no effect of SB-334867 on the consolidation
phase after post-training ICV infusion in cued fear conditioning.
As the used doses were similar, these somewhat contradictory
findings may result from different paradigms, as it was theorized
that the amygdala might not be crucial for contextual conditioning
as opposed to paradigms using auditory cues (Vazdarjanova and
McGaugh, 1998). The involvement of orexinergic neurons in
amygdala-dependent learning could benefit from further studies
using c-Fos expression techniques to elucidate their engagement
and amygdala response in different paradigms. The OX2 receptor
seems to be significantly less involved in consolidation, as was
proven by several different studies. The blockade of this receptor
by ICV or intra BLA infusion of antagonist TCS-OX2-29 did not
alter the performance of animal models in cued conditioning or
passive avoidance (Sears et al., 2013; Ardeshiri et al., 2017), except
for one study by Flores et al. (2014) in which intraperitoneal
injection of the drug effectively impaired cued and contextual
fear conditioning in rats. However, the dosage of TCS in this
experiment was significantly higher than in the previous ones,
which might have potentially blocked OX1 receptors as well, despite
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TABLE 1 Research on the effect of orexins or their receptors’ antagonists on fear memory processes.

References Animal models Used paradigms Substances Administration Conclusion

Jaeger et al., 2002 SAMP8 mice

CD-1 mice

T-maze footshock
avoidance
Passive avoidance test

Orexin-A After training/ before the
test

OX-A administration improves
memory consolidation but not
retrieval.

Telegdy and
Adamik, 2002

Wistar rats Passive avoidance test Orexin-A 30 min before training /
after training / 30 min
before the test

OX-A improves encoding,
consolidation, and retrieval.

Sears et al., 2013 Sprague Dawley rats Cued fear conditioning
test
Optogenetics

SB-334867

TCS-OX2-29
SB-334867

Before training / after
training / before the test
Before training
Before training / after
training

OX-A but not OX-B is required
for fear memory encoding.
Orexin neurons mediate
depolarization and LA activation
and as a result enhance threat
learning.

Soya et al., 2013 Knockout mice:
OX1R-
OX2R-

Cued fear conditioning
test
Contextual fear
conditioning test

AAV vectors
–

OX1R but not OX2R participates
in fear memory formation.

Palotai et al., 2014 Wistar rats Passive avoidance test Orexin-B

EMPA

30 min before training /
after training / 30 min
before the test
After training / 30 min
before the test

OX-B improves encoding,
consolidation, and retrieval.
EMPA blocked OX-B action but
did not change results in the
control.

Flores et al., 2015 C57BL/6J mice

129S1/SvImJ mice

OX1R- knockout mice

Cued fear conditioning
test
Contextual fear
conditioning test
Novel object-recognition
test
Open field test
Elevated plus-maze test

SB-334867

TCS-OX2-29

Orexin-A

Orexin-B

After training / after each
extinction session
After training / after each
extinction session
After each extinction
session
After each extinction
session

Weaker consolidation phase in
animals with OX1R and OX2R
blockade. OX1R blockade
attenuated cued FC.

Blockade of OX1R facilitated the
extinction of threat memories and
OX-A impeded it.

Flores et al., 2017 C57BL/6J mice Contextual fear
conditioning test

SB-334867 After the first extinction
session The antagonist facilitated the

extinction of threat memory.

Ardeshiri et al., 2017 Wistar rats Passive avoidance test SB-334867
TCS-OX2-29

After training / before
the test
After training / before
the test

Consolidation was impaired by a
post-training block of OX1R but
not OX2R.
Blockade of each receptor before
the test impaired the retrieval of
threat memory.

Mavanji et al., 2017 O/A3 mice (C57BL/6J) Two-way active
avoidance test

Orexin-A Daily after each trial Impaired fear memory formation
in orexin-deficient O/A3 mice.
State improved by OX-A.

Soya et al., 2017 BAC-transgenic NAT-

Cre mice

Orexin-Cre mice

Optogenetics
(DREADD)
Cued fear conditioning
test

SB-334867 1 h before the test /
30 min before the test

Blockade of OX1R resulted in a
significant reduction of freezing
behavior. Confirmed circuit of
OXLH-LC and NA LC-LA
neurons.

Dustrude et al., 2018 Sprague Dawley rats Cued fear conditioning
test
DREADD

C-56
JNJ10397049
AAV vectors

–
OX1R antagonism in the CeA
reduces the expression of
conditioned fear.

Salehabadi et al.,
2020

Wistar rats (SPS) Contextual fear
conditioning test
Open field test
Elevated plus maze test

SB-334867 After training/ three
injections each after
extinction sessions

OX1R blockade impairs threat
memory formation. Antagonist
normalized behavior.

the high selectivity of the drug. Furthermore, the orexinergic
neurons activate noradrenergic input of the locus coeruleus to the
amygdala during the consolidation phase in cued and contextual
fear conditioning (Soya et al., 2013). It was proven that mice
lacking OX1R on noradrenergic LC fibers show impaired memory

formation during cued conditioning, which can be abolished
by restoring the receptors with an AAV vector. Subsequently,
contextual conditioning was impaired in both OX1R and OX2R
knockouts, which was not abolished by restoring the receptors.
These results were further corroborated with DREADD techniques,
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showing that orexinergic innervation of the locus coeruleus is
crucial for the activation of the amygdala in auditory-based
paradigms and much less important in contextual learning (Soya
et al., 2017; Dustrude et al., 2018). However, the exact circuits
between the lateral hypothalamus, locus coeruleus, and amygdala
in different disorder models should be investigated.

2.3. Retrieval

Experiments around the retrieval phase are based on the
recognition of familiar stimuli, which, in turn, activates engram
cells in a specific pattern. The timing of drug administration is
pivotal for determining their influence on this process. Jaeger et al.
(2002) administered OX-A intracerebroventricularly 24 h after
training, immediately before a test session in passive avoidance
and T-maze footshock avoidance paradigms, and concluded that
the neuropeptide had no effect on test scores in animal models.
However, OX-A infused 30 min before the test session improved
the passive avoidance results in rats (Telegdy and Adamik, 2002),
as was the case with OX-B in the same paradigm (Palotai et al.,
2014), which may suggest that a longer period allows higher
receptor saturation, which facilitates engram activation. However,
more research is needed to test this hypothesis or propose a
different one. On the other hand, the total blockade of either
OX1 or OX2 receptor by selective antagonists administered intra
BLA immediately before the test session impaired the retrieval
phase in the passive avoidance paradigm (Ardeshiri et al., 2017),
which suggests that both receptors take part in engram activation
during fear memory recall. The study from Salehabadi et al. (2020)
showed that, in Single Prolonged Stress (SPS) rats, which are
the animal models of PTSD, three consecutive injections of SB-
334867 into the amygdala (each after one test session, 24 h apart)
could significantly decrease freezing behavior in a contextual fear
conditioning paradigm. In a different study, a single injection of
OX1R receptor antagonist after the first of two extinction sessions
in contextual fear-conditioned mice enhanced fear extinction
compared with the control group (Flores et al., 2017). Perhaps
controlling orexinergic activation might prove useful in shifting
memory processes toward extinction in severe anxiety cases or
states such as PTSD. However, the downregulation of orexinergic
innervation and its effect on memory in animal models of different
disorders needs further elucidation.

3. Spatial memory

Navigating through a novel environment activates two
processes involved in spatial memory: allocentric processing,
which relies heavily on hippocampal structure and allows one
to place oneself in a given space by analyzing relationships
between distinct environmental cues or landmarks, and parietal
cortex-dependent egocentric processing, which analyses the
relationships between oneself and visible cues (O’Keefe, 1976).
Different test paradigms may force animals to depend more
on one of these strategies, although they still both happen
simultaneously. The optimal strategy utilized by the brain involves
allocentric processing of a novel environment, with egocentric

processing being predominant in a well-remembered place. The
two systems complement each other and are integrated by the
posterior cingulate cortex (PCC) and retrosplenial cortex (RSC)
(Coughlan et al., 2018). To successfully encode novel spatial
information and allow memory consolidation, gamma wave activity
between the hippocampus and the medial prefrontal cortex is
needed during the timeframe of the working spatial memory
(Spellman et al., 2015).

3.1. Encoding

The Morris water maze, which is predominantly used to assess
spatial memory, tests the ability of animals to find and memorize
the location of a transparent platform hidden in the pool in which
they swim, allowing them to rest upon it. Aou et al. (2003) tested
the effects of different doses of OX-A on performance in this
paradigm, subsequently assessing long-term potentiation and long-
term depression in Shaffer collaterals in rats. The results showed
that intracerebroventricular infusion of the neuropeptide impaired
spatial memory formation in all used doses. However, the drug
was administered 2 h before training sessions, which deviates from
other studies in this matter. The electrophysiology of hippocampal
slices showed significant suppression of LTP by a higher dose, while
LTD was not affected. A possible explanation for this phenomenon
is that elevated OX-A increased levels of noradrenaline as well
as activated GABAergic inhibitory interneurons, which, in turn,
suppressed the induction of LTP. The lack of synaptic plasticity
events within the medial temporal lobe resulted in the inhibited
formation of memory traces, thus slowing the learning process
(Sil’kis, 2013). In a different study using the same paradigm, the
blockade of the OX1 receptor through the injection of SB-334867
directly into CA1 15 min before the test session significantly
impaired memory encoding (Akbari et al., 2006). This may suggest
that orexin A is pivotal for base-level spatial memory formation,
which is on a par with the well-described OX-A-mechanism-
activating ERK1/2 pathway (Ramanjaneya et al., 2009; Liu et al.,
2015; Greene et al., 2020), which, in turn, triggers or strengthens
LTP in the hippocampus (Peng et al., 2010). It might be useful to
further elucidate the effects of orexins on spatial memory encoding
at different times of drug administration to establish more concise
frames for encoding studies.

3.2. Consolidation

The blockade of orexin receptors immediately after the training
session by selective antagonist infusion into CA1 resulted in
reduced time spent in the target quadrant in a Morris water
maze (Akbari et al., 2006). Interestingly, it seems that the effect
of this blockade can be mitigated by extended training. After
antagonizing OX1 or OX2 receptors in the basolateral amygdala,
the animals showed impaired spatial memory formation in the
short Morris water maze paradigm, which was ameliorated with
longer training (Ardeshiri et al., 2019). Furthermore, in a six-trial
Morris water maze, the animal models were able to memorize
the location of the hidden platform, similar to the base level
learning, as opposed to the two-trial paradigm, during which
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the learning was significantly impaired by the OX1R blockade
(García-Brito et al., 2018). The researchers subsequently assessed
c-Fos protein expression in the dentate gyrus, CA2, CA2, dorsal
retrosplenial cortex, prelimbic cortex, and thalamic nuclei. The
immunohistochemistry data revealed that c-Fos expression in
these areas was significantly higher in control animals and even
higher in animals subjected to antagonist infusion and a prolonged
training protocol, a finding that overlaps with the mitigation of
the antagonist effect. The mechanism behind this phenomenon
remains to be elucidated. Another way to alleviate the antagonist
injection is intracranial self-stimulation (ICSS), as shown by the
same authors (García-Brito et al., 2020). The procedure was able
to compensate for receptor blockade in the Morris water maze and
visual discrimination task. However, as the stimulation procedure
was reported to be highly pleasurable, its effects may be explained
by acting on the reward system, aside from memory formation,
because the ventral tegmental area, a part of the medial forebrain
bundle sending dopaminergic fibers, which is stimulated during
ICSS, is innervated by orexinergic neurons and participates in
memory formation processes. Likewise, the blockade of the OX1
receptor in the dorsal raphe nucleus, the most prominent serotonin
source in the brain, impairs the consolidation of spatial memory
(Khodabande et al., 2021). On the other hand, antagonizing the
OX2 receptor with TCS-OX2-29 did not affect the results in
the Morris water maze, despite the expression of OX2R. In one
knockout mice experiment, animals without OX receptors in the
dorsal raphe nucleus exhibited impaired spatial working memory,
with locomotor activity largely intact in an exploration task and
a delayed non-matching-to-place T-maze task. DRN serotonergic
neurons promote wakefulness and regulate the sleep cycle (Sörman
et al., 2011), as well as modulate theta rhythms in the hippocampus
(Adidharma et al., 2019), which means that these results may not
present a clear view of the involvement of orexins in DRN-related
memory processes. What is more, the dorsal raphe nucleus is
also densely innervated by noradrenergic fibers, which may excite
it through a similar mechanism to orexins (Aghajanian, 1985).

Therefore, to elucidate the precise effects of orexins on DRN in
memory processes, further studies are required utilizing rigorous
conditions to assess the overall state of the animal models.

The effect of orexins on spatial memory was also investigated
in SPS rats. During one study, the control group animals showed
impaired spatial memory in the Morris water maze test, decreased
food intake and downregulation of OX-A. Subsequently, an
upregulation of OX1 and OX2 receptors in the hippocampus
was discovered, possibly as a compensatory mechanism. ICV
injection of OX-A alleviated these symptoms, improving memory,
enhancing appetite, and partially reversing the changes in receptor
density (Han et al., 2020). Such a decrease in orexin levels
was also suggested to contribute to age-related (Stanley and
Fadel, 2012) and Parkinson’s disease deficits (Fronczek et al.,
2012). Animal Parkinson’s models showed a correlation between
declarative and spatial memory impairments and depletion of
orexinergic neurons in the lateral hypothalamus/perifornical area
(Oliveira et al., 2020). Destroying dopaminergic and orexinergic
neurons by injecting 6-OHDA intrastriatally and Saporin intra-LH,
respectively, and subsequently evaluating the orexin system with
immunofluorescence techniques revealed that maximal memory
deficiency was induced by the joint destruction of 88% of
dopaminergic and 29% of orexinergic fibers. The role of orexins
alone in this model needs to be further examined.

3.3. Retrieval

Spatial memory retrieval is the least researched phase in
the recent literature. It has been shown to be affected by a
pre-test session OX1R antagonist SB-334867 injection directly into
CA1 in the Morris water maze paradigm (Akbari et al., 2006).
Each used dose impaired memory retrieval in animal models
which manifested in less time spent in the target quadrant, while
visual and motor functions showed no alterations compared with
the control group. Direct intervention in the trisynaptic loop

TABLE 2 Research on the effect of orexins or their receptors’ antagonists on spatial memory processes.

References Animal models Used paradigms Substances Administration Conclusion

Aou et al., 2003 Wistar rats Morris water maze Orexin-A 2 h before training OX-A impairs memory formation

Akbari et al., 2006 Wistar rats Morris water maze SB-334867 Before training/ after
training/ 15 min before
the test

Antagonist impaired memory
formation at all stages

García-Brito et al.,
2018

Wistar rats Morris water maze SB-334867 After training Antagonist impaired memory
consolidation in the 2-day
protocol, but not in the 6-day
protocol

Ardeshiri et al., 2019 Wistar rats Morris water maze SB-334867
TCS-OX2-29

After training for 3 days /
15 min before the test

Antagonists impaired memory
consolidation but not retrieval

García-Brito et al.,
2020

Wistar rats Morris water maze SB-334867 After training Antagonist impaired memory
consolidation, which was
ameliorated by ICSS immediately
after injections

Han et al., 2020 Wistar rats (SPS- Single
Prolonged Stress)

Morris water maze Orexin-A Each day of training for
6 days

OX-A ameliorated memory
deficits in SPS rats and partially
reversed the compensating
upregulation of receptor
expression
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FIGURE 2

The range of orexinergic fibers in circuitry involved in threats (A) and spatial memory (B). Orexins from LH/PFA modulate the actions of various
structures, including those that are the primary sources of several neurotransmitters: tuberomammillary nucleus (TMN, yellow histaminergic fibers),
locus coeruleus (LC, blue noradrenergic fibers), and dorsal raphae nucleus (DRN, green serotonergic fibers). Black arrows indicate basic neuronal
connections included in memory circuits that do not originate from specified neurotransmitter sources. (A) The most prominent orexinergic control
comes from input to the VTA, BLA, EC, CA1, CA3, and DG. (B) Orexins are involved in spatial memory mostly through input to the PFC, subiculum,
CA3, CA1, BLA, septal nuclei, and VTA.
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diminished the ability to utilize an allocentric strategy in navigating
the environment. However, injecting either SB-334867 or TCS-
OX2-29 directly into the basolateral amygdala did not have any
effect on the retrieval in rats (Ardeshiri et al., 2019). The results
corroborate the notion that the role of the amygdala in the retrieval
phase is time-dependent (Liang et al., 1982) and continually
diminishes to the point that activating this structure via the
orexinergic system does not produce any effect. Furthermore, no
significant difference between the control group and experimental
groups was found in the Morris water maze test using either OX1R
or OX2R blockade in the dorsal raphe nucleus directly before the
test session (Khodabande et al., 2021). Considering the differences
between the effects of orexins on various structures and the time-
dependent manner of these effects, more studies are needed to draw
consistent conclusions. The effects of orexins or their antagonists
were briefly summarized (Table 2).

4. Conclusion

The lateral hypothalamus/perifornical area, a single source
of orexinergic innervation in the brain, exerts its influence
on numerous structures engaged in threat and spatial memory
processes. In the basolateral amygdala it may influence the
modification of sensory inputs from cortical processing areas,
changing the amygdalar output, which further influences the
hippocampus directly and indirectly via the entorhinal cortex (EC)
(Green, 1964). The EC also plays a role in the encoding and
consolidation of inhibitory avoidance memories (Izquierdo and
Medina, 1997; Izquierdo et al., 2006), although the exact effect
of orexins on this structure is still unknown. The hippocampus
is a center for the initial formation of traces that are relayed
further to cortical areas and then strengthened to form stable
engrams, and can be replayed during retrieval. It receives a
dense orexinergic input as well as inputs from other structures
modified by orexins. More precise experiments further utilizing
optogenetic techniques, DREADD, and c-Fos expression may
lay the foundations for a deeper understanding of the subtle
relationships between certain parts of the hippocampal structure.
The role of the noradrenergic locus coeruleus was partly explained.
It directly modulates emotional arousal and memory formation in
the basolateral amygdala and central amygdalar nucleus (Berridge
and Waterhouse, 2003). On the same note, the serotonergic
dorsal raphe nucleus modulates the sensory input to the amygdala
(Stutzmann et al., 1998), and further research on different memory
formation phases could potentially better explain its mechanisms.
Different parts of the brain also known to receive orexinergic
innervation may participate in memory processes in ways we are
yet to unravel. For example, the histaminergic tuberomammillary
nucleus (TMN) is thought to facilitate the consolidation of
avoidance memory and cued fear conditioning in the basolateral
amygdala, CA1, and prefrontal cortex through H1 and H2 receptors
(da Silva et al., 2006; Benetti et al., 2012; Fiorenza et al., 2012;
Benetti and Izquierdo, 2013), but how orexin receptors in TMN
fit into these processes is unknown. Pathological changes in the
orexinergic system are associated with overreactions to certain
stimuli during PTSD and may partly contribute to memory
impairments that occur in patients with Parkinson’s disease,
generalized anxiety disorder, major depressive disorder, dementia,

and chronic stress. Regulating the biochemistry of orexins with
their analogues or antagonists could prevent these symptoms or
mitigate existing diseases.

When navigating a novel environment, various brain structures
participate in processing this environment, creating internal maps
and relationships between landmarks, objects, and oneself and
finally transforming the experience into spatial memories. The
complexity of these processes has been partly elucidated, and the
circuitry behind them can be reverse-engineered. The place cells
of CA1 and CA3 are thought to be at the center of allocentric
processing, creating a cognitive map of the environment and
placing oneself within this map, and repeated exposure to the
same surroundings stabilizes their neural architecture (Coughlan
et al., 2018; Wang et al., 2020). The lateral hypothalamus sends
orexinergic fibers to both these hippocampal regions and directly
regulates their actions mostly through OX1R. It also innervates the
entorhinal cortex, where grid cells create grid-like representations
of distinct locations within larger spaces and form possible routes
between them (Coughlan et al., 2018). In both fear and spatial
memory, orexinergic fibers modify the output of the amygdala
as a part of the reinforcement circuit (Sil’kis, 2013). However,
the amygdala can act in two ways depending on the state of the
brain. In standard conditions, orexins stimulate the influence of the
amygdala on the hippocampus, strengthening memory encoding
and consolidation (Ardeshiri et al., 2017). On the other hand, in
pathological conditions such as PTSD, acute, or chronic stress, the
orexinergic activation of the amygdala may impair spatial memory
formation, as it reinforces the circuitry involved in stressful events
(Morris, 1984; Kim et al., 2001). Orexin A increases the excitation
of prefrontal cortex pyramidal neurons, which participate in
creating egocentric maps directly and indirectly via dopaminergic
fibers originating from the ventral tegmental area. Egocentric
processing, which navigates the environment in a self-centered
framework depending on the individual viewpoint and body
movements, is mainly supported by parietal regions that encode
self-representations and self-motion based on the relative position
of the starting and ending point of the route (Lyamzin and Benucci,
2019). In the retrosplenial cortex during spatial learning, an
experience-dependent memory trace is formed, and the posterior
cingulate cortex acts as a hub for inputs from the hippocampus
and anterior thalamic nuclei. Both of these structures project to
the parahippocampal gyrus, which forms contextual associations
(Aminoff et al., 2007). There is no consensus concerning the
histamine-releasing neurons of TMN. A few studies have shown
that histamine facilitates spatial memory (Chen et al., 2001; Huang
et al., 2003), while others have shown that it mediates the effects of
novelty (Zlomuzica et al., 2008). The known circuitry of threat and
spatial memory is shown in Figure 2. Therefore, research focused
on these distinct structures could potentially contribute to a deeper
understanding of orexinergic mechanisms in memory processes.
Studying those processes in vivo was always dependent on the
present state of research animal models, and the data received
from behavioral tests will, in fact, reflect memory processes in that
state. In conclusion, the behavioral experiments concerning the
orexinergic system should utilize standardized models and methods
with appropriate safeguards regarding the effects of orexins on
different physiological functions, taking into account their role
in perception, attention, locomotion, sleep regulation, and eating
by examining these functions in control group animals. It seems
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that numerous questions still require answering, but the idea of
improved control over the retrieval or extinction of memories,
especially associated with threats, is quite appealing. The most
important deduction from the literature is that more research is
needed using specific animal models for different disorders.
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