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Calorie restriction (CR) is considered an effective intervention for anxiety, aging, 
and obesity. We investigated the effects of short- and long-term CR on behavior 
as well as transcriptome profiles in the hypothalamus, amygdala, prefrontal 
cortex, pituitary, and adrenal glands of Hooded Wistar and Long Evans male rats. 
A reduction in anxiety-like behavior, as assessed via the elevated plus maze, was 
observed in both short- and long-term CR. Despite this, short- and long-term 
CR regulated different sets of genes, leading to distinct transcriptomic signatures. 
The employed models were able to simultaneously analyze categorical and 
numerical variables, evaluating the effect of tissue type along with expression 
data. In all tissues, transcription factors, zinc finger protein 45-like and zinc finger 
BTB domain-containing two, were the top selected genes by the models in short 
and long-term CR treatments, respectively. Text mining identified associations 
between genes of the short-term CR signature and neurodegeneration, stress, 
and obesity and between genes of the long-term signature and the nervous 
system. Literature mining-based drug repurposing showed that alongside 
known CR mimetics such as resveratrol and rapamycin, candidates not typically 
associated with CR mimetics may be  repurposed based on their interaction 
with transcriptomic signatures of CR. This study goes some way to unravelling 
the global effects of CR and opens new avenues for treatment for emotional 
disorders, neurodegeneration, and obesity.
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1 Introduction

Calorie restriction (CR), defined as a reduction in ad libitum intake (by 10–40%) without 
malnutrition, is well-established to delay age-related diseases and concurrently augment 
longevity (Heilbronn and Ravussin, 2003). CR is also well documented to reduce age-related 
cognitive decline (Witte et al., 2009; Leclerc et al., 2020) and to exert improvements in emotional 
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functioning, such as reducing anxiety-like behavior both in the short-
term (Levay et al., 2007; Yamamoto et al., 2009; Kenny et al., 2014) and 
across the lifetime trajectory (Govic et  al., 2022). Given the 
far-reaching implications of this intervention, CR has been the subject 
of a significant amount of research interest. Despite this, however, 
there is still an incomplete understanding of the cellular and molecular 
mechanisms mediating the anti-aging and anti-anxiety capacity of CR, 
and, correspondingly, no pharmacological intervention capable of 
reproducing the comprehensive effects of CR.

Recently, transcriptomic analysis of brain tissues involved in 
anxiety (hypothalamus, amygdala, and pituitary) revealed that long-
term CR alters anxiety-promoting as well as neurodegeneration-
associated genes (Govic et  al., 2022). For example, we  identified 
downregulated C1QA expression, a gene with documented links with 
anxiety-like behavior (Bai et al., 2022; Maras et al., 2022), ostensibly 
through its role in inflammation, and Alzheimer’s disease, through its 
role in synapse elimination and neuronal damage (Hong et al., 2016; 
Dejanovic et al., 2018; Wu et al., 2019). Moreover, attribute weighting 
algorithms identified C1QA, among others, as a tissue-independent 
signature of long-term CR. Crosstalk was also established between 
genes of the identified transcriptomic signature and anxiety, aging, 
and neurodegeneration through literature mining, underscoring 
C1QA as a potential biomarker of CR. This study exemplified the 
capacity of bioinformatic tools to analyze and interpret large-scale 
datasets and integrate such datasets with existing biological literature, 
thereby facilitating the identification of therapeutic targets for 
emotional disorders and neurodegeneration.

We are, however, at the beginning of understanding the impact of 
CR on cell systems biology. Many questions remain at the 
transcriptome level, for example: (1) Do responding genes and 
pathways to short-and long-term CR differ? (2) Which regulatory 
genes and non-coding RNAs are involved in the CR response? (3) Is 
it possible to achieve a universal tissue-independent transcriptomic 
signature of short-and long-term CR? (4) Are there drug candidates 
capable of mimicking the transcriptomic signature of CR?

Here, we  utilized attribute weighting models to establish the 
transcriptomic signature of short- and long-term CR on a range of 
tissues involved in anxiety (hypothalamus, amygdala, pituitary, 
prefrontal cortex, and adrenal glands). The hypothalamus, pituitary, 
and adrenal glands are involved in the hypothalamic–pituitary–
adrenal (HPA) axis, which is implicated in the neurogenesis of anxiety 
disorders (Tafet and Nemeroff, 2020). Moreover, the amygdala and the 
prefrontal cortex are key loci in the control of anxiety responses (Tye 
et al., 2011; Kenwood et al., 2022). Particular attention was paid to the 
response of transcription factors (TFs), receptors, transporters, 
chromatin-associated proteins, ligands, secretory proteins, and kinases 
to CR treatment, given their regulatory roles in gene expression and, 
in the case of transporters and ligands as they are key proteins for drug 
targets. We  then adopted literature mining techniques, MedScan 
(Novichkova et al., 2003) implemented in the Pathway Studio webtool 
(Elsevier) (Nikitin et  al., 2003), to establish crosstalk between 
responding genes in the transcriptomic signature of short- and long-
term CR and anxiety. Since CR is widely recognized for its effects on 
aging and neurodegeneration (Flanagan et al., 2020; Fontana et al., 
2021), these were also included as key terms in the literature mining 
analysis. Lastly, we  further utilized literature mining to establish 
interactions between genes in the CR transcriptomic signatures and 
drug-repurposing candidates capable of mimicking the beneficial 
transcriptomic effects of CR.

2 Materials and methods

2.1 Animals

Adult male-specific pathogen-free Hooded Wistar (12- to 13- 
weeks old) and Long Evans (7–8 weeks old) rats were procured from 
Animal Resources Centre (Western Australia, Australia). Hooded 
Wistar rats were group housed (3–4 rats/cage) in large, open-top 
polypropylene basin cages (56.5 × 38.5 × 19.5 cm, l × w × h) while Long 
Evans rats were pair-housed in standard open-top plastic cages 
(38 × 27 × 15 cm, l × w × h). All rats were provided with standard rat 
chow (Barastoc, Ridley Corporation, VIC, Australia) and tap water ad 
libitum, wood shavings and shredded paper as bedding, and 
maintained under controlled temperature (23 ± 1°C) and lighting 
(reversed 12:12 h light: dark cycle; lights off at 1000 or 1,100 h) 
conditions. All procedures were conducted in accordance with the 
National Health and Medical Research Council of Australia Code of 
Practice for the Care of Experimental Animals and received by the 
RMIT University Animal Ethics Committee (approval number 1402) 
and La Trobe University Ethics Committee (approval number 18–15).

2.2 Short- and long-term calorie restriction 
treatments

Following a 2- to 3-week acclimation period, rats of each strain 
were randomly allocated into two treatment groups (short-term used 
Long Evans n = 14/group; long-term used Hooded Wistar n = 7–8/
group): control and calorie restriction (CR). Controls were allowed ad 
libitum access to food throughout experimentation. The CR groups 
received 75% (25% restriction) of the amount of food consumed by 
the age- and strain-matched control rats, delivered daily within the 
hour before lights out (1000–1,100 h). Food intake of the CR group 
was initially determined by calculating the food intake of all rats 
across the last 48-h period of acclimation, and thereafter over 48-h 
every month. Food consumption of the control groups of both strains 
was consistent throughout experimentation with daily consumption 
ranging from 20 to 25 g per rat, equating to a mean daily food intake 
ranging from 15 to 19 g per rat for the CR groups. Long Evans rats 
underwent short-term CR, with CR extending for a total of 2.5 months, 
while the Hooded Wistar rats underwent long-term CR, with CR 
extending for 15 months. CR was initiated at approximately 3 months 
of age for both short-term and long-term CR rats. See 
Supplementary material S1 for body weight data across the duration 
of the experiments.

2.3 Behavioral testing

In the long-term CR experiment, behavioral testing in the elevated 
plus maze (EPM) and open field (OF) test occurred at 6, 12, and 
18 months of age, corresponding to 4, 8, and 14 months of CR. These 
data were recently reported (Govic et al., 2022) and were used for 
comparison with the performed short-term CR in this study. Animals 
from the long-term CR study also underwent testing for acoustic 
startle reflex at 12 months of age. In the short-term CR experiment, 
behavioral testing in the EPM occurred 4 weeks following the 
initiation of CR. All animals were tested during the active dark portion 
of the light: dark cycle, approximately 1 h after lights-off and 2 h after 
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the provision of food. To reduce the impact of circadian patterns on 
behavior, testing did not extend beyond the first half of the dark cycle 
and was preceded with a 30-min acclimation period to the testing 
conditions. Mazes/boxes were cleaned with 70% ethanol between 
tests. A closed-circuit camera mounted above the EPM allowed 
behavior to be recorded and tracked with Ethovision XT (Noldus, 
SDR Clinical Tech, Middle Cove, NSW, Australia) ethological tracking 
software which was operated in an adjacent room. While the 
individuals conducting the testing were not blind to group allocation, 
data collection and analysis via Ethovision were performed in a blind 
manner. Distance travelled (cm) was additionally calculated as an 
index of general locomotor behavior.

2.3.1 Elevated plus maze
The EPM test was performed as described previously (Govic et al., 

2022). Each rat was placed in the intersection (center) of the 50 cm 
elevated EPM apparatus facing an open arm (50 × 12 cm; l × w; 50 cm 
wall height for closed arms) and allowed 5 min of exploration. The 
distance rats travelled in the maze as well as the duration and 
frequency of entries into the open and closed arms was calculated by 
Ethovision XT, offline. Entry into each zone was operationally defined 
as having two paws in the zone. The ratio of open to total arm entries 
was calculated and presented here as an index of anxiety-like behavior.

2.3.2 Statistical analysis of behavioral data
Four rats were excluded from the behavioral analysis (four control 

and one CR) for methodological reasons (rats either fell off the maze 
or demonstrated hypoactivity). Statistical analysis of behavior in the 
elevated plus maze for the remaining animals was conducted 
according to previously published workflows using the sequential 
effect existence and significance testing framework (Govic et  al., 
2022). As per this workflow, analysis of behavior was conducted using 
Bayesian generalized linear regression models using uninformative or 
weakly informative priors. Model diagnostics, including predictive 
checks and leave-one-out cross-validation, indicated model 
convergence and that diagnostic criteria were met. We include four 
requisite statistics to indicate the existence of an effect: Median 
estimate and 95% highest density interval (HDI) of the effect: EM (HDI 
lower bound, HDI upper bound), the probability of direction of the 
effect (Dp), and proportion of the effect inside a region of practical 
equivalence (ROPEp).

Behavioral data are presented via box plots. Boxplots are a 
standardized graphical depiction of the distribution of a variable of 
interest. The interquartile range (IQR), representing the spread of 
25–75% percentiles of the data, is displayed using the box. The 
whiskers extend 1.5 times the distance of the IQR below and above the 
box. Any data points outside these whiskers are deemed outliers and 
are plotted individually.

2.4 RNA preparation and sequencing

Following 2.5 months of CR (6 months of age) for the short-term 
CR group and 15 months of CR (at 18 months of age) for the long-
term CR group, rats were humanely euthanized via an overdose of 
pentobarbital sodium (short-term study) or carbon dioxide 
asphyxiation (long-term study) and rapidly decapitated with the aid 
of a guillotine 2–4 h after lights-out. The hypothalamus, amygdala, 

pituitary, and prefrontal cortex (short-term CR only) were rapidly 
dissected out with the aid of a rat brain atlas and 1 mm coronal brain 
block (Braintree Scientific, Braintree, MA). Adrenal glands of the rats 
undergoing long-term CR were collected instead of the prefrontal 
cortex. Adrenal glands were collected from the short-term CR animals 
but due to methodological reasons were unable to be  processed. 
Tissues were immediately flash frozen or stored in the Allprotect® 
Tissue Reagent (Qiagen, Hilden, Germany) and subsequently placed 
into a − 80°C freezer.

Total RNA was extracted from the rat brain tissue and adrenals 
(n = 5/region/group/strain) using the E.Z.N.A.® DNA/RNA Isolation 
Kit (Omega Bio-tek Inc., Georgia, USA) according to the 
manufacturer’s protocol. The nanodrop  2000c spectrophotometer 
(Thermo Scientific Inc., Waltham, MA, USA) was used to determine 
total RNA concentration, while integrity was assessed using the 
Agilent 2,200 TapeStation instrument (Agilent Technologies, Santa 
Clara, CA, USA). The TruSeq Stranded mRNA Library Prep Kit 
(Illumina, Inc., San Diego, CA, USA) was used to generate RNA 
sequencing libraries. The libraries were quantified and qualified using 
the High Sensitivity D1000 Screen Tape on an Agilent 2,200 
TapeStation instrument. The libraries were normalized, pooled, and 
subjected to cluster and paired-end sequencing was performed for 
150 cycles on a HiSeqX10 instrument (Illumina, Inc. San Diego, CA, 
USA) according to the manufacturer’s instructions.

2.5 Transcriptomic data analysis

The analysis of the generated sequencing reads was performed 
using CLC Genomics Workbench package 22 (QIAGEN) (Liu and 
Di, 2020) and Galaxy Australia1 (Jalili et al., 2020), including quality 
control of sequencing reads, trimming, mapping, and finding the 
differentially expressed genes. Rat reference genome and its 
annotation (Rattus norvegicus.mRatBN7.2) were downloaded from 
the Ensembl genome browser2 and used for mapping and expression 
analysis. Mapping was performed based on the following parameters: 
mismatch cost = 2, insertion cost = 3, deletion cost = 3, minimum 
length fraction = 0.8, and minimum similarity fraction = 0.8. The 
generalized linear model (GLM) based on negative binomial 
distribution (Robinson et al., 2010) was employed for differential 
expression analysis. The p-values were also corrected with false 
discovery rate (FDR) for multiple testing. The use of the GLM allows 
for curves to be fit to expression values without assuming that the 
error on the values is normally distributed. Fold changes were 
calculated from the GLM, which corrects for differences in library 
size between the samples and the effects of confounding factors. The 
Wald test was applied to calculate the p-values and FDR p-values for 
comparison of all group pairs. p-values and FDR p-values (corrected) 
were used for the selection of genes with significant differential 
expression in comparison of short-term CR against the control group 
and long-term CR against the control group in each of the studied 
brain regions.

1 https://usegalaxy.org.au/

2 https://www.ensembl.org/index.html
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2.6 Feature selection (attribute weighting) 
algorithms to find the responding genes to 
short- and long-term CR

The ensemble learning approach, based on voting of attribute 
weighting models, was employed in this study for biomarker discovery. 
The seven attribute weighting (feature selection) algorithms, including 
weighting by Info Gain, Info Gain Ratio, Rule, chi squared, Gini Index, 
Uncertainty, and Relief were applied, as previously described (Govic 
et al., 2022). Then, the genes and the studied tissue were ranked based 
on the overall received weights from attribute weighting models. The 
ones with higher cumulative weights were selected as key responsive 
genes. Attribute weighting models were successful in the discovery of 
tissue-independent transcriptomic signatures of CR.

PCA analysis based on the correlation matrix using 
transcriptomic signatures of each of the short-term and long-term 
CR treatments in each of the studied tissues was performed. The 
PCA analysis and PCA plot were generated by the Minitab21 
statistical package.3 The signature was defined based on the top 20 
responding genes to each condition derived overall weights of 
attribute weighting models.

2.7 Class-based transcriptomic analysis and 
literature mining

The top  20 genes selected by attribute weighting models as 
responding genes to short- and long-term CR were further classified 
based on protein classes, including protein kinase, protein 
phosphatase, receptor, RNA transcript, secretory protein, 
chromatin-associated protein, transcription factor, and transporter 
using gene ontology (GO) information, comparative GO, and the 
Pathway Studio tool (Ashburner et al., 2000; Fruzangohar et al., 
2013; Consortium GO, 2019). All regulatory genes, secretory 
proteins, and extracellular biomarker genes that were identified in 
the top 20 were reported. We then employed literature mining by 
MedScan (Novichkova et al., 2003), a natural language processing 
(NLP) implemented in the Pathway Studio webtool (Elsevier) 
(Nikitin et  al., 2003), to shed light on the relations between 
responding genes in the transcriptomic signature of short- and 
long-term CR and anxiety, depression, aging, and HPA axis from 
full texts of published articles, as previously described (Alanazi 
et al., 2018; Mohammadi-Dehcheshmeh et al., 2021; Govic et al., 
2022). The confidence index was prefiltered by the software to note 
biological facts supported by >1 independent sentence(s) within the 
literature, with >3 being a high confidence, 2, medium confidence 
and 1, low confidence. Furthermore, the sentences detected by the 
software were manually checked to ensure the accuracy of the 
relation. In the field of literature/text mining, the robustness and 
confidence of a particular interaction is often assessed by examining 
the number of references, that correspond to the number of 
sentences in published resources, supporting that interaction. This 
approach has been applied by Farhadian et al. (2018) and Govic 
et al. (2022).

3 www.minitab.com

2.8 Drug repurposing and drug evaluation 
against the signature by text mining

Literature mining was applied to find the possible link between 
the available drugs and the responding genes to short- and long-term 
CR in this study. This signature was utilized to identify the optimal 
drug combination (drug repurposing) that mimics the effect of CR on 
the transcriptome.

3 Results

3.1 Short-term CR decreased anxiety-like 
behavior during exposure to the EPM

As shown in Figure 1, short-term CR increased the proportional 
frequency of entries into the open arms relative to the closed arms 
[EM  = 28.82, (−5.62, 60.44), Dp  = 95%, ROPEp  < 0.01] despite no 
difference in total distance travelled [EM = 12.13, (−223.5, 240.56), 
Dp = 54%, ROPEp > 0.99], indicating reduced anxiety-like behavior by 
short-term CR. Null hypothesis testing obtained the same result 
(Supplementary material S2). Anxiety-like behavior results for 
animals involved in the long-term experiment were recently published 
by Govic et al. (2022).

3.2 Comparing the transcriptome response 
between short- and long-term CR based 
on attribute weighting models

Supplementary material S3 provides the results of running seven 
attribute weighting models in ranking of the genes in response to short 
and long-term CR. Transcriptomic data for long-term CR animals has 
been previously published (Govic et  al., 2022) but were here 
categorized by protein class (transcription factor, transporter, etc.) and 
compared to short-term CR data.

The overall (sum of the weights) ranks the genes in discriminating 
either short-term CR or long-term-CR from controls. The employed 
weighting models have the capability to analyze the effect of categorical 
variables of the tissue along with the numerical data of gene 
expression. The tissue received low overall weights in both short-term 
and long-term experiments demonstrating the possibility of the 
development of a tissue-independent signature.

As it can be  inferred from PCA analysis in 
Supplementary material S4, the developed short-term and long-
term signatures, constructed from the top 20 responsive genes, were 
successful in distinguishing samples under short-term and long-
term CR treatments from control samples. For example, in the 
prefrontal cortex, the short-term CR signature segregates CR 
samples from controls efficiently, accounting for 64.2% of data 
variation, respectively. In contrast, for long-term CR, PCA1 
distinctly separated treated samples in both the amygdala and 
pituitary glands accounting for more than 68% of variation in the 
data. There is no similarity between the top 20 high-ranked genes 
between short and long-term CR (Supplementary material S3). It 
can therefore be concluded that there were ongoing transcriptomic 
changes with long-term CR beyond the short-term effects. The 
genes encoding key protein classes (transcription factors, ligands, 
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receptors, kinases, secretory proteins, chromatin-associated 
proteins, and transporters) in studied tissues can be seen in Table 1 
and Figure 2. Note that Figures 2F,G,J show reproductions from 
Govic et al. (2022) for purposes of comparison.

Transcription factors ZNF45, CRY2, EID1, and CARHSP1, and 
the receptor HLA-A were key regulatory proteins identified in 
short-term CR tissues (hypothalamus, amygdala, pituitary, and 
prefrontal cortex). As can be  inferred from Figure  2, the 
transcriptome response to long-term CR is more uniform than the 
response to short-term CR. All four regulatory proteins, ZBTB2 
(transcription factor), MCOLN1 (transporter), MAP4K2 (kinase), 
and SAP18 (component of the histone deacetylase complex) were 
upregulated in response to long-term CR in the studied tissues 
(hypothalamus, amygdala, pituitary, and adrenal glands) as 
compared to the short-term genes, which were either up or 
downregulated depending on the tissue type. For long-term CR, in 
addition to these regulatory genes, C1QA, a secretory protein, was 
identified as being downregulated in all tissues except for the 
hypothalamus (which demonstrated a trend in this direction), as 
previously described (Govic et al., 2022).

3.3 Interaction of short CR-responding 
regulatory genes with neurodegeneration, 
anxiety, aging, and fertility

Based on literature mining, possible interactions of top responding 
transcription factors and receptors to short-term CR with 
neurodegeneration, anxiety, aging, and fertility are visualized in 
Figure  3. The underpinning mined sentences from literature and 
relationships are provided in Supplementary material S5. As 
mentioned above, the number of mined sentences in references that 

support a particular relationship is an index of confidence level where 
3, 2, and 1 stand for high, medium, and low confidence, respectively.

HLA-A receptor, one of three genes encoding major 
histocompatibility complex class 1 (MHC1) and located on the cell 
membrane, is the hub gene in the regulatory network with many 
documented interactions with neurodegeneration, fertility, stress, and 
nervous system. While no interactions were observed with anxiety, 
HLA-A was found to have a positive regulatory role with aging, 
yielding a high confidence score (five mined sentences).

CRY2, a clock gene involved in circadian rhythms, is an interesting 
hub in the network that upregulates in response to depression, an 
affective disorder with high comorbidity with anxiety (Olfson et al., 
2017). Interestingly, a negative regulatory role was demonstrated 
between CRY2 and obesity as well as an association between mutations 
in CRY2 and risk of developing obesity.

EID1, which represses transcription and regulates cell cycle and 
differentiation, plays a negative regulatory role in obesity and a positive 
regulatory role in neurodegeneration. Interestingly, there is no report 
on the top responding gene to short-term CR, ZNF45 transcription 
factor, that opens a new avenue for further investigation and 
understanding of the regulatory mechanism of short-term CR at the 
transcriptomic level. Similarly, there were no interactions observed for 
CARHSP1 in the network.

3.4 Interaction of long-term 
CR-responding regulatory and biomarker 
genes with neurodegeneration, anxiety, 
aging, and fertility

Figure 4 and Supplementary material S6 present the interaction 
of key classes of long-term responding genes as well as C1QA with 

FIGURE 1

Impact of short-term calorie restriction (CR) (n  =  13) relative to controls (n  =  11) on anxiety-like behavior, based on performance on the elevated plus 
maze. Boxplots depicting (A) the distance travelled (cm) and (B) the ratio of open relative to closed arm entries (%) during testing. *Indicates practical 
equivalence is rejected.
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TABLE 1 Genes encoding the key protein classes, transcription factors, ligands, receptors, kinases, secretory proteins, chromatin-associated proteins, and transporters, that received high weights in response to 
short- and long-term calorie restriction (CR) in tissues involved in anxiety.

CR 
type Ensemble gene ID Name Class of

protein

Weighting (feature selection) algorithm
Overall 
weight RankInfo Gain 

Ratio Rule Chi 
squared

Gini 
Index Uncertainty Relief Info Gain

Short ENSRNOG00000055608 ZNF45 TF 1.0 1.0 0.9 1.0 0.8 0.4 1.0 6.1 1

Short ENSRNOG00000007478 CRY2 TF 0.8 0.8 0.9 0.5 0.9 0.0 0.5 4.4 3

Short ENSRNOG00000002610 CARHSP1 TF 0.8 1.0 0.5 0.7 0.6 0.1 0.7 4.3 4

Short ENSRNOG00000008452 EID1 TF 0.5 1.0 0.7 0.5 0.8 0.2 0.4 4.1 13

Short ENSRNOG00000030712 HLA-A Immune 

receptor

0.5 1.0 1.0 0.2 1.0 0.2 0.1 4.0 15

Long ENSRNOG00000019544 ZBTB2 TF 1.0 0.8 0.9 1.0 0.9 0.6 1.0 6.1 1

Long ENSRNOG00000000975 MCOLN1 Transporter 0.6 0.6 1.0 0.6 0.9 0.8 0.6 5.1 6

Long ENSRNOG00000021061 MAP4K2 Kinase 0.6 1.0 0.8 0.6 0.7 0.8 0.6 5.0 7

Long ENSRNOG00000010732 SAP18 Part of the 

histone 

deacetylase 

complex

0.7 1.0 0.7 0.5 0.7 0.5 0.6 4.7 17

Long ENSRNOG00000012807 C1QA Secretory 0.6 0.9 0.8 0.6 0.7 0.5 0.5 4.6 20

The genes were ranked according to the weights that they received in discrimination of short- or long-term CR from controls. TF, transcription factor. Overall weight demonstrates the overall (sum) weight that a gene has received in discriminating CR samples from 
controls based on seven employed attribute weighting models. Rank demonstrates the rank of gene in response to CR according to the overall weight that was received in attribute weighting model.
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anxiety, aging, and neurodegeneration. C1QA was identified as a hub 
in the regulatory network linking this gene with anxiety, depression, 
stress, aging, and neurodegeneration, as previously described (Govic 
et al., 2022). Our understanding of regulatory mechanisms of long-
term CR is still in its infancy. MCOLN1 receptor, located on Golgi, is 
the only regulatory long-term responding gene linked to 
neurodevelopmental disorder and the nervous system.

3.5 Drug repurposing

The results of drug repurposing in short and long-term CR are 
presented in Figures  5, 6 and Supplementary materials S7, S8, 
respectively.

For the short-term CR drug repurposing analysis, four of the 
regulatory genes from the attribute weighting analysis—EID1, HLA-A, 

FIGURE 2

Genes belonging to the above mentioned protein classes were among the top 20 genes that received the highest overall weights from seven attribute 
weighting models employed for both short- (A-E) and long-term CR (F-J). Part of the short term figures have been reproduced
from Govic et al. (2022).
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CARHSP1, and CRY2—were identified as having interactions with 
known drugs (Figure 5 and Supplementary material S7). Only one 
drug was found to interact with EID1 and CARHSP1, tamoxifen and 

tacrolimus, respectively, both demonstrating negative regulation. This 
was in contrast to HLA-A and CRY2, with multiple drugs showing 
interactions with these identified short-term CR genes. Some drugs, 

FIGURE 3

Text mining-derived network of top responding transcription factors and receptor, as identified by the attribute weighting analysis, to short-term CR 
with behavior (e.g., anxiety and depression), aging (e.g., neurodegeneration), regions/systems (e.g., HPA system), fertility, and stress. Detailed 
relationships, cellular locations, references, and mined sentences are provided in Supplementary material S5. ⨁ Denotes positive relation; ⊣ denotes 
inhibitory relation.

FIGURE 4

Text mining-derived network of top responding secretory protein, kinase, transporter, part of the histone deacetylase complex, and transcription factor, 
to long-term CR with behavior (e.g., anxiety and depression), aging, regions/systems (e.g., HPA system), and fertility. Detailed relationships, cellular 
locations, references, and mined sentences are provided in Supplementary material S6. ⨁ Denotes positive relation; ⊣ denotes inhibitory relation.
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such as rapamycin, valproic acid, doxycycline, and dexamethasone, 
demonstrated various interactions (expression, positive/negative 
expression, and positive molecular transport) with HLA-A and CRY2. 
For example, valproic acid was negatively associated with the 
expression of CRY2 (6 mined sentences, a high confidence score), 
where the same drug was positively associated with the expression of 
HLA-A (1 mined sentence, a low confidence score).

Regarding the long-term drug repurposing analysis, four of the 
top-responding genes from the attribute weighting analysis 
(PABPN1, MAP4K2, PLCG, and COQ2) as well as two regulatory 
genes identified in the class-based analysis (MCOLN1 and C1QA) 
were found to have interactions with known drugs (Figure 6 and 
Supplementary material S8). Multiple and various interactions, 
such as positive/negative regulation and positive/negative 
expression, were demonstrated between known drugs and PLCG1 
and C1QA, while fewer interactions were demonstrated with 
PABPN1, MAP4K2, COQ2, and MCOLN1. Drugs such as 
doxycycline, resveratrol, tetracycline, dexamethasone, quercetin, 
and forskolin were found to interact with two to three of the 

long-term CR signature genes. For example, dexamethasone was 
positively related to the expression of C1QA (4 mined sentences 
and a high confidence score) and a negative regulatory relationship 
was identified between this drug and PLCG1 (10 mined sentences 
and a high confidence score).

Interestingly, doxycycline and dexamethasone have interactions 
with genes in both short- and long-term CR (Figures  5, 6 and 
Supplementary materials S7, S8).

4 Discussion

Here, we exemplify the capacity of bioinformatic tools to integrate 
transcriptome-wide gene expression with comprehensive feature 
selection and literature mining to facilitate biomarker and drug 
repurposing candidate discovery. Attribute-weighing algorithms were 
employed to select a subset of regulatory genes as a tissue-independent 
transcriptomic signature of both short- and long-term CR. We then 
utilized literature mining to link these responsive genes in the 

FIGURE 5

Drug repurposing: drugs that can interact with short-term CR transcriptomic signature. Detailed relationships, references, and mined sentences are 
provided in Supplementary material S7. ⨁ Denotes positive relation; ⊣ denotes inhibitory relation.

FIGURE 6

Drug repurposing: drugs that can interact with long-term CR transcriptomic signature. Detailed relationships, references, and mined sentences are 
provided in Supplementary material S8. ⨁ Denotes positive relation; ⊣ denotes inhibitory relation.
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short- and long-term transcriptomic signatures of CR with depression/
anxiety, obesity, stress, aging, neurodegeneration, and the nervous 
system. Moreover, through literature mining, we  identified drug 
repurposing candidates that may be  capable of mimicking the 
CR signatures.

The behavioral results from the present study demonstrate that a 
short-term adult-onset CR of 25% results in an anxiolytic behavioral 
profile in male rats as evidenced by greater entries into the open arms 
of the EPM relative to the closed arms. This finding is congruous with 
the bulk of the research in this area demonstrating that short-term CR 
has an anxiolytic-like effect (Levay et al., 2007; Yamamoto et al., 2009; 
Kenny et al., 2014). We recently reported a comparable anxiolytic-like 
profile across the lifetime trajectory in the long-term CR animals from 
the current study (Govic et al., 2022).

To establish a tissue-independent transcriptomic signature of 
short- and long-term CR, we  utilized seven attribute weighting 
algorithms, capable of mining numerical data of gene expression as 
well as categorical data of tissue type. Recently, the application of these 
algorithms has resulted in the development of a universal 
transcriptomic signature of long-term CR, independent from the 
categorical variable of tissue (with the levels of the hypothalamus, 
amygdala, pituitary, and adrenal glands) (Govic et al., 2022). Notably, 
in the current study, there was no overlap in the signatures identified 
for short- and long-term CR, potentially suggesting a differential 
transcriptomic outcome of cumulative CR relative to short-term 
CR. The lack of overlap may also reflect age-related changes in the 
transcriptome milieu, a commonly reported phenomenon (de 
Magalhaes et al., 2009; Palmer et al., 2021). It is essential to consider 
that the same behavioral phenotypic outcome, in this case, reduced 
anxiety-like behavior, can emerge from different molecular pathways. 
The distinct transcriptomic profiles we observed between short- and 
long-term CR suggest that the molecular mechanisms underlying 
their effects on behavior may differ. This, however, does not diminish 
the relevance of each signature but highlights the multifaceted nature 
of the biological response to CR. The outcomes of the feature selection 
(attribute weighting) models, partially illustrated in Figure 2, affirm 
the success of this study in identifying key responsive genes specific to 
both short-term and long-term CR treatments, irrespective of the 
tissue studied. While the PCA signatures effectively differentiate 
treated samples from the control ones, evidenced by significant 
percentages of the data’s variation accounted for by PCA1 in both 
short- and long-term CR. For instance, in the prefrontal cortex, the 
short-term CR signature segregates treated samples from controls 
efficiently. In contrast, for long-term CR, PCA1 distinctly separated 
treated samples in both the amygdala and pituitary glands. This 
differentiation has implications for how CR changes brain 
transcriptomic activity across time. It should also be noted that the 
long-term and short-term CR differed in more than the duration of 
CR, with strain, age at CR-onset, mode of euthanasia, and cage 
configuration differing between the studies. While the euthanasia 
method is unlikely to impact gene expression (Nakatsu et al., 2017), it 
is possible that the strain of rat, age at CR onset, and differing cage 
dimensions and number of animals per cage could have impacted 
the results.

Top responding genes within the signatures for short- and long-
term CR were further classified based on protein classes (kinase, 
phosphatase, receptor, RNA transcript, transcription factor, secretory 

protein, chromatin-associated protein, and transporter) given the 
regulatory role of these in gene expression. We  also identified 
secretory (extracellular) protein, C1QA, as a biomarker gene (Govic 
et al., 2022). Within the top 20 genes identified by attribute weighting 
algorithms, we  identified five genes encoding regulatory proteins 
within both the short-term [CARHSP1 (TF), CRY2 (TF), EID1 (TF), 
HLA-A (immune receptor), and ZNF45 (TF)] and four in the long-
term [MAP4K2 (kinase), MCOLN1 (transporter), SAP18 (a 
component of the histone deacetylase complex), and ZBTB2 (TF)] CR 
tissue. Zinc fingers, ZNF45 and ZBTB2, received the highest weights 
in both short and long-term CR transcriptomic signatures, a notable 
finding given that zinc fingers not only play a role in transcriptional 
regulation but are also involved in signal transduction, DNA repair 
cell migration, and multiple other cellular processes (Cassandri 
et al., 2017).

For the short-term CR genes, literature mining-based network 
analysis identified HLA-A, found to be  both downregulated and 
upregulated (depending on brain region) by CR, as a hub in the 
constructed network, linking this short-term CR responsive gene to 
aging and neurodegeneration, among others. HLA-A is one of three 
genes encoding major histocompatibility complex class 1 (MHC1), 
that is involved in the adaptive immune response as well as in brain 
development and plasticity (Elmer and McAllister, 2012). While no 
documented links were found between HLA-A and anxiety, links with 
aging revealed a robust positive relationship between HLA-A and 
aging (five mined sentences), where increased MHC1 expression in 
motoneurons is associated with aging (Edstrom et  al., 2004) and 
increased MHC1 expression with the denervation of aging muscle 
(Tetruashvily et al., 2016). Literature mining also highlighted a relation 
between a genetic change in an HLA-A allele and Alzheimer’s disease 
(Wang et al., 2017).

CRY2, a clock gene involved in orchestrating circadian rhythms 
(Sjoholm et al., 2010), was found to be downregulated in all tissues, 
but the prefrontal cortex was also identified as a hub in the short-
term CR regulatory network, relating this gene to obesity and the 
nervous system, with four mined sentences identified linking this 
gene with depression—a high confidence result. While literature 
mining-based network analysis did not identify any links with 
anxiety specifically, connections with depression were identified in 
Charrier et al. (2017), which reviews the involvement of clock genes 
in psychiatric disorders and includes a discussion of anxiety 
disorders. Specifically, CRY1 and CRY2 knockout mice have been 
demonstrated to display increased anxiety-related behavior (De 
Bundel et  al., 2013). Relations between CRY2 and depression 
suggest a positive association between the severity of depression 
and increased methylation of CRY2 in women affected by 
overweight/obesity (Iodice et al., 2021). Additionally, a link between 
a CRY2 locus and vulnerability to depression has also been 
demonstrated (Lavebratt et al., 2010). The results of these studies 
suggest that CRY1 and CRY2 may be important factors in mental 
health, particularly in anxiety-related behavior and depression 
vulnerability, but more research is needed to determine the 
potential diagnostic and therapeutic implications of these findings.

Regarding the literature mining-based network analysis for the 
long-term CR regulatory transcriptomic signature genes, C1QA was 
identified as a hub in the network with documented links to anxiety, 
depression, stress, aging, and neurodegeneration, as previously 
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described (Govic et  al., 2022). MCOLN1 was found to have 
documented links to the nervous system and neurodevelopmental 
disorders, principally through the role of mutations to this gene in 
humans to a lysosomal storage disease, mucolipidosis type IV, a severe 
childhood neurodegenerative disease (Boudewyn and Walkley, 2019). 
No other relations were identified between long-term responding 
regulatory genes and search terms in the network analysis, 
underscoring the need for further research. Collectively, literature 
mining analysis suggests that long-term CR biomarker, C1QA, and 
regulatory gene MCOLN1 may play important roles in several health 
conditions, including anxiety, depression, stress, and 
neurodegenerative diseases as well as aging itself. However, further 
research is needed to fully understand the clinical significance of these 
genes and their potential for therapeutic interventions. The 
identification of hub genes and their associated pathways may help to 
shed light on the mechanisms underlying the benefits of long-term CR 
and could be  useful for the development of novel treatments for 
related disorders.

The distinct transcriptomic signatures observed between short-
term CR and long-term CR carry significant implications for drug 
repurposing and drug discovery. The divergent transcriptomic profiles 
of short- and long-term CR necessitate the identification of unique 
drug candidates to emulate the beneficial effects associated with CR 
under both contexts. Considering this, we  evaluated possible 
interactions between current drugs and the discovered transcriptomic 
signature of short- and long-term CR using literature mining, with the 
aim of identifying the best combination of drugs (drug repurposing) 
for the development of a CR mimetic. For the short-term signatures, 
multiple interactions were noted between HLA-A and CRY2 and 
known drugs, such as rapamycin, valproic acid, doxycycline, and 
dexamethasone. Correspondingly, PLCG1, MCOLN1, and C1QA, 
long-term signature genes, demonstrated multiple interactions, 
including doxycycline, resveratrol, tetracycline, dexamethasone, 
quercetin, and forskolin. Regarding interactions with drugs recognized 
to mimic CR, rapamycin, a mTOR inhibitor and well-established anti-
aging drug [see Selvarani et al., (2021) for a review] were flagged for 
the short-term signature genes HLA-A and CRY2. Similarly, the 
established CR mimetics resveratrol and quercetin (Hofer et al., 2021), 
both polyphenols found in fruits and vegetables, were flagged as 
interacting with long-term signatures PLCG1 and PABPN1 and 
PLCG1 and MCOLN1, respectively. Notably, doxycycline, a second-
generation antibiotic, and dexamethasone, a synthetic corticosteroid, 
have interactions with signature genes in both short- and long-term 
CR. Neither of these drugs has established CR mimetics; however, it 
is possible that, in combination with other drugs that interact with 
these genes, they may have some mimetic effects of CR. Further 
research would be needed to confirm this.

Regarding potential mimetics for affective disorders such as 
anxiety and depression specifically, literature mining analysis 
identified links with short-term CR signature gene CRY2 and valproic 
acid, a histone deacetylase inhibitor utilized for manic episodes of 
bipolar disorder. Specifically, identified literature demonstrates that 
mood stabilizer valproic acid reduces CRY2 expression in the 
amygdala (Ogden et al., 2004), suggesting the involvement of such 
clock genes in mood disorders (Liberman et  al., 2018) and the 
potential to manipulate this pathway with CR mimetics. Overall, drug 
repurposing analyses identified several interactions between 

short- and long-term signature genes with well-established CR 
mimetics as well as highlighting some novel avenues for 
further exploration.

5 Conclusion

This is an innovative study that utilized bioinformatic techniques 
to unravel unanswered questions about the transcriptomic signature 
of short- and long-term CR. A class-based analysis of top responding 
genes in both the short- and long-term CR signatures identified five 
regulatory genes and four regulatory genes and an extracellular 
biomarker, respectively. Crosstalk between genes of these 
transcriptomic signatures with anxiety, depression, aging, and 
neurodegeneration was established by literature mining. Literature 
mining additionally established crosstalk between genes of the 
identified transcriptomic signature genes and drug repurposing 
candidates, identifying connections with established CR mimetics but 
also novel potential mimetics, such as doxycycline and dexamethasone. 
Collectively, we have successfully interrogated transcriptome-wide 
gene expression patterns in response to short- and long-term CR 
exploiting bioinformatic techniques so to contribute to the 
identification of therapeutic targets for emotional disorders, obesity, 
and neurodegeneration.
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