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The gut-brain axis (GBA) is a network responsible for the bidirectional 
communication between the central nervous system and the gastrointestinal 
tract. This multifaceted system is comprised of a complex microbiota, which 
may be altered by both intrinsic and extrinsic factors. During critical periods of 
development, these intrinsic and extrinsic factors can cause long-lasting sex-
dependent changes in the GBA, which can affect brain structure and function. 
However, there is limited understanding of how the GBA is altered by stress 
and how it may be linked to the onset of mental illness during puberty. This 
article reviews current literature on the relationships between the GBA, the 
effects of stress during puberty, and the implications for mental health.
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Introduction

Throughout the lifespan, individuals undergo numerous critical periods of 
development during which maturation of the brain occurs, and heightened vulnerability 
to stressors is experienced (Sisk and Gee, 2022). Puberty is a stress-sensitive period, and 
exposure to stressful experiences during this time increases the susceptibility of enduring 
neural and behavioral effects (Murray et  al., 2019). Stress, defined as the mental, 
emotional, and/or physical demands that extend beyond an individual’s regulatory 
capacity, has different impacts depending on the frequency, magnitude, and duration of 
the stress experience (Sheth et  al., 2017). Puberty is also characterized by sexual 
maturation (Sisk and Foster, 2004). Physiological reproductive maturation begins with 
the activation of the hypothalamic–pituitary-gonadal (HPG) axis (Marceau et al., 2011; 
Tinggaard et  al., 2012) following the binding of a hypothalamic peptide hormone, 
kisspeptin, to its receptor, Kiss1R. This binding stimulates gonadotropin-releasing 
hormone neurons to produce and release gonadotropin-releasing hormone (Dedes, 2012; 
Dagklis et al., 2015; Uenoyama et al., 2019; Xie et al., 2022) and stimulate the release of 
luteinizing and follicle-stimulating hormones. Luteinizing and follicle-stimulating 
hormones are released from the anterior pituitary gland into the bloodstream to initiate 
the production of gonadal steroid hormones in the testes and ovaries (Hiller-Sturmhöfel 
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and Bartke, 1998). Once released, the increasing levels of gonadal 
hormones stimulate the development of secondary sex characteristics 
(Dedes, 2012; Dagklis et al., 2015), such as physical changes in body 
hair growth, fat deposition, and breast and genitalia development in 
females and males, respectively (Marshall and Tanner, 1969, 1970). In 
addition to these changes, evidence suggests that the HPG axis may 
play a role in neurodevelopment. A review of the literature conducted 
by Herting and Sowell (2017) found that the increasing concentrations 
of gonadal hormones during puberty are involved in both gray and 
white matter development, highlighting the significance of these 
gonadal hormones on brain maturation.

The timing of pubertal development has been found to differ 
between females and males. In humans, females typically undergo 
pubertal development between the ages of 8 and 13, whereas males 
undergo puberty between the ages of 9 and 14 (Marshall and Tanner, 
1969, 1970; Farello et al., 2019). Several factors impact the timing of 
pubertal development. For example, there appears to be a link between 
pubertal timing and genetics for both females and males (Stroud and 
Davila, 2011; Wohlfahrt-Veje et al., 2016), as well as influences from 
socio-economic, demographic (e.g., place of residence, family type, 
first language learnt), and lifestyle factors (Al-Sahab et  al., 2010; 
Stroud and Davila, 2011; Wohlfahrt-Veje et  al., 2016). Given the 
involvement of the HPG axis in the onset of puberty, it provides 
further grounds for investigating the sex-specific effects of pubertal 
exposure to stressors and the ensuing mental health implications.

Pubertal development in mice is similar to that of humans 
(Blaustein et al., 2016). In female mice, puberty begins with vaginal 
opening as the first sign of ovarian activity at approximately postnatal 
(PND) day 30 (Kane and Ismail, 2017; Murray et al., 2023). In males, 
puberty typically begins with preputial separation around PND 42 
(Kane and Ismail, 2017). The pubertal period is complete upon sperm 
production (around PND 50) in males and first estrus (around PND 
60) in females (Smith et al., 2023). Factors, like strain, weaning age, 
and housing conditions impact the pubertal timing in mice (Bailoo 
et  al., 2020). Like humans, mice also experience heightened 
vulnerability to stress during puberty. Specifically, exposure to 
pubertal stress can induce enduring alterations to the hypothalamic–
pituitary–adrenal (HPA) axis, the brain, and behavior (Blaustein 
et al., 2016).

The impacts of pubertal stress on the 
HPA axis

The HPA axis, known as the stress response system, also 
undergoes maturation during puberty (Smith et  al., 2021). When 
encountered with a stressor, the HPA axis becomes activated, which 
initiates the stimulation and release of corticotropin-releasing 
hormone in the paraventricular nucleus of the hypothalamus (Herman 
et  al., 2016). Corticotropin-releasing hormone then stimulates 
adrenocorticotropic hormone in the anterior pituitary gland before 
traveling through the bloodstream to the adrenal cortex. As a result, 
glucocorticoid stress hormones, most notably cortisol in humans or 
corticosterone in rodents, are released (Smith and Vale, 2006). 
Glucocorticoids negatively impact key brain regions responsible for 
regulating the HPA axis, such as the hippocampus, amygdala, and 
prefrontal cortex (Conrad, 2008; McCormick and Mathews, 2010), 
which could increase susceptibility to stress-related mental illnesses 

like depression and anxiety (Sinha, 2008; Packard et  al., 2016). 
Alternatively, repeated exposure to stressor during puberty can result 
in the blunting of the HPA axis (Trickett et al., 2010). Pubertal stress 
exposure may increase the expression of glucocorticoid receptors, 
facilitating the downregulation of glucocorticoids and the blunting of 
the HPA axis (Susman, 2006). Consequently, the blunting of the HPA 
axis could increase susceptibility to disorders such as post-traumatic 
stress disorder and personality disorders (Cohen et al., 2006; Fairchild 
et al., 2018; Drews et al., 2019). Additionally, exposure to an immune 
challenge during critical neurodevelopmental periods can produce a 
“programming” effect when encountering stress later in life. This effect 
occurs when a specific environmental factor is experienced during 
development and influences responses to subsequent stress exposure. 
Programming effects can lead to diseases because of a prolonged 
immune response, primarily when stress exposure occurs during 
puberty (Sharma et al., 2019).

Earlier studies using mice and rats have examined the effects of 
various pubertal stressors, such as restraint (Klinger et  al., 2019), 
forced swim (Wilkin et al., 2012), foot-shock (Liu et al., 2017), and 
social isolation stress (Lukkes et al., 2009) on the behavior adults. 
Exposure to these stressors during puberty caused enduring anxiety- 
and depression-like behaviors (Pellow et al., 1985; Carola et al., 2002), 
and these effects appear to be sex-dependent. For instance, exposure 
to social stress during puberty induces anxiety-like behavior in both 
sexes, but it induces depression-like behavior in females only (Caruso 
et al., 2017). Similarly, exposure to a single injection of LPS during 
puberty causes enduring depression-like behavior in female mice and 
anxiety-like behavior in male mice (Murray et  al., 2019). These 
findings highlight that stress-induced impacts on mental health are 
sex-dependent and provide a fundamental basis for the need for 
specialized interventions.

The mechanisms underlying the observed sex differences in stress 
responses remain to be  fully elucidated. One likely factor is the 
influence of gonadal hormones on the HPA axis. In rodents, estrogen 
and testosterone distinctly modulate corticosterone levels, suggesting 
an interaction between the HPA and HPG axes (McCormick and 
Mathews, 2010). Differences in corticosterone release from the 
adrenal gland between male and female rodents become especially 
pronounced after exposure to stress. For example, female rats show 
higher corticosterone levels that persist for a more extended period 
than those in males following stress (Kant et al., 1983; Seale et al., 
2004; Figueiredo et al., 2007). This difference is often attributed to the 
role of estrogens, particularly estradiol, in modulating glucocorticoid 
responses in females. Estradiol levels peak during the proestrus phase 
of the estrous cycle (Oyola and Handa, 2017). As a result, female mice 
in proestrus show heightened anxiety-like behaviors in response to 
stressors compared to females in estrus (McCormick et  al., 2008; 
Lovick and Zangrossi, 2021).

In contrast, in male rodents, testosterone attenuates the HPA axis 
response to stress and induces anxiolytic-like effects via androgen 
receptors (Bernardi et al., 1989; Edinger and Frye, 2005; Chen et al., 
2014). Gonadectomies in animal models highlight the influence of 
heightened gonadal hormones at puberty on behavior. Boivin et al. 
(2017) found that pre-pubertal gonadectomy increased anxiety-like 
behavior in males, but not in females, during adolescence. Another 
study found significant differences between adult male and female 
mice gonadectomized before pubertal onset. Gonadectomized males 
display increased anxiety-like behavior, while gonadectomized 
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females show the contrary (Delevich et al., 2020). Similarly, in boys 
between 14 and 17 years old, lower testosterone levels are associated 
with increased symptoms of anxiety (Granger et al., 2003). Moreover, 
males with hypogonadism, a condition characterized by impaired 
gonadal function and reduced testosterone levels (McHenry et al., 
2014), are more prone to anxiety and major depressive disorders than 
those with normal androgen levels (Zarrouf et al., 2009).

The gut-brain axis

Emerging research suggests that the gut microbiome might play a 
role in the sex-specific effects of pubertal stress on the brain and 
behavior (see Figure 1; Cryan and Dinan, 2012; Murray et al., 2019, 
2020). The gut microbiome, consisting of trillions of bacteria, peptides, 
fungi, and viruses, impacts an individual’s health through metabolic, 
immune, and physiological functions (Marchesi and Ravel, 2015; 
Shreiner et al., 2015; Bauer et al., 2016). The gut-brain axis (GBA) is a 
bidirectional network between the central nervous system, the 
autonomic nervous system, the enteric nervous system, and the HPA 
axis (Mayer, 2011). The GBA establishes a link between the brain 
regions involved in cognitive function and emotional regulation and 
intestinal functions (Carabotti et al., 2015), exemplified by studies 
involving germ-free (GF) rodents devoid of gut microbiota from birth. 
GF mice exhibit distinct dendritic morphological changes in the 
amygdala and hippocampus, impacting emotional regulation, 
memory and learning, and neuroplasticity (Luczynski et al., 2016). 
Additionally, GF rats displayed exacerbated neuroendocrine and 
behavioral responses to acute stress. Specifically, increased anxiety-
like behavior and an exacerbated HPA axis response, reflected by 
increased corticosterone levels, were observed compared to controls 
(Crumeyrolle-Arias et al., 2014).

Furthermore, animal studies demonstrate sex differences in gut 
microbiota composition (Yuan et al., 2020; Sisk-Hackworth et al., 
2023). For example, Yurkovetskiy et  al. (2013) found that the 
Porphyromonadaceae, Veillonellaceae, Kineosporiaceae, Peptococcaceae, 
Enterobacteriaceae, Lactobacillaceae, Cytophagaceae, Peptostrepto 
coccaceae, and Bacteroidaceae families are more abundant in males 
than in female mice. Gonadal hormones during puberty play a critical 
role in mediating these sex differences in gut microbiota composition. 
Male mice castrated at 6 weeks of age (during puberty) display a 
microbiota composition that is more similar to that of female mice 
than non-castrated males (Yurkovetskiy et  al., 2013). However, 
testosterone treatment following pubertal castration mitigated the 
difference in gut microbiota composition castrated and intact males 
(Org et al., 2016).

The gut microbiome is also influenced by estrogens via the 
estrobolome, a collection of bacteria in the gut capable of modulating 
the concentrations of estrogens in the body (Kwa et al., 2016). Like 
testosterone, estradiol can also modulate the gut microbiota. 
Ovariectomy induces a shift in the ratio of gut microbiome phyla, 
increasing the abundance of Firmicutes compared to Bacteroidetes 
(Acharya et al., 2023). A high abundance of Firmicutes compared to 
Bacteroidetes is associated with metabolic disorders (Moreno-Indias 
et al., 2016). For example, sex differences in multiple sclerosis (MS) 
were associated with estradiol-mediated changes in the gut 
microbiome. Specifically, estradiol treatment in mice prevented MS 
in males and ovariectomized females by altering the gut microbiome 

and intestinal alkaline phosphatase, an enzyme crucial in regulating 
gut microbes (Kaliannan et al., 2018).

Link between the gut microbiome and 
mental health

The surge of research in the gut microbiome has revealed that 
disruptions of gastrointestinal microbiota play a critical role in the 
development of mental disorders. Specifically, gut dysbiosis – an 
“imbalance” in the gut microbial community (Johnson, 2006) – is 
associated with depression and anxiety through the GBA, by 
activating the immune system or altering communication between 
the gut and the brain (Rathour et al., 2022). The involvement of the 
HPA axis in the GBA illustrates the role that stress plays in this 
interaction. Notably, stressors such as the bacterial endotoxin 
lipopolysaccharide (LPS) have been shown to activate the immune 
system and cause disturbances to the gut microbiome (Cani et al., 
2008) and behavior in an age- and sex-dependent manner in mice 
(Cai et al., 2016; Sharma et al., 2018). Interestingly, LPS treatment 
induces more pronounced changes in the microbiota composition 
of males and females during puberty than during adulthood. 
Moreover, male mice show greater depletion of gut microbiota 
diversity and increased anxiety-like behaviors than females following 
pubertal LPS exposure (Murray et al., 2020). This line of research 
underscores the intricate connections between immune system 
activation, gut microbiome disturbances, and behavioral changes, 
and highlights the complex interplay between gut dysbiosis and 
mental health.

Fecal microbiota transplantation (FMT) from adult mice with gut 
dysbiosis to GF mice showed increased depression-like behavior in GF 
mice compared to controls (Bruce-Keller et al., 2015; Zheng et al., 
2016), illustrating the influence of alterations to the gut microbiome 
on depression. Furthermore, mice transplanted with microbiota from 
donor mice, exposed to chronic unpredictable stress, exhibited 
increased anxiety- and depression-like behaviors, reduced abundance 
of Lactobacillus and increased Akkermansia in the gut microbiota, and 
elevated pro-inflammatory cytokines in the brain (Li et al., 2019). 
Further research considering sex differences and the effectiveness of 
FMT for mental illnesses could significantly transform existing 
approaches to mental health treatment.

Founded by pre-clinical studies, novel treatment avenues in 
clinical settings have been recently explored for depression based on 
the intricate relationship between gastrointestinal and mental illnesses. 
In 2022, two adult patients with major depressive disorder (MDD) and 
gastrointestinal (GI) symptoms like constipation were treated with 
FMT in conjunction with pharmacological and psychological 
interventions. The patients were administered 30 oral capsules, and 
within 4 weeks of the FMT, both patients displayed improved 
depressive and GI symptoms (Doll et al., 2022). Another study used 
FMT in three adult participants with MDD and a history of irritable 
bowel syndrome via an enema and colonoscopy infusions. Within the 
following 6 months, the participants experienced significantly 
improved GI symptoms and an overall reduction in symptoms of 
depression (Collyer et al., 2020). Although it is unclear whether these 
patients have a history of pubertal stress, these findings echo earlier 
research indicating that disruptions in the gut microbiome can 
influence healthy brain functioning. These studies underscore the 
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critical need to continue conducting clinical trials to establish if FMT 
can provide enduring improvements in depression with safe and 
controlled methods.

The overall health and resiliency of the gut microbiome are highly 
dependent on the diversity and richness of microbiota composition. 
Consequently, probiotics have been commonly used as a potential 
vehicle to restore disturbed microbiota and affect mood by regulating 
the GBA. Increasing evidence shows that exposure to a probiotic-
supplemented diet can mitigate the effects of LPS-induced microbial 

changes. For example, exposure to Kefir containing active bacterial 
culture (L. lactis, L. cremoris, L. diacetylactis, L. acid-ophilus), lactic 
yeasts and skim milk powder one-week prior to and one-week 
following pubertal LPS treatment reduced sickness behavior (Murray 
et  al., 2019). Another study using a probiotic mixture containing 
Lactobacillus helveticus and Bifidobacterium longum showed decreased 
cytokine concentrations in the blood of CD-1 mice (Esposito et al., 
2022). These findings hold significant implications, as elevated levels 
of inflammatory cytokines are known to be  associated with an 

FIGURE 1

Sex-mediated and stress-induced GBA interactions. A summary diagram illustrating the complex relationships within the gut-brain axis (GBA) as well as 
the influence of pubertal stress-exposure on neurodevelopment and mental health. The diagram showcases the interconnected elements of sex, 
stress, critical neuroendocrine pathways [hypothalamic–pituitary-gonadal (HPG) and hypothalamic–pituitary–adrenal (HPA) axes] and hormones, and 
the gut microbiome. Directional arrows illustrate the flow of information and key interactions.
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increased risk of neuropsychiatric disorders and depression 
(Felger and Lotrich, 2013). Moreover, probiotics have shown to hinder 
LPS-induced enduring negative effects on both anxiety and 
depression-like behaviors (Murray et al., 2019, 2020) compared to 
controls in mice. Animal studies have also found that probiotic 
treatment prevented stress-induced increases in adrenocorticotropic 
hormone, corticosterone, adrenaline, and noradrenaline 
(Ait-Belgnaoui et  al., 2012, 2014). The reduction in these stress 
hormones suggests probiotics attenuated the HPA axis, which is 
hyperactive in individuals with depression (Keller et  al., 2017). 
Additionally, probiotics have been shown to increase the expression 
of brain-derived neurotrophic factor, a growth factor typically reduced 
in depressed individuals (Sen et al., 2008). These findings suggest that 
probiotics have a positive impact on the central nervous system by 
regulating critical neurotransmitters involved in depression.

Conclusions and future directions

The findings presented in this review shed light on the relationship 
between stressful events during puberty and their impact on gut 
disturbances and increased vulnerability to mental health. The journey 
of unraveling the intricate mechanisms underlying mental illnesses, 
including depression and anxiety, has been significantly advanced 
through continuous research into the GBA. Pre-clinical models and 
preliminary clinical research support dysbiosis’s role in several 
psychiatric conditions. However, several questions remain 
unanswered, and certain limitations persist. Few clinical studies in this 
field have been published and are often small-scale (Dinan and Cryan, 
2017). Therefore, identifying suitable animal models becomes 
paramount in developing generalizable methodologies within this 
domain. Considering factors such as sex, age, strain, and housing 
conditions of the mice used in these models will be  crucial for 
obtaining relevant and meaningful results. Despite the numerous 
advantages of animal models and the significant similarities to 
humans, mice differ genetically, anatomically, and physiologically. 
Thus, non-human models can only partially embody the human 
gut microbiome.

Sex differences play a significant role in human health. Many 
illnesses, including diseases of the immune system and mental 
illnesses, display sex-dependent differences in prevalence, 
presentation, and response to treatment. The inadequate focus on sex 
differences in animal models leads to an inaccurate representation of 
human diseases, posing the risk of misinterpretations and false 
generalizations. Researchers must study these differences in animal 
models to gain insight into the underlying mechanisms and potential 
treatment avenues that might be more effective for specific sexes. 
Furthermore, sex differences can be influenced by hormonal factors. 
One confounding factor not often considered is the estrous cycle in 
female mice. Females in proestrus or estrus phases are less anxious 
than females in diestrus or metestrus (Rodríguez-Landa et al., 2021) 
and less anxious than males (Kokras et al., 2012). Consequently, it is 
important to consider the estrous cycle of female mice when testing 
anxiety-like behaviors.

Future studies should delve deeper into the potential of 
probiotics and FMT as promising therapeutic and preventive 
options for individuals struggling with mental health issues. 

However, to fully acknowledge and accept such advancements, 
rigorous research using appropriate experimental designs must 
validate their efficacy and safety. A key challenge of using 
probiotics is understanding the possible interactions of the 
probiotics with host cells and their respective safe doses. 
Improved studies are necessary to establish the use of probiotics 
more effectively and in the proper quantities. This will ensure 
that probiotics can be  harnessed safely as a complementary 
approach to existing treatments for mental illnesses. Moreover, 
studies often do not adopt a longitudinal approach to explore the 
relationship between probiotics and the long-term shifts to the 
microbiome following stress. This approach in future studies is 
valuable to help understand changes likely to occur in humans. 
Similarly, more research is needed to better understand the key 
factors involved in the efficacy and use of FMT treatments. 
Currently, it is unclear which properties of a transplanted sample 
contribute to the therapeutic effects and whether any of the 
non-microbial components of donor stool are necessary to obtain 
successful results (Wilson et al., 2019; Lavelle and Sokol, 2022). 
Any differences in the effectiveness of the various possible 
methods of administration are also poorly understood (Lavelle 
and Sokol, 2022). Determining the ideal microbial profile of the 
donor sample and method of administration will be crucial in 
improving clinical outcomes.

In conclusion, the link between stressful experiences during puberty, 
gut disturbances, and mental health vulnerability offers a promising 
avenue for research opportunities. By continually exploring the GBA and 
its mechanisms, we can gain valuable insights into the development and 
potential treatment of mental illnesses. Addressing the existing 
knowledge gaps and limitations is paramount to comprehensively 
understanding of this complex relationship. By doing so, we pave the way 
for innovative therapies and interventions that could significantly 
improve the lives of those affected by mental health challenges.
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